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ABSTRACT. For some family of entire functions the estimates of growth on infinity are estab-
lished. In case when a function from this family coincides with exponent the inequality obtained
is precise.
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The object of our paper is to determine the order of growth to infinity of some family of entire
functions. For an arbitrarg > 0 we introduce the following function

©  k
(1) O(z,a) = ° , a>0, zeC
(k)"
k=0
Note that
O(z,1) =e”.

It is easy to show that i > 0 then the functiorb(z, «) is defined by serie$ (1) for atlin
the complex plan€.

Proposition 1. The radius of convergence of the ser{gs (1) is equal to infinity.

Proof. According to the Cauchy formula (see, e.@l, [2, 2.6]) the radius of convergence of the

series
oo
>t

n=0
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is equal to

1

n—oo

In our case;,, = (n!)~®. We may use the Stirling formula (see [2, 12.33]) in the following form
n\" 0

2 =2 — 14+ = 1 =1,2,...

(2) n 7m(e> <+11n)’ 0<b,<1, n ,2,

As a result we get
1

v/ |Cn‘

— (nh)o/n

- [ 2y (Hfl_nn)r/”

o a/n
— (ﬁ) (27T)a/2n6a(lnn)/2n (1 + 0_)

e 11n

= <2> (1+¢e,) =00, n— o0,
e

wheres,, = o(1), n — 0. O
Corollary 2. The function®(z, ), « > 0, is entire function of.

The function®(z, ) with o = l arises in estimates of the solutions of some Volterra type
integral equations with kernel fromp, where + 1 = 1. We mention also the equation

q
with convolution on the circle which these functlons sat|sfy For two arbittarperiodical
functionsf(0) andg(0) introduce their convolution

(7% 9)( / 716 - @)g(0)dp
If we denote
3 fa(0) = ®(e”, ),
then it is easy to check that this function satisfies the following equation
(4) (fa * f8)(0) = fars(0), f1(0) = expe”.

It easy to show that every solution of equatiph (4) has the fpfm (3).
It is well known that for®(z, ) the following formula

In®(z,a) = az'/* + o (xl/o‘) , & — 400

is valid (see, e.gl]1, 4.1, Th. 68]). However, in some applications, an explicit estimate for the
error of the above asymptotic approximation is desirable.
We are going to prove the following inequality.

Theorem 3. Let0 < a < 1. Then for allx > 1 the inequality

1—
(5) In®(z,a) < az'/* + Y+ In(12a72)

«

is valid.
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Remark 4. The order in estimat¢ |5) is precise, at least wher- 1/¢, wheregq is natural,
because in this case for all> 1 the inequality

(6) In®(z, o) > az'/®
is true. As it easy to verify, forr = 1 the inequality|(p) becomes equality.

At first we prove the inequality (5) far = 5 whereq is natural, and after that we use the
interpolation technique to prove itforall, 0 < o < 1.

Lemma 5. Letq be a natural number an@(x) be the following polynomial

q—1 k
x
7 xr) = k+1)
() Q) =2+ D
Then there exists a constant< 2 so that
(8) / e_%tqQ(t)dt <t
0
Proof. It follows from (7) that the inequality
q k-
_ k—1
© 00 =Y < D

k=1
is valid for allt > 0. Then

1 1 q 1
(10) / e Q(t)dt < / e "N kttldt < Z’f/ = 1=g¢.
0 — 0
Further, fort > 1 it follows from (9) that
q q
- - ~19(g+1)
<> k< Y =
k=1 k=1 2

Using this estimate we get
(11) / eTa"Q(t)dt < —q<q2+ D / e~ it I g = —(q; Y e-1a o 2la+ 1)

1 1

Taking into consideration (10) and (11) we may write

o q ! q e q 1
/ et Q(t)dt:/ et Q(t)dt+/ QU < g+ 9T <o
0 0 1

2
and this inequality proves Lemma 5. O
We consider the auxiliary function

o xk—q—i—l
(12) Fy(z) = Z (R x> 0.

k=q
Lemma 6. Letq € N. Then with some constant < 2 the following inequality
(13) F,(z) < cquG%xq, x>0,
is valid.
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Proof. Consider the derivative of the functign {12), which equals to

0 xk—q o LIZ‘k
14 Fl(z) = k — 1 = kE+1)——m—.
By introducing the following polynomial
q—1 2k
15 = E4+1)0———
(15) Q() ko( + )[(k+q)!]1/q7
and comparing (14) anfl (]15) we get
0 k
x
Fl(z) — Q(x) = E+1)—.
(v) = Q(x) Z( I
Further we use the following equality
16 DT IANVEL o ST A
= 2D g = L D g
o k—q+1
_ a1 x
= x4 ;Bk((.ﬁ (k!)l/qa
where
kE+1

B =V Ry
Hence, according to definition ([L2) and equality|(16),

/ -1 = :kaqul
17) Fl(z) = Qz) = a* kZBk(Q)W'
=q
Itis clear, thatB,,(q) < 1. Then it follows from equality[ (17) that
(18) F(z) = Q(z) <27 'F(z), x>0.

In as much as

1

ea® [e_EIqF(x)}, = F'(x) — 297 'F(x),
we get from the inequality (18) that
[e_%qu(:c)]/ < e_%qu(x), x> 0.
By integrating this inequality and taking into consideration thét) = 0 we get
e P(z) < /0 Ce QW @ > 0.
According to Lemma|5
/Ox e ' Q)dt < e1?, x>0,

and consequently
F(x) < ages™, x> 0.
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Lemma 7. Letq be a natural number ané(x) be the following polynomial

q—1 ok
k=0
Then the estimate
(20) Py(z)e i <gq, x>0,

is valid.

Proof. It is clear that for any > 0 the maximum of the function

fp([L’) = mpe_xv X 2 Oa

equals to
max fp(z) = fy(p) = p’e™.
Then
- AL
maxzFe ® = qk/qmaxyk/qe_y — qk/q (_) e~kla — pklag=k/a
>0 y=>0 q
Hence,
k k/qp—k/q
(21) x g kFlde

CIECN I
Taking into account the Stirling formulpg|(2)

6 1/q
(k,!)l/q = (Qﬂk)l/%kk/qe—k/q [1 + ﬁ} > (27rk;)1/2qk:k/q€_k/q,
and using estimat¢ (P1) we get
xk —lmq kk/qefk‘/q

(ke " = (271 /2afk/ae—F/a
Then according to definition (19)

= (2mk)~V% < 1.

Lemma 8. Leta = é andq € N. Then with some constanf < 3 the following inequality

1 1..q
(22) o <x, —) < cpfxtled™, 1 >1,
q

is valid.

Proof. Obviously,

- - —_— = — q—
v (x, Q> Z (kN)t/a Z (k1) +z E (O x> 1.

Hence, taking into account definitions [12) apd| (19), we may write

(23) P (:c é) = P(x) + 27 ' F, ().
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We may estimate the function in the right hand side€ of (23) by inequaliti¢s (20) and (13):
1 a 1.9 1.9
s (w —) <gei®™ + 27 e Pei™ < (1+¢)Pa®en®™ |, x> 1,
q

wherec; < 2, according to Lemmp6. O

We proved estimat¢ (22) for integers> 1 only. Using this estimate we may prove it for an
arbitraryq > 1 by complex interpolation. For this purpose we introduce the following function

L1 e RS
(24) F(Q) = F(C.b) =0 Te ™y e
k=0 V7
where¢ =& +in, £ >0, —oco <n < o0, b > 1.
Lemma 9. Let0 < ¢ < 1. Then with some constat < 12 the inequality

(25) |f(€+in)\§§—2, 0<&<1, —00<n<oo, b>0,

is valid.
Proof. According to definition[(24),

: Erin—1_—b(etin) N~ DHEFT
k=0
and hence »
b
[F(E+im)| <ble™ > e = Ve, 0)
k=0 V'
where the functior® is defined by equality (1).
Puttingé = 1/q we get
(26) ‘f (1 + 2'77) ‘ < p(I-9/ag=tlagp (bl/q7 1) .
q q
According to Lemma]8 for all integegs> 1 the following inequality
(27) d (bl/q7 1) < cqub(q_l)/qeb/q, b>1,
q
is fulfilled. Hence, ifg € N then it follows from [26) and (37) that
1
(28) ‘f(g—i—in)‘gcyf, —00 <N < o0,
wherec, < 3.

Let us suppose now thaf (¢ + 1) < £ < 1/q. We may use the Phragmen-Lindel6f theorem
(seel3, XIlI.1.1]) and applying it tg (28) we get for som@ < ¢ < 1, the following estimate

11—t ¢t
(29) FE+in] < e+, §="mm+ —eo<n<oo

In as much ag + ¢ < 2¢ andgq < 1/£ we have
(1 +q>2(1—t)q2t < 22(1—t)q2 < 4/52
In that case it follows from the inequality (29) that

(€ +in)] < 45—

This inequality coincides with required inequalify [25). O
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Proof of Theorer|3Follows immediately from Lemmid 9 and from definitiop$ (1) gng (24):

> k

wherec, < 3. Obviously, this inequality is equivalent to| (5). 0

In closing we prove the inequality|(6) (see Renfark 4).
Proposition 10. Letq € N. Then

1
o <x, —) > eéxq, x> 0.
q

Proof. Denote

1
z)=®(z,—-|.
—
Obviously,
& $k_1 > xk—l & xk—l
g(x)=) k > )k >
,; (k) ,; (k1) ;[(k—Q)!]l/q
Y ()
B =1L
Hence,
(30) g (x) —a'g(x) 20, x>0

In as much as

Then sincegy(0) = 1 we have

Hence,
1ra
g(x) >ed™, x>0.

REFERENCES

[1] G. POLYA AND G. SZEGO,Aufgaben und Lehrsatze aus der Analy&®Band, Springer-Verlag,
1964.

[2] E.T. WHITTAKER AND G.N. WATSON,A Course of Modern Analysi&ourth Edition, Cambridge
University Press, 1927.

[3] A. ZYGMUND, Trigonometric Serigs/ol.2, Cambridge University Press, 1959.

J. Inequal. Pure and Appl. Math5(3) Art. 67, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	References

