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Abstract

We study the links between additive and multiplicative arithmetical functions,
say f, and their square-free supported counterparts, i.e. p2f (here ;? is the
square-free numbers characteristic function), regarding the (upper bound) esti-
mate of their symmetry around « in almost all short intervals [z — h, z + hj.
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In this paper we study the symmetry, in almost all short intervals, of square-free
supported arithmetical functions.
In our previous paper3] we applied elementary methods, i.e. the Large
Sieve, in order to study the symmetry of distribution (aroufaf the square-
free numbers in "almost all" the "short" intervéds— h, x4 h] (as usual, "almost
all" means for all € [N, 2N], except at mosi(/N) of them; "short" means that
h = h(N)andh — oo, h = o(N), asN — o). A ——
Asin[1], [2], [4], and [5] on (respectively) the prime-divisors function, von Square-Free Supported
Mangoldt function, the divisor function and a wide class of arithmetical func- ~ A"hmetiea! Functions in Short
tions, we study the symmetry of our arithmetical functjon

We define the "symmetry sum" gfas (heresgn(t)<t/|], sgn(0)Z0)

Giovanni Coppola

def .
St Y Jmsen(n - ), e e
In—z|<h Contents
and its mean-square as the "symmetry integralf:of <« 33
2 < >
de
LN ST YT fn)sgn(n— )| - Go Back
z~N ||In—z|<h
Close
Here and hereafter ~ N stands forV < z < 2N. Quit
We will connect (in Theoreri.1and Theoreni.2) I;(N, h) andl,z¢(N, h),
Page 3 of 22

for suitable f; thus relating the symmetry of to that of f on the square-free
numbers (2 being their characteristic function). Thus, we can estimate just one
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symmetry integral for two arithmetical functions, whenever they agree on the

square-free numbers.

As an example, forl(n) the divisor function, {] estimatesl;(/V, h); then
(using Theorem..4to check the symmetry af(n) in arithmetic progressions)
in Theorem1.3 we bound/,»4(N,h) = I,290(N,h), and then obtain infor-
mation onl,(N,h) by Theoreml.1 (here the functior2®(™ is completely
multiplicative, with2%®) = 2).

We denote withF the set of arithmetical functions : N — C and withB
the set off € F, with |f| bounded (by an absolute constant)t denotes the
multiplicative f € F and.A the additive ones.

Also, we can definevo €]1,2]) the set of "symmetric" arithmetical func-

tions f as (where wassume VE > 0 supy |f| < NE):

. Nh~
Sad:f {f € F: sup I;(N,hk,q) < o Vk < NE, forsomec, e > 0}
qSNCE k ]\]-(S

(the<-constant is absolute, as well as- 0), where we have set

2

LNk ST Y pmsen (n=7)]

a~N | In—a/kI<h/k
n=0(q)

in the following, as here, we willl abbreviate= a(q) to meam = a(mod q).
We start giving a first link betweefiand 2 f (in the sequeLdif log N):

Theorem 1.1.Let N, h € N, whereh = h(N), h/L? — oo andh = o(N) as
N — oo. Assume/ < \/TE, J — ocoasN — oo. Let|| || = supyn |f]-
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If fis completely multiplicativehen

i N h Nh
(i) I;(N,h) < L? %1<z<1>§ dIQf(E’ﬁ)«F
and

ii Nh
(i) Le2y(N,h) < L? glg}}Zd Iy (d2’d2> +

If fis completely additivehen

N h Nh?
2 A 2 2
(i) Iy(N,h) < L mg}j d*1 2y (dQ’dQ) +( 7 + NJVhL ) I F115

and

) Nh?
(i) Izp(N,h) < L? maXZd Iy <d2’d2) ( 7 +NJL2) I1£11%

DgJ

We generalize Theorem1to additive and tomultiplicative functions:

Theorem 1.2.Let f € AU M. Let N, h be natural numbers, withh = N?
(for 0 < 0 < 1). Assume thatf is supported over the cube-free numbers and
that VE > 0, || ||, < N¥, asN — oco. ChooseVa €]1,2] ¢ = %=1 > .
Then

feS, e *fes,.
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We give aconcrete example the functionf (n) = 29 (whereQ(n) is the
total number of prime divisors af); in this casef € S, andu?f € S, Vo > 2,
as we will prove directly, also to detail the (more delicate) estimates

Theorem 1.3.Let N,h € N, h = h(N) > Land h = o (@) as N — oo.

Then
2

Z Z 2%Mgon(n — )| < Nh3/2N®
z~N ||In—z|<h

and
2

Z Z 13(n)2Wsgn(n — z)| < Nh3/?N®.

z~N ||In—z|<h

Remark 1.1. We explicitly remark that these bounds are non-optimal.

This result is obtained directly upon estimating the mean-square of the sym-

metry sum for the divisor functioaver thearithmetic progressions
Theorem 1.4.Let N,h € N, with h = h(N) — oo andh = 0<\/TN) as
N — oo. Then, uniformly/q € N,

2

Z Z d(n)sgn(n — r)| < NhL®+ NL*log?q,

z~N | In—z|<h
n=0(q)

where theD-constant does not depend gn
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The paper is organized as follows

¢ In Section2 we give the necessary lemmas;

e In Section3 we prove our theorems.
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Lemma 2.1. Let f € F be an arithmetical function} || . = supy | f(n)].
Then, forN, h = h(N) € Nandh — oo, h = o(IN) asN — oo:

2

Z Z a(d) Z b(m)f(mdQ)sgn (m — %) < NhI? ||f||?>o ’

uniformlyVa, b € B.

(Actually, for our purposes|f|| .= no X, |f(n)]).

Proof. Let X be the LHS. By a dyadic dissection and Cauchy inequality

Y < L? max Z Z a(d) Z b(m)f(mdz)sgn (m - %)

Vh<D<VN 75 |

A
w‘;'“

x
=

< L? max DZZ

Vh«D<VN |m—%|<%
< [|fI>. L* max D :
IFI5 08 max DY 37 >

d~D N—h <2N+h N<z<2N

s S,

a2z =ML g2 h<a<myd24h
mod2 —h<z<mod2+h
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Clearly, the limitations o imply m; — fl—’; <mgy < my +[21—’; (here we "reflect”

the "sporadicity”) and this in turn, due © > vk = d? > h, gives {m,
FIXED) O(1) possible values te,. HenceX is bounded by

2 2
IFIGhL? jmax D> 3 3

d~D %Smlﬁmg%h |mo—m1|<1

1< NRL? | fI2 .

]

Lemma 2.2. Assumef € F is completely additive anlf || et supy | f]- Let
N.h e Nwithh = h(N) — oo, h = o(N),asN — oo. ThenvJ < v/2h

2.2

D onoN ||y 2 | < Iy

uniformlyVa, b €B (bounded arithmetical functions).

Proof. Let us call the left mean-squa¥e ThenX is at most
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2

s |Sald) YD v gma?sen (m— 5)| + Ty
N bt d~D @ J2 b

T h
=<3

Sincef is completely additive
2

9 x
UKL glg}}:D Z Z Z b(m) f(m)sgn (m — ﬁ)
z~N d~D |m,%|§%
2

2
+ ||f||c2>ozz Z b(m)sgn (m—%) +J\;_2L||f||io’

N D |- <

by the Cauchy inequality. The lemma is thus proved. ]

Lemma 2.3. Let f be completely multiplicative. Then, M, h € N, with h =
h(N) — oo andh = o(N) (asN — oo ), we haver.J < v/2h

2

S a@ Y bim)fme)sgn (m— )

N |d<vER - me <

T 2
<7 [ PpasD ST | S b fmsen (m )+ S

DgJ
d~Dx~N

uniformlyVa, b €B.
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Proof. Let us call the left mean-squa¥e Then

2

Y < L? max Z a(d) Z b(m) f(md®)sgn (m - %)

D<J

- D ealsh
Nh? 9
ol F] [
and beingf completely multiplicative we get On the Symmetry of
Square-Free Supported
2 Arithmetical Functions in Short
Intervals
5 2 [?max D b ( - f)
< “fHOO 1512}} Z Z Z (m)f(m)sgn m d? Giovanni Coppola
d~D N || 2| <ty
d d
Nh? .
+ 7 ||f||iO , Title Page
by the Cauchy inequality. The lemma is thus proved. O SRS
Lemma 2.4. Let N, h, J and D be as in Lemma&.2, with D = o(v/h). Then « dd
9 | >
x Go Back
SY| X somsen(n- )
d~D z~N |m_i|<i Close
d2 | =42
2 ) Quit
h
&2 — ~— +ND 2 Page 11 of 22
<XEY | X somssaon—y)| + (5 ND) I age 110

d~D g2 |lm—yl<h/d?
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Proof. Write x = yd*> +r (0 < r < d?) and let® be the left mean-square; since
we have)’  => ~ +0(d%),then
a2

2

<Y Y S| X s (moy- 5| s

d~D 0<r<d? y~ I T <R
Sr<a®y~m |m Y d2|§d2

(thus% is due toz-range remainders); then correcti@y1) values of themn-
sum gives as a remainder (duefitwange)

0 (Z Py Hin) =0 (VD).

d~D

Gathering the estimates we then obtain the lemma. O
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We start by proving Theorem 1

Proof. In both cases f{ completely additive or completely multiplicative) we
use the hypothesis ghto "separate variables" after having expressed the sym-
metry of f by that of . f (for i), say) and the symmetry @f f by that of f (for

i), say). Thus, to prove i) it will suffice to remember that each natural number
n = md?, wherem andd are natural ang?(m) = 1, i.e. m is square-free:

On the Symmetry of

i S -F S ted
f(n)sgn(n — ) p*(m) f (md®)sgn (m — = Arithmeical Funesions in Short
2 =
[n—z|<h d<vz+h |m S% Intervals
Giovanni Coppola
Instead, to prove ii) we simply use the following formula (s€p:[
= Z 1u(d) Vn e N Title Page
d?[n Contents
to get <« >
< >
> m)fsenn—g) = > uld) Y fmd)sgn(m— ).
In—z|<h d<v/z+h |m—2 <% Go Back
. . . Close
As for the additional terms in the completely additive case, they come from
the estimate of the square-free symmetry sum ags]in [ Quit
Putting together Lemmas 1, 2.2, 2.3and2.4, the theorem is proved. [ Page 13 of 22

We now come to the proof of Theoreh2.
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Proof. We first prove thaff € S = n%f € S.
As before, we split ab (to be chosen); say (hefe, b] is the I.c.m. ofa, b)

def
SN ) S fn)sen(n — )
D |hglsp
n=0([g,d?])
xXr
“Su Y st (m )
d<D o
g=l[q,d2]/t m ET
(m,g)=1

and observe that, singéis supported over the cube-free numbéiss

T
ZM Z ft2 ZM Z f(m)sgn (m—m>
d<D tl[[qji]/t ilg ‘m_ | <
m=0(j)

1
< Iflle N7 D od max >,

d<D T ‘

f(m)sgn (m - ﬁ) :

by (see []) the estimaterd > 0 d(n) < n°; using the hypothesig € S, we
get, by Cauchy inequality

Nh*
Zm%wwwzyzk%w TN

z~N d<D d<D

x h
™ %t[q,d7] '5 Ktla,d2]
m=0()
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Hence, it remains to prove that the mean-square of, say

syded Z Z f(n)sgn(n — x)

D<dgm n—g|<h
n=0([q,d?])
is Npo
/12
z~N

On the Symmetry of

. . " FOREPIT H Square-Free Supported
By the Cauchy inequality and a "sporadicity” argument as in the proof of Letnina At ot

9 Intervals
h Giovanni Coppola
Z/ 2 2 A 1
§V| * < ||f||oo§V > et
pedsy/i , Title Page
Contents
DA 55 Bl ID DI
\/%<<J<<\/N drJ z~N ‘m ‘ 44 42
k[d2 = 42 2a]
v () > ¥ .
<<NN( +—>—|—N max J h.
K2D2?2 "k \/§<<J<<\/N o o Go Back
k[aZ,q] S = k(a2 4] Close
Hence Quit
Nhe N6+sh2 «
112 1—a a7é
dIEP < ZNe ( e ThTN +€k)- Page 15 of 22

x~N
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In order to obtain the above required estimate we rneed @ (for the I
term in brackets) and, comparing the mean-squarésasfd of’, we come to
the choiceD = NZa-1° (I term). This proves the first implication.

As for the reverse implicatiop?f € S = f € S we do not need the
hypothesis on the support ¢fand we use the same method (but using md?
instead of the identity for?). This finally proves Theorerh.2. ]

We now prove Theorerh.4.

Proof. First of all, let us call/,(V, k) the mean-square to evaluate.
We will closely follow the proof of Theorem 1 irl].
In fact, we start from the "flipping" property to write:

Z d(n)sgn(n — x)

In—z|<h
n=0(q)

h
:—Z Z eq(rn) Zl sgn(n—x)+0(—+1)7
7<q ‘n x|<h di|\7}g \/N

having used the orthogonality of the additive characters (sSge By our hy-
pothesis orh (see ] for the details)

Z d(n)sgn(n — x) ZZ Z eq(rn)sgn(n — x) + O(1)
[n—xz|<h 'r‘<q d<f \ﬂ z|<h
n=0(q) =0(d)

(here the constant is independenyplike all the others following).
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Next, writen — z = s to get (again by orthogonality)

Z eq(rn)sgn(n — x) = e, (rz) Z eq(rs)sgn(s)

[n—z|<h |s|<h

n=0(d) s=—a(d)
= DS o) I ealrs)eatss)sans)
j=<d Is|<h
= eg(rz) Y _ cjalg, r)ealjn),
j<d On the Symmetry of
- Square-Free Supported
Arithmetical Functions in Short
say, where Intervals
Cj,d(Qa r)déf% Z sin (27T$ (g + %)) . Giovanni Coppola
s<h
Here (w.r.t. the quoted![ Theorem 1]) we have the dependence of the Fourier Title Page
coefficients ony andr; also, whilec,; 4 = 0 there, here (by the estimate in of | Content
Chap. 25]) ontents
Cdd a7 2?, Z sin 27TST qa 44« >
rd
s<h 4 | 4
Hence, this term’s contribute to the mean-squg(év, h) is: Go Back
] 2 Close
Z —Zeq(m) Z caa(q,mea(jr)| < Z (Z— ) < NL?log*q Quit
x~N q r<q dg\/g x~N r<q

Page 17 of 22
(that is why we have this additional remainder, here!).
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Henceforth, we can rely upon the proof &f [Theorem 1], the only differ-
ence being the, s dependence:

2

* Z éZeq r Zchdq, ea(jx)

r~N r<q d</z j<d
2
<y Z Z Z chd a7 ed jl’) On the Symmetry of
T<q N |d</x j<d Square-Free Supported
Arithmetical Functions in Short
(we have used the Cauchy inequality). InEmElE
We apply, then, exactly the same estimates; while there we get (we are quot- Giovanni Coppola
ing inequalities to ease comparison)
24, Title Page
> leial <D e’ <
id i=d Contents
L <44 44
here we have (the constant- 0 is ininfluent)
< >
9 1 roJ
> lesala.r)] =5 > sen(si)sen(ss) Y e (51— s2) T d Go Back
j<d |s1],]s2|<h j<d
c Close
= - Sgnit s SgN(So )y (T(S1 — S
dzg(l)z gn(sz)eq(r(s: 2)), Quit
|s1|<h i<t
52:51

Page 18 of 22
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whence, by«(), we get (see], Theorem 1]), ignoring the remaind@( N L? log® ¢):

I,(N,h) <« 32]\7[/2 Z é Z sgn(sy) Z sgn(s2)eq(r(s1 — s2))

T<q d<v2N  |s1l<h sg|<h

so=s1(d)
1
= NL? Z P Z sgn(s1) Z sgn(s2)
d<v2N |[s1|<h sézz\if;)

s9=s51(q)

1 1 [/ h?
NL? ~h “(=+h
ave| ¥ o X (%)
a<h %<d§\/ﬁ
[dq< B
Thus
I,(N,h) < NhL? 4+ NL*log” q.

We now prove Theorerh.3.

Proof. We first show the second estimate.
First of all, we observe that?(n)2%™ = ;2(n)d(n), ¥n € N; here we will
apply the flipping property of the divisor function as ifj.[
Then, we will try to link our symmetry integral (for22%) with that ofd(n).
Writing p*(n) as before

S mdnsentn—2) = 3 pld) S din)sgaln - )

[n—=z|<h d<Vz+h ln—x|<h
- n=0(d?)
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Splitting the range ab = D(x) < v/x + h (to be chosen later), we treat, say

Si@) Y p(d) Y dn)sgu(n - )

d<D In—z|<h
n=0(d?)

by the Cauchy inequality and Theoreimi to get

Z 12 (x))* < D Z Z Z d(n)sgn(n — x)

z~N d<D x~N | |n—z|<h
n=0(d?)

< ND*L*(h + L) < ND*hL?,

by our hypothesis oh. It remains to bound the mean-square of, say

On the Symmetry of
Square-Free Supported
Arithmetical Functions in Short
Intervals

Giovanni Coppola
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We split again at/2h (to distinguish non-sporadic and sporadic terms). < >
Since by the classical estimafén) < n® (see []; heres > 0 will not be Go Back
the same at each occurrence) we estimate trivially (the non-sporadic terms)
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we get, together with (the sporadic terms, treated by Lerri)a

2

Z Z p(d) Z d(n)sgn(n —x)| < NhN°®,

z~N | \/2h<d</z+h |n—z|<h

n=0(d2)

that

D IS (@))? < <]E—Z+Nh> NE.
z~N
Thus, comparing the mean-square&ofr) andX,(x) we make the best choice
D = h'/4, finally proving the second estimate.

Writing I,e for the symmetry integral of}, we apply Theoreni.1 to this
function; then, i) gives us

N h3/? Nh?
IQQ(N h)<<L2maXZd2d2 7 N¢ + 7 N€<<Nh3/2N€,

by the choiceJ = vh. This gives the first estimate, hence finally proving
Theoreml.3. O]
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