INEQUALITIES INVOLVING THE INNER PRODUCT

DORIAN POPA AND IOAN RAŞA

Technical University of Cluj-Napoca

Department of Mathematics Str. C. Daicoviciu 15

Cluj-Napoca, Romania

EMail: {Popa.Dorian, Ioan.Rasa}@math.utcluj.ro

Received: 20 February, 2007

Accepted: 16 July, 2007

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 26D20.

Key words: Inner product, Schwarz inequality.

Abstract: The paper contains inequalities related to generalizations of Schwarz's inequality.

Inequalities Involving the Inner Product

Dorian Popa and Ioan Raşa vol. 8, iss. 3, art. 86, 2007

Title Page

Contents

44 >>

←

Page 1 of 8

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Introduction	3	,

2 The Results 4

Inequalities Involving the Inner Product

Dorian Popa and Ioan Raşa

vol. 8, iss. 3, art. 86, 2007

Title Page

Contents

Page 2 of 8

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

1. Introduction

Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space over the field $K = \mathbb{R}$ or $K = \mathbb{C}$. Then for all $x, a, b \in H$ the following inequality holds:

$$(1.1) \left| \langle a, x \rangle \langle x, b \rangle - \frac{1}{2} \langle a, b \rangle ||x||^2 \right| \le \frac{1}{2} ||a|| \, ||b|| \, ||x||^2.$$

In particular, for a = b (1.1) reduces to Schwarz's inequality.

For historical remarks, proofs, extensions, generalizations and applications of (1.1), see [1] - [5] and the references given therein.

In this paper we consider a suitable quadratic form and derive inequalities related to (1.1). More precisely, we obtain estimates involving the real and the imaginary part of the expression whose absolute value is contained in the left hand of (1.1).

Inequalities Involving the Inner Product

Dorian Popa and Ioan Raşa vol. 8, iss. 3, art. 86, 2007

Title Page

Contents

Page 3 of 8

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. The Results

Let v_1, \ldots, v_n $(n \ge 2)$ be linearly independent vectors in H, and $v := v_1 + \cdots + v_n$. Consider the matrix

$$A := \begin{pmatrix} \langle v_1, v - v_1 \rangle & \langle v_2, v - v_1 \rangle & \cdots & \langle v_n, v - v_1 \rangle \\ \langle v_1, v - v_2 \rangle & \langle v_2, v - v_2 \rangle & \cdots & \langle v_n, v - v_2 \rangle \\ \vdots & \vdots & \cdots & \vdots \\ \langle v_1, v - v_n \rangle & \langle v_2, v - v_n \rangle & \cdots & \langle v_n, v - v_n \rangle \end{pmatrix}$$

Theorem 2.1.

- (i) The matrix A has real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$; moreover, $\lambda_1 \leq 0$ and $\lambda_n \geq 0$.
- (ii) The following inequalities hold:

(2.1)
$$\lambda_1 \|x\|^2 \le \sum_{\substack{i,j=1\\i\neq j}}^n \langle v_i, x \rangle \langle x, v_j \rangle \le \lambda_n \|x\|^2, \quad x \in H.$$

Proof. Let H_n denote the linear subspace of H generated by v_1, \ldots, v_n . Consider the linear operator $T: H_n \to H_n$ defined by

$$Tx = \langle x, v \rangle v - \sum_{i=1}^{n} \langle x, v_i \rangle v_i, \quad x \in H_n.$$

Then for all $x, y \in H_n$ we have

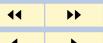
$$\langle Tx, y \rangle = \langle x, v \rangle \langle v, y \rangle - \sum_{i=1}^{n} \langle x, v_i \rangle \langle v_i, y \rangle$$

Inequalities Involving the Inner Product

Dorian Popa and Ioan Raşa vol. 8, iss. 3, art. 86, 2007

Title Page

Contents



Page 4 of 8

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$= \overline{\langle y, v \rangle} \langle x, v \rangle - \sum_{i=1}^{n} \overline{\langle y, v_i \rangle} \langle x, v_i \rangle$$
$$= \left\langle x, \langle y, v \rangle v - \sum_{i=1}^{n} \langle y, v_i \rangle v_i \right\rangle = \langle x, Ty \rangle.$$

We conclude that T is self-adjoint, hence it has real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and:

(2.2)
$$\lambda_1 \|x\|^2 \le \langle Tx, x \rangle \le \lambda_n \|x\|^2, \quad x \in H_n.$$

On the other hand,

$$Tv_{j} = \langle v_{j}, v \rangle v - \sum_{i=1}^{n} \langle v_{j}, v_{i} \rangle v_{i}$$
$$= \sum_{i=1}^{n} (\langle v_{j}, v \rangle - \langle v_{j}, v_{i} \rangle) v_{i} = \sum_{i=1}^{n} \langle v_{j}, v - v_{i} \rangle v_{i}$$

for all j = 1, 2, ..., n.

This means that A is the matrix of T with respect to the basis $\{v_1, v_2, \dots, v_n\}$ of H_n , and so $\lambda_1 \leq \dots \leq \lambda_n$ are the eigenvalues of the matrix A.

Now remark that

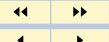
$$\langle Tx, x \rangle = \langle x, v \rangle \langle v, x \rangle - \sum_{i=1}^{n} \langle x, v_i \rangle \langle v_i, x \rangle$$
$$= \sum_{i=1}^{n} \langle v_i, x \rangle \sum_{i=1}^{n} \langle x, v_i \rangle - \sum_{i=1}^{n} \langle v_i, x \rangle \langle x, v_i \rangle$$

Inequalities Involving the Inner Product

Dorian Popa and Ioan Raşa vol. 8, iss. 3, art. 86, 2007

Title Page

Contents



Page 5 of 8

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$= \sum_{\substack{i,j=1\\i\neq j}}^{n} \langle v_i, x \rangle \langle x, v_j \rangle, \quad x \in H_n.$$

Combined with (2.2), this gives

(2.3)
$$\lambda_1 \|x\|^2 \le \sum_{\substack{i,j=1\\i\neq j}}^n \langle v_i, x \rangle \langle x, v_j \rangle \le \lambda_n \|x\|^2, \quad x \in H_n.$$

Let $x \in H_n$, $x \neq 0$, $\langle x, v_i \rangle = 0$, i = 1, 2, ..., n - 1. From (2.3) we infer that

$$(2.4) \lambda_1 \le 0 \le \lambda_n.$$

Let $y \in H$. Then y = x + z, $x \in H_n$, $z \in H_n^{\perp}$ and $||y||^2 = ||x||^2 + ||z||^2$, so that $||y||^2 \ge ||x||^2$. Moreover,

$$\langle v_i, y \rangle = \langle v_i, x + z \rangle = \langle v_i, x \rangle, \quad i = 1, \dots, n.$$

Using (2.3) and (2.4), we get

$$||\lambda_1||y||^2 \le |\lambda_1||x||^2 \le \sum_{\substack{i,j=1\\i\neq j}}^n \langle v_i, y \rangle \langle y, v_j \rangle \le |\lambda_n||x||^2 \le |\lambda_n||y||^2$$

and this concludes the proof.

Corollary 2.2. Let $a, b, x \in H$. Then

$$(2.5) \qquad \left| \operatorname{Re} \left(\langle a, x \rangle \langle x, b \rangle - \frac{1}{2} \|x\|^2 \langle a, b \rangle \right) \right| \leq \frac{1}{2} \|x\|^2 \sqrt{\|a\|^2 \|b\|^2 - (\operatorname{Im} \langle a, b \rangle)^2}.$$

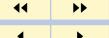
Inequalities Involving the Inner Product

Dorian Popa and Ioan Raşa

vol. 8, iss. 3, art. 86, 2007

Title Page

Contents



Page 6 of 8

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. If a and b are linearly dependent, (2.5) can be verified directly. Otherwise it is a consequence of Theorem 2.1.

Indeed for n = 2, $v_1 = a$, $v_2 = b$, the eigenvalues of the matrix A are

$$\lambda_{1,2} = \operatorname{Re}\langle a, b \rangle \pm \sqrt{\|a\|^2 \|b\|^2 - (\operatorname{Im}\langle a, b \rangle)^2}$$

and

$$\langle Tx, x \rangle = 2 \operatorname{Re}\langle x, a \rangle \langle b, x \rangle, \quad x \in H.$$

Remark 1.

- (i) When $K = \mathbb{R}$, (2.5) coincides with (1.1).
- (ii) Let $K = \mathbb{C}$. Applying Corollary 2.2 to the vectors ia, b, x we get

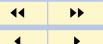
(2.6)
$$\left| \operatorname{Im} \left(\langle a, x \rangle \langle x, b \rangle - \frac{1}{2} \|x\|^2 \langle a, b \rangle \right) \right| \leq \frac{1}{2} \|x\|^2 \sqrt{\|a\|^2 \|b\|^2 - (\operatorname{Re}\langle a, b \rangle)^2}.$$

Inequalities Involving the Inner Product

Dorian Popa and Ioan Raşa vol. 8, iss. 3, art. 86, 2007

Title Page

Contents



Page 7 of 8

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] M.L. BUZANO, Generalizzazione della disuguglianza di Cauchy-Schwarz (Italian), *Rend. Sem. Mat. Univ. e Politech. Torino*, **31**(1971/73), 405–409(1974).
- [2] S.S. DRAGOMIR, Refinements of Buzano's and Kurepa's inequalities in inner product spaces, *Facta Univ.* (*Niš*), *Ser. Math. Inform.*, **20** (2005), 65–73.
- [3] S.S. DRAGOMIR, A potpourri of Schwarz related inequalities in inner product spaces (I), *J. Inequal. Pure Appl. Math.*, **6**(3) (2005), Art. 59. [ONLINE: http://jipam.vu.edu.au/article.php?sid=532].
- [4] J.E. PEČARIĆ, On some classical inequalities in unitary spaces, *Mat. Bilten*, **16** (1992), 63–72.
- [5] T. PRECUPANU, On a generalization of Cauchy-Buniakowski-Schwarz inequality, *Anal. St. Univ. "Al. I. Cuza" Iaşi*, **22**(2) (1976), 173–175.

Inequalities Involving the Inner Product

Dorian Popa and Ioan Raşa vol. 8, iss. 3, art. 86, 2007

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756