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Abstract

The sequence n — () of real binomial coefficients is studied in two main

n

cases: a > n and n > a. In the first case a uniform approximation with high
accuracy is obtained, in contrast to DeMoivre-Laplace approximation, which

a

has essentially local character and is good only for n ~ &. In the second

0.
case, for every a € R \ (NU {~1,0}), the functions A(a,m) and B(a,m) are
determined, such that lim ‘4“‘"”; =1, and

. B(a,m)

Ala,m) - (n—a)"4 <

<a> < Bla,m)-(n—a)"*V,

n

for integers m and n, obeying n > m > |al.
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Binomial coefficients(?), wherea € R andn € N, occur frequently, for ex-
ample, in analysis[1, 13, 15], in combinatorics and discrete mathematics and
computer science/[ 8, 14], and in probability £, 4]. Computing(g) directly

by computer is not problematic as long@aandn stay within reasonable lim-

its. However, for very large or n the computation of binomial coefficients
becomes difficult, even in the case wheandn are positive integers. An inter-
esting discussion on computing the binomial coefficients in this particular case
can be found in4]. In this note we are interested in the estimateéfgffor a or

n being very large, where € R andn € N.

We observe that the sequence— (2) converges in some cases but in the
other cases it diverges, dependingsoiWe want to determine exactly when the
sequence of binomial coefficients does converge, i.e. we wish to show that

a< —1

G-
n 0, if a>-1.

Moreover, we also want to estimate precisely the rate of divergence/convergence
of the sequence of binomial coefficients. For example, we are searching for

estimates like
—T
n

0.983 - (n —m)~ (™D < ‘ (”)

lim
neN
n—oo

0.436 - (n +m)" ' < <0438 (n+m)" "

and

)] <0.985- (n —m)~ ),
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valid for n > 9000. In addition, we wish to estimate the binomial coefficients
(Z) for large a and positive integers < a. It turns out, in this case, that
the construction of a binomial coefficient approximation, based on Taylor’s for-
mula, similar to the treatment iri[pp. 174-190], is less accurate than the con-
struction based on the Euler-Maclaurin summation formula. The latter produces
two main resultsTheorem.1andTheoremi.2, presented on pagés and27,
respectively.
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Fora € R andn € N we define the binomial coefficien€s(a, n) as

2.1) Cla,n) = (Z) a-(a- 1). a8 (an— n+1)
(2.2) :% 11(a=1)

=0
(2.3) :ain.Ha;i for a # n.

Due to €.2) we have recursion and addition relations, respectively,
a—n
n+1

(2.4) Cla,n+1) = -Cl(a,n),
(2.5) C(a,n)+C(a,n+1)=C(a+1,n+1).
Substitutingn + 1 = m in (2.4), we obtain the equality
(2.6) mC(a,m)=(a—m+1)C(a,m—1),

which holds for every, € R andm € N, if, in addition, we defing’(a,0) := 1.

From 2.3) we obtain the relation

a—1

C(a,n):C(a,m—1)~a_Tm:1-H

i=m

l
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Hence, by 2.6),

(2.7) C(a,n) =mC(a,m) (ain.Hai—i) :

and, consequently,

2.8)  Cla,n) = (=1)""™-mC(a,m) - <n i . H ! - a) ,

valid for integersn andn such thaw # n > m > 1.
For anyn € N anda € R, using €.2), we read the equivalence

(2.9) Cla,n) =0<=a€c{0,1,...,n—1}.

We find, using induction an®(5), thatC'(a, n) are positive integers, provided
thata andn are positive integers as well and< n < a. Further,C(a,n) =0
fora € Nandn > a.
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If C'(a,n) # 0, we have, according t@(6), the following equivalences
3.1 |Cla,n+1)|<|C(a,n)| e ]la—n|<n+le -1<a<2n+1
and

(3.2) |C(a,n+1)| =|C(a,n)| & la—n|=n+1<a=—-10ra=2n+1.

3.1.Referring to £.9), we haveC'(0,n) = 0 for every positive integen.
3.2.Considering 2.2), the equalityC'(—k,n) = (—=1)" - C(k +n — 1,n) holds
foranyk,n € N.

3.3.Letn anda be integers and < n < a. Then, according taX.9), (3.1), and
(3.2), the sequence — |C(a, n)| = C(a,n) strictly increases fon < “+ and
strictly decreases far > 231, while for n = 23 the equalityC(a,n + 1) =
C(a,n) holds. This means:

—

(i) If a is an even positive integer, then the sequenee C(a,n) s
creasesonthe sét, ..., | %t |} and strictly decreases ofy “*
where| ¢£1 | denotes the integer part 8.

rictly in-

Y

| I—

(i) If a is an odd positive integer and > 3, then the sequence— C(a,n)
strictly increases on the sefl,..., %'} and strictly decreases on
{etd .. a}, whereC (a,%5}) = C (a, ).

From the considerations above we conclude that
(3.3) max C'(a,n) = C (a, L%IJ) ,

1<n<a
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if the conditions, quoted in this subsection, are satisfied.

3.4.Leta ¢ {—1,0} UN. Then, by .9), all C(a,n) are different from zero.
Consequently, considering.@), (3.1), and @.2), we find for the sequence—
|C'(a,n)| the following result:

(i) a« < —1 = The sequence strictly increases on the entiré\set

(i) a € (—1,0) U (0,3) = The sequence strictly decreases on the entire set
N.

(i) a > 3= The sequence strictly increases on the gkt .., |2 |} and
strictly decreases fon > [“T“J (Here | x| means the integer part of.)
Consequently,

(3.4) max |C(a,n)| = |C (a, |“])].

neN

Figuresl — 5 illustrate the sequences— |C'(a, n)| for several values of

20 e
Ls :
1. 6 ....... a:__
>
1.4 :
127720 40 60 80

Figure 1: The sequences— |C(a,n)|.
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10 20 30 40

Figure 2: The sequences— |C(a,n)|.
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0. 002

0. 001

Figure 5: The sequences— |C(a,n)|.

40 80
30 a=7 60 a=8
20 40
10 . 20
° n ° ° o
24 6 8 2 4 6 8

Figure 6: The sequences— C(a,n).
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Concerning the method of approximating binomial coefficients, we consider
two main cases: the case wherns very large and < n < a, and the case
whena is any real number and integer> a. The corresponding results for
the first and for the second case, respectively, are presentdetoreny.1and
Theoremd.2, pp. 18 and?27.

Inthe case > 1 andn < a we use the expressiof.{), and in the case >
a, we use the equatior2 (8). In both cases we can obtain for the last factor on o

K . X . Estimating the Sequence of

the right of £.7) and @.9), respectively, some product with all factors positive. Real Binomial Coefficients
Surely, this can be achieved in the first case by choosingrf@ny positive

integer and, in the second case, by selecting any positive integera. In vo e
the sequel we shall see that parametgrlays an important role concerning the
accuracy of the obtained approximation; the largeis, the more accurate the Title Page
approximation is. Therefore, we demand that at least 2 and,m — a > 2, Contents
in the first and in the second case, respectively. However, to conifjuten)
directly, using 2.7) and @.8), bothm andm — « should not be large. A 4

Since all factors in the above mentioned product are positive, we can use the < >
real logarithmic function to transform it into a sum, which could be approxi-

. . . . . Go Back

mated easily using the Euler-Maclaurin summation formdla/[ 9, 11, 17].

For example, from12, p. 117 - items (21a) and (21b)], setting= 3, we obtain Close
the Euler-Maclaurin formula of the third order Quit

fm)+ f(n)  f'(n) = f'(m)

(4.1) Z f4) = / f(z)dx + 5 + 5 + R(m,n), Page 11 of 34
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having the remainder
(4.2) R(m,n) := p3s(m,n) = ——/ Py(—z) f®(x) dz,

wherem andn are integersim < n, andf € C3[m,n|. P;(x) stands for the
third Bernoulli 1-periodic function?, p. 114 - items (13) and (14)]

(i) Pyz)=z(z—3)(@—-1) forzel0,1]

(4.3) . y
(i) Py(z+1) = Ps(x) forz € R. ‘Real Binamial Coafiionts
Therefore, due to Vito Lampret
(4.4) Py(—z) = P3(1 — x) = —P3(x),
Title Page
we have, referring to4(2),
Contents
1 n
(4.5) R(m,n) = 6/ Py(2) f®(z) da. <« (33
" < >
We wish to obtain a better estimate of the remain@ér, n). Indeed, due
to (4.3), we have Go Back
1 ) 1 1 Close
Pi(z)| = Py =+t)|= -t =——=.
g o = s [ (5 +0) = s [(#-5) | - 155 i

Page 12 of 34
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for integersn > m. Moreover, if f®)(z) is a monotonic function, not necessar-
ily keeping its sign, then, for integers> m:

(i) R(m,n) <0 if fO®(x)grows
4.7)
(i) R(m,n) >0 if f®(z)decreases.
Indeed, substituting = 7 + ¢, 7 being an integer, and considering the peri-
odicity, P3(i + t) = Ps(t), we have

i+1
(4.8) / Py(x) f®)(x) d
1/2
= @i +1t)d
/O Py(t)f3 (i +1) t+/1

Additionally, substituting = 1 — 7 and referring to the identity}(4), we obtain

1 Py(t)f® (i +t)dt.
/2

1 1/2
/ Py(t) (i + 1) di = —/ Py(r) fO (i +1—7)dr.
1/2 0

Therefore, using4.8), we find

(4.9 /nPg(x)f(B) (x)dx

m

- /1/2133@) [fOi+1)— fOi+1—1)]dt.
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Because +t < i+ 1—tfort € [0,1], the differencef® (i + t) fO3G +

1 — t), occurring in ¢.9), is non-positive or non-negative jf*)(z) grows or
decreases, respectively. But(t) > 0 fort € [ ,2] due to G 3. Hence,
all the integrands in the right hand side &f9) keep their sign over the entire
interval [0, 5], provided thatf® () is monotonous. According tet(5), this
confirms the assertion (7).

In this section we are supposing that the real nunabend the integers: and
n satisfy the following conditions:

(4.10) a>1, 2<m<n<a-—-m.

Using the logarithmic function we can transform the last produc®in) (into

the sum . . .
lnH“;Z =Zf<z>,

where f(z) = In 2. Unfortunately the second and the fourth derivatives of

the functionf do not keep their respective sign fore [m,a — m], which

has some disadvantage for estimating the remainder in the summation formula.

However,

n

Ta— a—1
H _llbm—irn—z
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Thus,

(4.11) 1n1:_[ a;i = ;fa,b(i),
where
(4.12) fap(z) == In 17T _ In(a —x) — In(b — z),

b—

8

Estimating the Sequence of
b=m -+ n, and0 <z <b < a. Real Binomial Coefficients

We have the derivatives .
Vito Lampret

(4.13) I P p——

>0
a a—x b—x Title Page
Contents
D) 1 1
(4.14) fap(@) = — a2 + b2 >0, «“ >
4 | J
2 2 Go Back
4.15 G z)=— + >0
(#.15) L P R (s Close
and Quit
6 6 Page 15 of 34
(4.16) Y ) = - n >0 g

(=)t (b—z)t 7
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Formula ¢.1), applied to the functiory,,, determines the remainder, de-

noted asik,(m, n). Referring to ¢.6), (4.14) and @.15, we have

%f- / "1 @)
mf (A0 = 13 m)
&)
72\/_ ab
—1 1
72\/’ ((a—n)2+(b—n)2)

72; ((a :1n) +#) ’

| Ra(m,n)| <

that is
1
4.17 R,(m,n)| < ———.
(4.17) [Bamom)| < -
Moreover, due to4.7) and ¢.16), we have
R,(m,n) <0.

Therefore, consideringt(17), we conclude that fot, m andn, as determined
by (4.10), there exists somé € [0, 1], depending om, m andn, such that

v

4.18 —,
(4.18) 72m2/3

R.(m,n) = —
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forn € [m,a —m.

After the remainder has been uniformly estimated, the summation formula

(4.2) can be applied. According td (12, we find
— oz " m(, _ a—m
(4.19) /fa,, )dx = [m (b—=2) } —In (m (a=m) )

(a—a)— w(a =y

and

(a—m)(a—n)

(420) % [fa,b(m) + fa,b(n>] = ln\/

m-n

Referring to ¢.13), and recalling thak = m +n, defined below4.12), we have

_a 1 1
12 (m(a—m) _n(a—n))'
From (¢.11) and @.1), using ¢.19—(4.21), we obtain the expression
B § C Y Oy [ ey R
i=m 1 m-n n”(a—n)a n
a 1 1
+ 12 <m(a —m) o n(a — n)) + Ry(m,n).

Consequently, we conclude, according #o7f and @.18), that the following
theorem holds.

@21) [0 - )]
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Theorem 4.1. For any integersn andn, obeying conditiorf4.10), there exists
somed = J(a, m,n) € [0,1], depending om, m andn, such that

0
4.22 C(a,n) = B(a,m,n)-exp| ——— |,
(4.22) (@) = Blamn) exp (=02
where
B(a,m,n):mC(a,m)-m (a—m) . a-m
n"(a —n)en mn(a —n)
Estimating the Sequence of
- exp ﬁ 1 _ 1 Real Binomial Coefficients
12\m(a—m) nla—mn))|’ .
Vito Lampret
ie.
Mla—m)*™ — Title Page
(4.23) B(a,m,n) = C(a,m) - m™(a—m) . mla—m)
n"(a —n)e" n(a—n) Contents
- exp a4 ! — 1 . 4« >
12 \m(a—m) n(a—n) p R
For everya andm, satisfying ¢.10, the functionz — B(a, m,x) has the
symmetric property Go Back
a a Close
B (a,m,— —x) =B (a,m,—+x)
2 2 Quit

and, moreover, strictly increases/decreases on the inte(r@a%e} and [%, a)

. Page 18 of 34
respectively. Indeed, due t4.¢3 we have

d J. Ineq. Pure and Appl. Math. 7(5) Art. 166, 2006
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wherep(z) = ¢(a—z) —(z) andy(x) = 1/(2x) — 1/(1222) +1n . Because

., 622 —3r+1
for z > 0 and consequently’(z) = —¢'(a — z) — ¢'(x) < 0, funct|ongo( )
strictly decreases. Thug(z) > ¢(%) = 0forz € (0, %) andgp ) <e(5)=0
forz € (4,a). Hence B (a,m,z) > 0 forz € (0, %) and-<L B (a,m x) <0

forx € (%, a).
The expression foB(a, m,n) can be further simplified. Namely, thanks to
the estimat® < n < a, the relative deviation

N
2 _9- -1
a

(4.24) d(a,1) =

(NS

lies within the open interval—1, 1) and generates the equalities

(4.25) Ha—1) = (3)2 1 - d(a, )]
and
(4.26) t'(a—t)""= (g)a [(1+z)"(1 - m)l_m]% , x=da,t).

Using @.29 and @.26), the equation4.23 can be written in a more compact
form as

(4.27) B(a,m,n) = C(a,m) - Dia, u)

Estimating the Sequence of
Real Binomial Coefficients

Vito Lampret

Title Page
Contents
<44 44
< >
Go Back
Close
Quit
Page 19 of 34

J. Ineq. Pure and Appl. Math. 7(5) Art. 166, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:vito.lampret@fgg.uni-lj.si
http://jipam.vu.edu.au/

-ctom [Fm0] =
e E (1 1—;/2)}’

wherey = d(a,m), v = d(a,n), F(t) = (1 +t)** and

D(a,t) = [F(t) F(—£)]* VT =8 exp (ﬁ) |

Estimating the Sequence of
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The graphs of the functions— 1/D(a, z), fora = 37 anda = 337, are shown T
in Figure 7, and the graphs of the sequenees— C(a,n) and the functions
x — B(a,2,z) are illustrated in Figuré.

Title Page
1 1 Contents
4« 44
0.5t a=3n 0.5t a=33r < >
0 | | 0 | : Go Back
-1 0 1 -1 0 1
) ) Close
Figure 7: Graphs of functions — 1/D(a, x).
Quit
Figure8 indicates that the approximatidi a, m, n) is very close ta’(a, n), Page 20 of 34
even for smalh, for examplem = 2. Here, "to be close" has its meaning in the
absolute sense, i.e. proportionallytax{C(a,n) : 1 < n < a}. The curvesin v —————————

these figures are reminiscent of the Gauss (normal) bell-shaped curves arising http://jipam.vu.edu.au
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29
1501 12x10

1004 8x10°%°

50 + 4x10%° a=33x

20 40 60 80 100
Figure 8: Approximation®3(a, 2, x) to sequences — C(a,n).
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well known DeMoivre-Laplace local approximatiof, pp. 174-190]

Vito Lampret
1\" \N“" 1 1 a ?
n [E————
C , = = ~ .e — 2 , ;
(CL n) (2) (2) 271'-% Xp B ( \/g ) Title Page
Contents
from which we obtain a DeMoivre-Laplace approximation to the sequence of pp b
binomial coefficients
< >
9 at3 2n — a)?
C(CL?n) ~ M(ajn) = \/ﬁ - exp <_%> ) Go Back
Close
A figure representing the graphs of the sequences C'(a,n) and the func- Quit

tion z — M(a,x) for a = 37 anda = 33m, is not shown because it is in-
distinguishable from Figur8. Consequently, it seems that the approximation
C(a,n) = M(a,n) should be very good fo# andn obeying ¢.10. Unfortu-

. . . . . J. Ineq. Pure and Appl. Math. 7(5) Art. 166, 2006
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is true that the relative error

C(a,n) — M(a,n)
M(a,n)

pla,n) =

is small forn ~ 5. However, it can approach even to the numberfor n ~ 1
orn = a, as is evident from Figur®, which shows the sequences of errors
p(a,n) for a = 3r anda = 337.

AR 30 60 90
3x1073 °, . o —

! 40 +50 60
3° .6 9 . SV .0 -0.
-0.0 NI 0.3
—0. 1 _3x10°3 oo -0.6 :
B . B S a=33r %
-0.1 a=3n _6x10-2 a=33r . -0. / e

Figure 9: The graphs of sequenees- p(a,n).

Fortunately, the situation is quite different concerning the approximation
C(a,n) ~ B(a,m,n). Indeed, due to4.22), the absolute value of the relative
error

C(a,n) — B(a,m,n) < ¥ )
4.29 r(a,m,n) := =exp|——=| -1
( ) ( ) B(a,m,n) P 72m2\/3
becomes small uniformly for large. Because the functiop(z) := e *—1+z
strictly increases oif0, co) and ¢(0) = 0, we have|exp(—z) — 1| < x for
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x > 0. Thus, considering4(29, we find the uniform estimate

1

(4.30) ~Toam?

< r(a,m,n) <0,

for a, m andn, which obey condition4.10. For example|r(a,2,n)| <

2.1 x 1073, |r(a,10,n)] < 8.4 x 1075, |r(a,100,n)| < 8.4 x 1077, and
|7(a, 1000,n)| < 8.4 x 1079, Direct computations, using {], give —3.3 x

107% < 7(337,2,50) < —3.2 x 107%, —2.8 x 1075 < (337, 10,50) <

—2.7x 1075, and—2.8 x 1072 < (333,100, 500) < —2.7 x 107°. Hence, a
priori estimate 4.30 appears as rather rough.

Let us suppose that the real numbeand the integersn andn satisfy the
following conditions:

(4.31) a e R\ (NU{-1,0}) and n>m>|d|.

We relate the last product i2 @) with a sum

TN ) S

(4.32)

where

(4.33) fulz) =In (x_a) =In(z —a) — Inx.
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We shall use formul&4( 1) for the functionf,, which determines the remain-
der, denoted a&,(m, n). To this effect we need the derivatives

(4.3) fie) = —— -,
(4.35) f(z) = T ila)z + 12,
(4.36) fP(x) = (z —2a)3 ;3
and

(4.37) f9(2) = =6, E,

for x > a. It is evident from these expressions that,dar 0, all derivatives of
odd/even orders are positive/negative andgfer 0, all derivatives of odd/even
orders are negative/positive. Thus, using the function signgmaz) = —1
for a < 0 andsgn(a) = 1 for a > 0, we have

() sgn(a)- fi(z) <0
(4.39) (i) |7(@)] = sen(a) - 1)

(i) sgn(a)- fP@) <o0.
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According to ¢.33 we get
@) [ pde= w0 . (o

x m n"(m — a)m=¢
and
1 B (m—a)(n—a)
(440) 5 [fa(m) + fa(n)] - 111\/ m-n .
imating th f
Due to .34, we have ‘Real Binomial Cosfftents
1 ’ / a 1 1 Vito Lampret
4.41 — — = — — )
@an gl - ] = 1 (o )
Considering4.6), (4.39(i) — (ii) and (4.35 we estimate the remaindey, (m, n) Title Page
as Contents
|R.(,m,n)| < 721\/3 - sgn(a) /m 3 (z)dx <4 >
1 " " 4 }
= o5 (senla) i) = sene) - 1 (m)) S
— Sgn<a) " Close
< 2o\
S 05 fa(m) -
sgn(a) 1 1
T3 \(m—a)?  m? Page 25 of 34
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ie.

id
36vV3m(m —a)?
However, from ¢.7) and @.38(iii) we conclude that

(4.42) | Ra(m,n)| <

sgn(a) - Ry(m,n) >0.
Consequently, according td.42), there exists somé < [0, 1] such that
?lal
36v3m(m —a)?
Hence, for integers > m > |a|, we have
J-a
36v/3m(m — a)?

for somed € [0, 1], depending om, m andn.
Inserting expressiong (39 — (4.41), and ¢@.43 into the summation formula
(4.1), we obtain the expression

I =

L e < 1 B 1 ) N v-a
12 \nn—a) m(m—a) 36\/§m(m —a)? )
Hence, considering2(8), we conclude that the following theorem was proved
true.

sgn(a) - Ry(m,n) =

(4.43) R,(m,n) =
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Theorem 4.2. For any integersn andn, which obey4.31), there exists some
v € [0, 1], depending om, m andn, such that

. Y-a
(4.44) Cla,n) = B*(a,m,n) - exp (36\/§m(m - a)2> ’
where
B*(a’vm’n> = (_1)n—m ’ mC’(a,m) . n i a
m™(n —a)""°

P [E (n(n—a) - m(m—a>)]

m+1/2

i.e.

m
(m _ a)m—a—1/2

P {E (n(nl— a) m(ml— >)]

The rate of convergence

(4.45) B*(a,m,n) = (=1)"""™-C(a,m) -

lim (1 — g)n = e—a,’ a € R?

n—00 n

of the sequence occurring if.¢5, can be estimated using the following lemma:
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Lemma 4.3. For any positive real: andt > 2z there hold the estimates

R B

2 2

(i) exp (:E— ﬁ—t) < (1+f)t < exp (x— %)

Proof. Indeed, integrating the inequalities

1
1+7< <1427
1—71
and
1—-7< <1—g7'
1+7 37

valid for r € (0, 1), we obtain the relations

2 Yy
Yy dr 2
=< =—In(l—-y) <
vt /01—7 n(l—y) <y+y
and ) v g )
Yy 14 Yy
R A n(l+y)<y-73,

true fory € (0,3]. Moreover, forz > 0 and¢ > 2z the numbetr, := £ lies
in the intervaI(O, %] and the relations above could be applied for thand the
lemma is thus verified. O

Remark 1. From the above lemma we obtain

x? AN x?
(4.46) exp (x — 7) < (1 + ;) < exp (x — §>
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for any realz # 0 andt > 2|z|.

From @.44) and @.45, using our Lemma, and considering the inequalities
l<vV14+h<1l+4+h/2andl —h <+/1—h <1,trueforh € (0,1), together
with the estimateﬁ > —%, valid for positive integera > m, we find that the

next proposition is valid.

Proposition 4.4. For a, m andn, which follow(4.31), the following estimates

hold

(4.47)

where

(4.48)

and

(4.49)

(i) |C(a’ n)‘ > C*(a7 m) ’ [(CL, m) : (n — CL)*((HI)

(“) |C(a’ n)‘ < C*(a7 m) ’ J(CL, m) : (n — a)i(aJrl),

e a mm+1/2

C*(a,m) = |C(a,m)| - (m — a)m—a—1/2

o2 la .
Ham) b (~45 ~ o), @<
a,m) =
(1 - %) eXp <_% - 12m(in—zz)>’ it a>0
lal |a] i
(14—%) exXp (m), if a<0
J(a,m) =

exXp (m), |f a>0.
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We emphasize tha€ (a,n)| ~ C*(a,m) - (n — a)~ @) represents a good
approximation for large:. From relations4.47—(4.49 we conclude that the
following proposition also holds.

Proposition 4.5. For every real numberz we have
oo, If a< -1
(4.50) lim |C(a,n)|=<¢ 1, if a=-1
0, if a>-1.

n—oo

ComputingC*(a, m), |I(a, m)| and|J(a, m)| directly, using e.g. 19, we
obtain from relations4.47)—(4.49 good estimates of binomial coefficients. For
example, because

C*(—m,2099) - I(—,2099) = 0.436029 ... > 0.436

and
C*(—m,2099) - J(—m,2099) = 0.437382... < 0.438,

we have
0.436 - (n + 7)™ ! < |C(~m,n)| < 0.438 - (n+ 7)™ 1,

true forn > 2100.
Similarly, since

C*(7,8999) - I(m,8999) = 0.983122 ... > 0.983
20bviously (') = (-1)".
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and
C*(7,8999) - J(m,8999) = 0.984545 ... < 0.985,

we have
0.983 - (n— )" < |C(m,n)| < 0.985 - (n — 7)Y,

valid for n > 9000.
According to ¢.47), the quotient

[Cla,n)]

Qla,n) = C*(a,m) - (n — a)~(a+1)

lies close tol and is bounded as
(4.51) I(a,m) < Q(a,n) < J(a,m),

for a, m andn, which obey 4.31). FigurelOillustrates the estimatel(51) for
ac€{—m, rlandn=m+1¢€ {56, ..., 101}.
Remark 2. Using the Gamma function, the definition of binomial coefficient
C'(a, b) could be extended as

I(a+1)
I'b+1)-T(a—b+1)

C(a,b) =

for a and b being arbitrary complex numbers, different from any negative in-
teger. From this expression the symmetric propettyy, b) = C(a,a — b), is
evident.
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1.4
1
1.2
1 0.8
0.8 . 0.6
0.6 ° 0.4 :
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Figure 10: Estimating the sequence of binomial coefficients. o
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