J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

\olume 5, Issue 2, Article 44, 2004

MONOTONICITY RESULTS FOR A COMPOUND QUADRATURE METHOD FOR
FINITE-PART INTEGRALS

KAl DIETHELM

INSTITUT COMPUTATIONAL MATHEMATICS
TECHNISCHEUNIVERSITAT BRAUNSCHWEIG
POCKELSSTRASSEL4
38106 BRAUNSCHWEIG, GERMANY.

K.diethelm@tu-bs.de

Received 19 May, 2003; accepted 30 March, 2004
Communicated by G. Milovanovi¢

ABSTRACT. Given a functionf € C3[0,1] and some; € (0, 1), we look at the approximation

for the Hadamard finite-part integr#é x~971 f(x)dx based on a piecewise linear interpolant

for f atn equispaced nodes (i.e., the product trapezoidal rule). The main purpose of this paper is
to give sulfficient conditions for the sequence of approximations to converge against the correct
value of the integral in a monotonic way. An application of the results yields detailed information
on the error term of a backward differentiation formula for a fractional differential equation.
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1. INTRODUCTION

When discussing problems in numerical integration, it is often not sufficient to prove that a
certain sequence of approximations is convergent. Frequently one additionally wants to know
whether the sequence converges in a monotonic fashion, i.e. whether one can be certain that an
approximation using more quadrature nodes is actually better than an approximation with fewer
nodes. Such monotonicity results are closely related to the question of finding so-called stop-
ping rules: One needs to determine the value of an integral with a certain prescribed accuracy
and the smallest possible amount of work.

For the classical setting when the integral in question is a standard unweighted integral
fab f(z)dz, this topic is well investigated; we refer to the comprehensive survey of Fdrster [9]
and the references cited therein and to the more recent papers [6, 10, 12] for a description of
the present state of the art. However, to the best of our knowledge nothing is known about such
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2 KAl DIETHELM

results when the functional to be approximated is a weighted strongly singular integral of the
form

1 lq (k) 1
(1.1) I,[f] ::7[0 v f(2)dr = Z (If_—g;;' + /0 7 Ry (z)dx
k=0

interpreted in Hadamard'’s finite-part sense (see, €.g., [11] or [2, 81.6.1]). Here we assume
be a positive non-integer number, and

Ry (x) = 5 / "o — g S () dy

is the remainder of the Taylor polynomial ¢f centered a6. By |¢|, we denote the largest
integer not exceeding. It is well known that a sufficient condition for the existencelgff|

is that f € Cl9+1]0,1]. Among the most important properties of these integral operators we
mention here only that, in contrast to the classical Riemann or Lebesgue intEgisinot

a positive functional, i. e. the inequality,[f]| < 1,[|f|] is not true in general. Additional
properties are described in [2, 81.6.1]. Since integrals of this type are known to have important
applications in various methods for solving partial differential equations or ordinary differential
equations of fractional (i.e., non-integer) order [3,/4,7, 8, 11], we now aim to extend the classical
theory to this setting.

Specifically we shall investigate what is probably the most important example of a quadrature
formula forl,, the product trapezoidal method. The construction of the method is simple: Given
an integem, we divide the fundamental integril, 1] into » subintervals of equal length with
break pointsr; = %] = 0,1,...,n. We then replace the functiofby its piecewise linear
interpolant (linear interpolating spline) with knots and nodesqat;, ..., x,. Denoting this
interpolant byf, ., (the subscript: + 1 being the number of interpolation points), we then
define our approximation, ,,., for I, according to

Iq,n-i-l[f] = ]q[fn+1]7

where we note that the piecewise linear structur¢,of allows us to calculate the expression
on the right-hand side effectively.
An explicit representation faf, ,,, is available from([3, Lemma 2.1]:

Lemma 1.1. We have

[q7n+1[f] = Z aknf (S) )
k=0

where
—1 fork =0,

g1 —gn 9ap, =< 2k — (k-1 — (k+ 1) fork=1,2,...,n—1,
(q— Dk — (k=19 + k77 fork =n.

There are various reasons for choosing this formula as a first candidate for our investigations:

e It is a generalization of the classical trapezoidal formula, which is in turn the quad-
rature formula for standard integrals that was historically among the first and is very
thoroughly investigated with respect to its monotonicity properties.

e Many other properties of this formula have been studied in great detail, se€, e.3., [4, 5].

e It has been used very successfully as the basic ingredient for algorithms for the numeri-
cal solution of fractional differential equations [3].
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2. MAIN RESULT

The main result of this paper is the following monotonicity theorem that directly corresponds
to an analogous result for standard integrals (see, e.g., [13] or [1, Thm. 105]).

Theorem 2.1.Let0 < ¢ < 1 be fixed, and leff € C?[0,1]. Moreover assume that” is
nonnegative o0, 1] (i.e. f is convex) andf”” is nonpositive or0, 1]. Then, the sequence
(Iyn41[f])52, is monotonically decreasing, and its limitig] f].

For the proof we shall use some properties of the quadrature fule, )>° , that have been
established previously. Here and in the following we will make use of the notation

Rn+1 = Iq - [qm,—i-l

to denote the remainder functional Kf,.,. For the sake of simplicity we have suppressed the
dependence ofin our notation. (Remember thais assumed to be fixed.)

In view of the above mentioned properties of the functiafjadnd its approximatiod, ,, 11,
we may apply the classical Peano kernel theofern [16],t0, and derive

Lemma2.2.Let0 < g <1lorl < q< 2, and assume that € C?[0,1]. Then,

Roalf / Ky(Ryy1, ) f"(2)de,
whereK,(R,.1, ) is the second Peano kernel Bf, .1, given by
Ko(Rpi1, %) i= Ry [(- — 2)4].
Here(-), is the truncated power function defined by

(2), = z ifz>0,
T)+°= 91 0 otherwise.

From Lemma 22 we can deduce the explicit representation

¢ jj+1
2.1 ——t] - f =
( ) n+la Zak’n( ) q(l—q) ort e |:n7 n :|

of the Peano kernel in a straightforward way (as is done, e.g.,! in [1, Thm. 16] for classical
guadrature formulas).

In[4, p. 487] it has been stated thiat . | is negative definite of order two whenevex ¢ < 1
or 1 < ¢ < 2. Unfortunately this result is incorrect; it should read as follows.

Lemma 2.3. For anyn > 2, the functionalR,. is negative definite fob < ¢ < 1 and
indefinite forl < ¢ < 2.

Proof. It is clear that

Rn+1[f] = Iq[f_fn+1]

—1 1

- 7[ W) ~ fua()du+ [0 w) =~ ()

0 n—1
To prove the negative definiteness in the daseq < 1 itis sufficient to show thaR,,,,[f] < 0
wheneverf is convex. Thus we assunfeo be convex. Then, as is well knowf(u) < f,,11(u)
for all u, and hence the second integral is nonpositive. Moreover, for the first integral we can
explicitly calculate the Peano kernel representation

—1

£ = St / ) KAy u)d

0
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In view of the relation between the functionalsand R,,, it is evident that for: € [0,n7!] we
have
u

q(1—q)

because of (2]1). Thus, the first integral is nonpositive tgoisf convex, and the claim follows.
The indefiniteness in the case< ¢ < 2 follows by very similar arguments. We find the
same expression for the Peano kerkig( A4, -) as above, but now the sign of — ¢) and hence
the sign of the complete expression has changed. Fhgd, u) > 0 for 0 < u < n~!. Since
nothing changes in the integral over!, 1], we deduce that now,,,; is the sum of a positive
definite functional orC?[0, »!] and a negative definite functional 6if[n!, 1], and hence it
must be indefinite. OJ

(2.2) Ky(Aju) = Ky(Ryqq,u) = — (u™?—n?) <0

Formulated in terms of Peano kernels, the daseq < 1 of Lemmg 2.8 can be restated as:
Lemma 2.4.Let0 < ¢ < 1,z € [0,1] andn € N. Then,Ks(R,+1,z) < 0.

Standard methods from elementary Peano kernel theory give us additional fundamental re-
sults on the functiork(s (R, 1, -) and itsL; norm

1
et i= [KalBusr s = [ [Ka(Rug )]s
0
we omit the details of the proof.

Lemma 2.5. Let0 < ¢ < 1.

(@) Forj=0,1,...,nwe haveK,(R,+1,z;) = 0.
(b) The sequencé,, 1), is monotonically decreasing.

Finally we quote another result on the sequence mentioned in L¢mina 2.5 (b) from [5, Thm.
1.2]; more details are given there andlin [4, Thm. 2.3].

Lemma 2.6. For 0 < ¢ < 1 there exists some constantsuch thatp,,,; = ¢,n?? + O(n~?).
We are now in a position to prove our main result.

Proof of Theorerh 2} 1First we note that, by Lemmas 2.2 gnd|2.4,

1
Rulf] = / Ko(Rus, 2) /" (@) < 0,

and hence by definition a®,,.; we find that/, ,,.1[f] > 1,[f].
Moreover, by Lemmg 2|2, Holder’s inequality and Lenima 2.6,

| Rt [f1 = <N Moo+ prsr =0,

1
/ Kz(Rn+1733)f//(37)d$
0

i.e. (again by definition oR?,, 1), I, ,1[f] — I,[f] asn — oc.

It remains to prove that the sequende,,..[f]) decreases monotonically or, equivalently,
that the sequena@?,, . 1[f]) increases monotonically. To this end, we use the representation of
R,11]f] from Lemm and introduce the functiois,; andL,,.; according to

Jni1(x) = Ko(Rpi1,%) + pni1 and Lpii(z) = / Ty (t)dt.
0
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Then, a partial integration yields

Ronlf] = / (Tuir(@) — pus) f(2)de
= (@) Lo (2) — 2pps]! /f Los(2) — 2pusa] de

= f//(l) [Ln+1 ,On+1 / f”/ n+1 ) - l’anrl] dx

since obviouslyL,,1(0) = 0. Moreover,

1
Loa(1) = / T (£)dt
0

1 1
= / (Ko(Rny1,7) + ppyr) dx = / Ky(Ryq1, 2)dw + ppy1.
0 0

Recalling the definition of,,., and the nonpositivity of(s(R,+1, ) (see Lemma 2]4), we find

1 1
Pt = / KR, )| d = — / Ko(Rosr, 2)de,
0 0

and hencd.,,.1(1) = 0 too. Combining these results we find

Ro1[f] = —pusr f'( / f7(@) [Lps1 () — 2pnia] da.

Under our assumptions ofy we know thatf”(1) > 0, and hence by Lem@ 5 (b) we see
that the first expression on the right-hand S|de viz. the quantity,, f”(1), is indeed a mono-
tonically increasing function af. It thus remains to prove that the remaining term has got this
property as well. Sincg” is assumed to be negative, it is sufficient for this purpose to show
that, for every fixed: € [0, 1], the functiong,, defined by

¢x(n + 1) = Ln+1(x) — TPn+1
is a non-decreasing function af Note that

be(n + 1) = / (K2(Rn+1a t) + pn—H) dt — TPnt+1 = / K2(Rn+1>t>dt'
0 0

For the proof of the monotonicity af, we distinguish two cases.
First we look at) < z < (n + 1)~!. An explicit representation fok,(R,,1,t) in the case
0 < t < n~! can be taken from ed. (2.1); it reads
t

Ky(Rpi1,t) = ¢y,
(o) q(1—q) (m )
Consequently,
beln+1) = —— <1nqx2 ! x)
q(1—q) \2 2—¢q
for 0 < 2 < n~!. In an analogous manner we find

1 1 o2 1 2
g%(Wrz):q(l—@(5(n+lm 2—q )

for0 <z < (n+ 1)"!. From these identities we immediately see

¢z(n+1) < dp(n+2)
for alln and0 < = < (n + 1)~! as required.
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In the second caser + 1)~! < =z < n~! we will prove the relation
Pe(n+1) < Pnyny-1(n+1) < dp-1(n+2) < gu(n+2).

SinceK»(R,+1, ) is @ nonpositive function (see Lemial2.4), we find gt + 1) is a de-
creasing function of. Thus the first and the last of the three inequalities above are evident. It
remains to show the middle one. To this end we note that we still have, as above,

1 1 1
O:(n+1)= (—nqx2 - x2q> ,
( ) q(1—q) \2 2—¢q

and therefore

1 1
Pnt1)-1(n+1) = a0 (§nq(n F1)2 -

1 Lo L
:q(l—Q)(n+1)2(5n 2—q( +1))'

However we now pass a node of the formijja_», namely the pointrn + 1)~!, and hence the
Peano kernek, of this formula becomes

1 ¢
Ko(Rpia,t) = —apmart +aimn | —— —t) = ————
(s ) = 0ot + s (i =0) =

(n+1)q( 1- < 1 > - 1)
= t 2 — 2 q - t _ 1 qt q
=0 + ( ) e (n+1)
according to eq[ (2]1) and Leminall.1. Thus we have

. q(n + 1)q_2>

Gn-1(n+2) = / Ko(Ryy0,t)dt
0

n—1

(n+1)~!
= / KQ(Rn+2, t)dt + / KQ(RTH-Q; t)dt
0 (n+1)-1

n—1

= ¢(n+1)_1(n + 2) -+ / KQ(Rn+2, t)dt

(n+1)-1
1 1 1 n~t
= - n+1q2+/ Ko(Ryio,t)dt
q(1—q) (2 2 —Q> ( ) (n+1)-1 22, 1)
1 n
= — (n —|— 1)q—2 + / KQ(Rn Q,t)dt
2(1 - q)(2 - Q) (n41)-1 +
1
= n 4 1)472
Mg g Y
1
+ (Z(n + 1)‘1_2 — oni~2

29(1—q)(2—q)
+n7(n+ 172 (g - 2)(1 - 27 = 2n))
and after a rather long but simple calculation we obtain the required inequality.
On the remaining part of the intervil, 1], the required representation of the Peano kernel is
also givenin[(2.]1). For the purpose of illustration we have plotted the graphs(fes-1) versus
z in Figure[2.1 for the special cage= 0.3 andn € {5, 6, 7}. In a qualitative sense these graphs
can be considered to be typical also for other values ®f(0, 1). Using these representations,
we can deduce the required property after a lengthy but straightforward calculation on these
intervals too. O
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Figure 2.1: Plots ofp,.(n + 1) versusz for n = 5 (dotted line; bottom)n = 6 (dashed line; middle), and = 7
(solid line; top), over the entire interval € [0, 1] (upper graph) and zoom over the subintervat [0, 0.1] (lower

graph).

3. FURTHER REMARKS

In Lemma 2.B we had pointed out a mistake in the discussion of thelcase < 2 in our
earlier paper [4]. This observation leads to some consequences.
To begin with, an error estimate for the quadrature rule considered above has been discussed
in [4, Thm. 2.3]. The analysis there was partly based on the incorrect result and needs to
be modified slightly. The correction due to this problem affects only the tase; < 2 (the
parametep used in that paper correspondgte1 here), but since the original proof regrettably
also contained some typographical errors in the €aseq < 1, we give the correct result in

both cases here.

Theorem 3.1.Let0 < g < 1or1 < ¢ < 2. Then, for every. € N we have

30 —q(qg+1)
360q - 11 —q|(2—q)

J. Inequal. Pure and Appl. Mathb(2) Art. 44, 2004
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q+1 1 L
— = —n
180 6q
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Proof. In [4], Proof of Thm. 2.3], we have seen that

Pnt1 =0 + T,

where ( )
1—n9 (1 qlg+1)\ ., L—n™" 5
=i <0<
7 (6 180 ) ST T "
and
7= sup [A[f]],
lF"le<1

whereA|[f] is as in the proof of Lemna 2.3. Thus, standard Peano kernel theory reveals that

—1

T :/ | K5 (A, u)|du.
0

From the explicit representation éf,(4, -) in eq. [2.2) we find that

nd—2

1 n
= —/ u(u™? —n?)du = ;
q-11—ql Jo 2[1 —ql(2—q)

and the claim follows. O

Another aspect of the results presented in §2 is related to the fact that finite-part integrals are
a convenient means to represent derivatives of fractional order. To be precise, as is well known
[7], we have that the Caputo-type fractional differential operatpran be rewritten as

D@@r:ﬁéaf?mm—ym»u—ur%wu

for0 < g < 1andas

D@uw=ﬁégf?mw—ym»wmw»u—ur%wu

for 1 < ¢ < 2. We refer to the books of Podlubny |14] or Samko etlal! [15] for detailed in-
formation on fractional derivatives and fractional differential equations; here we only note that
our results above can be applied in a direct way to derive monotonically convergent approxima-
tions for such derivatives. We recall that certain other important properties of the approximation
method investigated here have been givenlin [5].

Differential equations involving such operators have proven to be an important tool in many
applications in physics, engineering, finance, etc.; see, e.g., the examples mentioned in [14] and
the references cited therein. It is an obvious consequence of the above considerations that we
may also use the product trapezoidal method for finite-part integrals as a means to construct
numerical solutions for fractional differential equations. First results on this topic have been
given in [3,[5]. In the analysis of the algorithm, a discrete Gronwall inequality [3, Lemma 2.3]
turned out to be helpful. In view of our new developments above we may now strengthen this
result and bring it into the form of a two-sided inequality:

Theorem 3.2.For 0 < ¢ < 1, let the sequenc@ij) be given byl; = 1 and

d; =14 q(1—q)j E:mujm i=23,...,

whereay; is as in Lemma 1|1. Then,
sin g

ji<d; < ——1
mq(1 —q)

] —

9 j=1,2,3,....

J. Inequal. Pure and Appl. Mathb(2) Art. 44, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MONOTONICITY RESULTS FOR ACOMPOUND QUADRATURE METHOD 9

We can thus see that the upper bound gives the correct rate of growth of the se@y&nce

Proof. The upper bound is knownl[3, Lemma 2.3]. For the lower bound, we proceed inductively.
The induction basisj(= 1) is presupposed. For the induction step we use the factihat 0
for all j andk under consideration and find, using the functign) = (1 — x)9, that

dis1=1+4q(1—q)(j+1)" Z@k9+1d+1k

j+1 .
j+1—k
> 1 1 — . e
> 14 q( Q)E ak,]+1< I >

=1+4¢(1—9) (I:q,j+2[¢] — ag,j+19(0))

=1+4q(1 = q) g2l + (G + 1)%.

It thus remains to prove that{l — ¢)I, ;+2[¢] > —1. In view of the fact that)”(x) < 0 and
¢"(x) > 0for 0 < z < 1, Theoren| 2]1 allows us to conclude that it is sufficient for this
purpose to show that(1 — ¢)I,2[¢] > —1. An explicit calculation reveals that indeed

q(1 — q)Iga[¢] = q(1 — q) (a2 + 12279) = =27 +2 -2 > —1.
This completes the proof. O

Itis our belief that the new lower bound may be useful in gaining an even better understanding
of the properties of the differential equation solver; in particular we hope to prove that the error
bound derived in [3, Thm. 1.1] is not improvable. But this will be the topic of a different paper.
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