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ABSTRACT. We study the links between additive and multiplicative arithmetical functions, say
f, and their square-free supported counterparts,/i%f (hereu? is the square-free numbers
characteristic function), regarding the (upper bound) estimate of their symmetry around
almost all short intervalge — h, z + h].
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

In this paper we study the symmetry, in almost all short intervals, of square-free supported
arithmetical functions.

In our previous paper [3] we applied elementary methods, i.e. the Large Sieve, in order to
study the symmetry of distribution (around of the square-free numbers in "almost all" the
"short" intervalsz — h, x + h| (as usual, "almost all* means for alle [V, 2N], except at most
o(N) of them; "short" means thét = h(N) andh — oo, h = o(N), asN — o).

As in [1], [2], [4], and [5] on (respectively) the prime-divisors function, von Mangoldt func-
tion, the divisor function and a wide class of arithmetical functions, we study the symmetry of
our arithmetical functiory.

We define the "symmetry sum" gfas (heresgn(t)=t/|t], sen(0) 0)
de
SH@™ > Fsen(n - a),

In—al<h
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2 GIOVANNI COPPOLA

and its mean-square as the "symmetry integralf:.of

LINDESTT ST fn)sga(n — 2)

z~N | |n—z|<h

2

Here and hereafter ~ N stands forV < 2 < 2N.

We will connect (in Theorerh 1.1 and Theoreém|1I2JN, h) and I,2;(N, h), for suitable
f; thus relating the symmetry of to that of f on the square-free numberg?(being their
characteristic function). Thus, we can estimate just one symmetry integral for two arithmetical
functions, whenever they agree on the square-free numbers.

As an example, forl(n) the divisor function, [[4] estimate$;(/V, h); then (using Theo-
rem[1.5 to check the symmetry dfrn) in arithmetic progressions) in Theor¢m]1.3 we bound
L2a(N, h) = I200(N, h), and then obtain information o« (N, i) by Theorem 1[1 (here the
function 22 is completely multiplicative, witl2?®) = 2).

We denote withF the set of arithmetical functions: N — C and with5 the set off € F,
with | f| bounded (by an absolute constant)t denotes the multiplicativg € F and.A the
additive ones.

Also, we can defineMa €]1, 2]) the set of "symmetric" arithmetical functiorfsas (where
weassumeVE > 0 supy |f| < NF):

[0}

def
| € F up I N h k
{ qS<N<‘€ f( q) k2N¢

(the<-constant is absolute, as well as- 0), where we have set

——Vk < N“, forsomec,ec > O}

2

Iy(N, h, k, Q)déf Z Z f(n)sgn <n — %) ;

@~oN | In—xz/k|<h/k
n=0(q)

in the following, as here, we willl abbreviate= a(q) to meam = a(mod q).
We start giving a first link betweefiandy? f (in the sequeLdéf log N):
Theorem 1.1.Let N,h € N, whereh = h(N), h/L? — oo andh = o(N) as N — oc.

Assume/ < \/TE J — ooasN — oo. Let| f|| :=supy | f|-
If fis completely multiplicativehen

N h Nh?
. 2 -
(i) I;(N, h) < L* max Ddsz(dQ,Op) =71
and
- Nh
(i) L2y(N,h) < L? %12)5261 Iy <d2’ d2) + 72
If fis completely additivéhen

_ N h Nh? ) )
0) I;(N,h) < L? max DdIQf (ﬁ’ﬁ)—'—( NE _'_NJ\/EL)HfHoo
and
(ii) Los(N,h) < L? maXZd I Al +NJL ) ||f)2

f by ! d2’ d2 J2 >0

We generalize Theorejm ].1 @olditive and tomultiplicative functions:
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Theorem 1.2.Let f € AU M. Let N, h be natural numbers, witth = N? (for 0 < 6 < 1).
Assume thatf is supported over the cube-free numbers and that > 0, || f||., < N¥, as

N — oo. Chooseva €]1,2] e = % > 0. Then
FE8, e 12f €S

We give aconcrete example the functionf(n) = 2% (whereQ(n) is the total number of
prime divisors of); in this casef € S, andp®f € S, Va > % as we will prove directly, also
to detail the (more delicate) estimates

Theorem 1.3.Let Nyh e Nyh =h(N) > Land h=o (‘F) as N — co. Then

2
Z Z 2%Msgn(n — z)| < Nh3/2N¢®
z~N ||In—z|<h

and
2

Z Z 12(n)2%Msgn(n — )| < Nh3/2N=.

x~N ||n—z|<h
Remark 1.4. We explicitly remark that these bounds are non-optimal.

This result is obtained directly upon estimating the mean-square of the symmetry sum for the
divisor functionover the arithmetic progressions

Theorem 1.5.Let N,h € N, with h = h(N) — oo andh = o(@) asN — oo. Then,
uniformlyVq € N,

2

Z Z d(n)sgn(n — )| < NhL®+ NL*log®q,
e~ N | In—al<h

n=0(q)

where theD-constant does not depend @n

The paper is organized as follows

e In Sectior] 2 we give the necessary lemmas;
e In Sectior] B we prove our theorems.

2. LEMMAS

Lemma 2.1. Let f € F be an arithmetical function} f|| supN |f(n)].
Then, forN, h = h(N) e Nandh — oo, h = o(N) asN — oo:

2

Sy ) S bm) f(md) sgn<m—%> < NRL2||f|I% |

x~N |\ /2h<d</z+h |mi72|§d
uniformlyVa, b € B.

(Actually, for our purposes|f||..=  max |f(n)]).

N—h<n<2N-+h
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Proof. Let X be the LHS. By a dyadic dissection and Cauchy inequality

Y < 2 max a(d b(m) f(md?)sgn m—ﬁ
B[S0 T i (1)
m-g|<3

2

< L? \/E<I<I})a<}<(\/ﬁD Z Z Z b(m) f(md*)sgn (m - %)

N g <

2 72
<Lt max DY) SRt

d~ DN Noho <2N+h N<z<2N
mi,m

LIM2ST2 ™ o d2—h<z<mid2+h

mod2—h<z<mogd2+h

Clearly, the limitations or imply m; — 22 < my < my + L (here we "reflect" the "sporadic-

ity") and this in turn, due td > Vh = d2 > h, gives (le FIXED) O(1) possible values
to mo. HenceX is bounded by

I£I2,hL* max D> > > 1< NRL?|IfI,

D<VN
Vh< D<K drD Nooh <y < 2N [y —my |1

O

Lemma 2.2. Assumef € F is completely additive anqu|| supN |f|. LetN, h € N with
h =h(N) — oo, h=0(N),asN — co. ThenvJ < v/2

2

< PawaxD I3 32 bomsen (m— )

DN || gl

+ZZ Z b(m Sgﬂ(m—%) Nh2 2,

A~D N | [ 2| < dy

uniformlyVa, b €B (bounded arithmetical functions).

Proof. Let us call the left mean-squa¥e ThenX is at most

Nh2
3 s S () ’m_zd b(m) f(md)sen (m - )|+ =5 1711

Sincef is completely additive
2

S PwaxD (O30 S ) fmsen (m— )

~ ~ h
e N dD |- | < Jy
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2

h2
IS S vmsen (m— )| |+ S s

TN dD || 2| <ty

e

by the Cauchy inequality. The lemma is thus proved. O

Lemma 2.3. Let f be completely multiplicative. Then, M, h € N, withh = h(N) — oo and
h=0o(N) (asN — ), we havevJ < v/2h

N fesV n-gl<d
2
< |IfI% | L? maxD ZZ Z b(m) f(m)sgn (m - ﬁ) + Al
o0 D<) L= ey Y d? J?
d d
uniformlyVa, b €B.
Proof. Let us call the left mean-squa¥e Then
2
PR L? max Z a(d) Z b(m) f(md?*)sgn <m — i) + K 112,
z~N bt d~D |m7d% <d% @ J2 >

and beingf completely multiplicative we get
2

Nh?
S < AR L max DYSN | DD blm)fm)sen (m— )| + =5 11

~D x~N h
Dot | |m— <

by the Cauchy inequality. The lemma is thus proved. O
Lemma 2.4. Let N, b, J and D be as in Lemmia 2.2, with = o(v/2). Then

2

Z Z Z f(m)sgn <m - %)

]

2

<SEY| X st )| + (5 +VD) 1

d~D X |[meyl <h/d?

Proof. Write z = yd? + r (0 < r < d?) and letX be the left mean-square; since we have
YN = Zyw% +0O (d?), then
2

<Y Y Y| S s (mov- )| L

d~D 0<r<d? y~ X _y—T <
Sr<d® yn 2 ||m—y d2|§d2

J. Inequal. Pure and Appl. Mathb(2) Art. 33, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 GIOVANNI COPPOLA

(thus% is due toz-range remainders); then correcti@y1) values of then-sum gives as a
remainder (due té-range)

N 2 2
o (Z * ||f||oo) = O (NDfI%).

d~D

Gathering the estimates we then obtain the lemma. O

3. PROOF OF THE THEOREMS
We start by proving Theorem 1.1.

Proof. In both casesf{ completely additive or completely multiplicative) we use the hypothesis
on f to "separate variables" after having expressed the symmetfybgfthat of .2 f (for i),

say) and the symmetry of? f by that of f (for ii), say). Thus, to prove i) it will suffice to
remember that each natural numbet md?, wherem andd are natural ang?(m) = 1, i.e.

m IS square-free:

Z f(n)sgn(n — x) Z Z p?(m) f(md?)sgn (m - %)

In—z|<h d<vz+h ’mf— %

Instead, to prove ii) we simply use the following formula (s€e [7]):
=> ud)  YneN
d?|n
to get

Z p?(n)f(n)sgn(n — z) = Z w(d) Z f(md?)sgn (m - %)

In—z|<h d</zth |m_d%’§d%

As for the additional terms in the completely additive case, they come from the estimate of
the square-free symmetry sum aslih [3].
Putting together Lemmas 2[1, P.2,]2.3 2.4, the theorem is proved. O

We now come to the proof of Theor¢m1.2.

Proof. We first prove thatf € S = ;2f € S.
As before, we split aD (to be chosen); say (hefe, 0] is the I.c.m. ofa, b)

def
Z:Z,u Z f(n)sgn(n — )
d<D |n77|§h

n=0([q,d?])

Z Z f(mt*g)sgn (m - %)
d<D t\ lq,d?]

—[q.d2] /¢ 'm_

kt2g kt2
(m, 9) 1
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and observe that, singéis supported over the cube-free numbeéiss

Sud X i)Y X e (me )

d<D tI[q d2] Jlg

(4, d21/t ‘mf

T
_x |<_h
kt2g - kt2g
m=0()

1 x
s\ 2 =
< | flloo N E ddjm,té?;é E f(m)sgn (m kg, d2]) :

d<D ‘m_ z ‘< h
" kt[q,d?] |~ kt[g,d?]

m=0(j)
by (seel[7]) the estimates > 0 d(n) < n’; using the hypothesig € S, we get, by Cauchy
inequality

Nh“
YO IEP < N%Zdzz WNE < aNe

z~N d<D d<D
Hence, it remains to prove that the mean-square of, say

et Z Z f(n)sgn(n — x)
D<d§\/x+ _7\@

n=0([q,d?])

Nhe
PR .

By the Cauchy inequality and a "sporadicity" argument as in the proof of L§mma 2.1,
2

ISTETIS B D DI (UERY

a~N e~N\ Dea< /2

+IfII2 L?  max JZZ Z 1

h
I CAS AR P e <
k[d2,q] | = k[d?,q]

<<N5N< he +ﬁ>+N5 max JZ Z h.

k2D? -k \/%<<J<<\/N d~J N—h o 2Nth
k[d2,q] ~ = k[d2,q]
Hence
Nhe N6+sh2—a
112 l1—a prd+e
> <<k2N€( B AN k)
z~N
In order to obtain the above required estimate we meéde (for the Il term in brackets)

and, comparing the mean-square&and of>’, we come to the choich = N2an° (I term).
This proves the first implication.

As for the reverse implicatiop?f € S = f € S we do not need the hypothesis on the
support of f and we use the same method (but using md? instead of the identity fop:?).
This finally proves Theorefn 1.2. O

We now prove Theorefn 1.5.
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Proof. First of all, let us call/,(V, h) the mean-square to evaluate.
We will closely follow the proof of Theorem 1 in [4].
In fact, we start from the "flipping" property to write:

> dmssatn—0) =13 3 etrm) |23 1 sl -0+ 0 (S 1)),

[n—z|<h 7“<q In—z|<h dn
n=0(q) d<vn

having used the orthogonality of the additive characters (See [7]). By our hypothésisee
[4] for the details)

Z d(n)sgn(n — x) ZZ Z eq(rn)sgn(n — x) + O(1)
\ZEE\(Z)}L T<q d<f |n (z)|(<)h

(here the constant is independenyplike all the others following).
Next, writen — z = s to get (again by orthogonality)

Z eq(rn)sgn(n — x) = e (rex) Z eq(rs)sgn(s)

In—al<h 1
n=0(d) =)
— ) 5 i) eyttt
j<d Is|<h

= e,(rx) Z cja(q,r)ea(jz),

Jj<d
say, where
defQZ‘ . r j
; = — 2 -+ = .
cjalg,m) g éh sin ( TS (q + d))

Here (w.r.t. the quoted [4, Theorem 1]) we have the dependence of the Fourier coefficients on
andr; also, whilecy 4 = 0 there, here (by the estimate in of [6, Chap. 25])

22 2mwsr
Cd,d (g, Z sin <L =
s<h Td

Hence, this term’s contribute to the mean-squ@(éf, h)is:

2
Z Zeqm ch,d(q, r)eq(jx) <<Z Z_> < NIL%log?q

z~N T<q d<\/z x~N <r<q

(that is why we have this additional remainder, here!).
Henceforth, we can rely upon the proof of [4, Theorem 1], the only difference being ¢he
dependence:

2 2

*) Z 326(1 rT) Z Zc]d q,r)eq(jr)| < ZZ Z ch7d(q,r)ed(jx)

r~N r<q d<y/z j<d 7’<q z~N |d<\/z j<d

(we have used the Cauchy inequality).
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We apply, then, exactly the same estimates; while there we get (we are quoting inequalities
to ease comparison)

S lesal? < leyal* < 2.

j<d J<d

here we have (the constant- 0 is ininfluent)

Z lcjalg,r)]” = c% Z sgn(s1)sgn(s2) Ze ((31 — 59) (g T é))

j<d |s1],|s2|<h Jj<d
c
== Z sgn(sy) Z sgn(sa)eq(r(s1 — s2)),
s1]<h lsg|<h
sg=s1(d)

whence, by), we get (se&l[4, Theorem 1]), ignoring the remaidtié¥ L2 log? q):

L) < SONE 30 5 senlsn) Y snsa)eg(r(sn — )

r<q d<v2N  |si|<h so|<h
N s9=s1(d)
9 1
=NL E d E sgn(s1) E sgn(s2)
d<v2N |[s11<h lsa|<h
B s9=s1(d)
so=s1(q)

NL? L h L h
< Z E + Z C_Z E +
A< L<d<V2N

h
[d,q]gf

Thus
I,(N,h) < NhL? 4+ NL*log” q.

We now prove Theorefn 1.3.

Proof. We first show the second estimate.

First of all, we observe that?(n)2%™ = 1%(n)d(n), Vn € N; here we will apply the flipping
property of the divisor function as inl[4].

Then, we will try to link our symmetry integral (for?2*) with that ofd(n).

Writing p%(n) as before

S wmdmsenn—z) = S pld) S dmsga(n ).

\nf:t|§h d<~/z+h In—z|<h
- n=0(d2)

Splitting the range ab = D(z) < v/z + h (to be chosen later), we treat, say

Si(2)Z Y pld) Y d(n)sgn(n — )

d<D [n—z|<h
n=0(d?)

J. Inequal. Pure and Appl. Mathb(2) Art. 33, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10 GIOVANNI COPPOLA

by the Cauchy inequality and Theorém|1.5 to get

Z 11 (2))* < D Z Z Z d(n)sgn(n — x)

z~N d<D x~N | In—z|<h
n=0(d?)

< ND?*L3(h + L) < ND*hL?,
by our hypothesis oh. It remains to bound the mean-square of, say

D@ Y ) Y dn)sga(n - ).
D<d<va+h ‘:;;('dﬁz’;
We split again at/2h (to distinguish non-sporadic and sporadic terms).
Since by the classical estimatén) < n° (seel[7]; here > 0 will not be the same at each
occurrence) we estimate trivially (the non-sporadic terms)

hN®  Nh?
Z wu(d) Z d(n)sgn(n — x) <K Z B <7 N
D<d<+v2h L?E—(f(‘dg’; D<d<+v/2h

we get, together with (the sporadic terms, treated by Lennja 2.1)
2

Z Z p(d) Z d(n)sgn(n —x)| < NhN®,

z~N | \/2h<d<~/z+h In—z|<h

n=0(d?)

that

2
> %@ < (]\gz + Nh) NE.
z~N
Thus, comparing the mean-squaresshfz) and ¥, (x) we make the best choice = h'/4,
finally proving the second estimate.

Writing I, for the symmetry integral o, we apply Theore.l to this function; then, i)
gives us

N h3/? Nh?

2 2-V 1Y are € 3/2 nre
Lio(N,h) < L 151<E<L>};;)d S VT = NT < NRY2NE,

by the choice/ = v/h. This gives the first estimate, hence finally proving The 1.3.0
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