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ABSTRACT. Inthis paper, we give a sufficient condition on a linear operaidt, c)g(z) which
can guarantee that for a complex number witfRe(«) > 0,

Ly(,0f(z)  Lyla+1,6)f(2)
Ly(a,09() " “Lyla+1,0)g(:)

Re{(l—a) }>p, p <1,

in the unit diskZ, implies

L
Re { o(a,0)f(2)
Ly(a,c)g(z)
Some interesting applications of this result are also given.

}>pl>p7 ze L.
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1. INTRODUCTION

Let A(p, n) denote the class functiorfsnormalized by

(1.1) fR) =2+ ) w*  (pneN={1,23 1),
k=p+n
which are analytic in the open unitdigk= {2 : z € C, |z| < 1}.
In particular, we setl(p, 1) = A, andA(1,1) = A, = A.
The Hadamard produglf = g)(z) of two functionsf(z) given by [1.1) and/(z) given by

g(z)=2"+ Y bz*  (pneN),
k

:p+n
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is defined, as usual, by

(fx9)(z) =2+ Y abpz® = (9% f)(2).
k=p+n
The Ruscheweyh derivative ¢fz) of orderd + p — 1 is defined by
S+p—1 _ 2P . o
(1.2) Derr f(Z)—m*f(Z) (f € A(p;n); 6 € R\ (—o0, —p)
or, equivalently, by

(13) D(S—I—p 1 — P + Z (5+ k — 1) kzk,

k=p+n
wheref(z) € A(p,n) andé € R\ (—oo, —p]. In particular, ifo = € N|J{0}, we find from
(2.2) or [1.3) that

=P dH—k 1
{ - 1f )}
(I+p—1)dzttrt
The author has proved the following result/in [4].

Dl+p 1f< )

Theorem A. Leta be a complex number satisfyifg(a) > 0 andp < 1. Leto > —p, f,g €
A, and

D5+p 1
Re{a—g(z)} >, 0<~vy<Rela), z€E.

Do*pg(z)
Then - ) (s )
DT f(z 2p(0 +p) +7y
Red ————~ 4 > —————— € F,
‘ { Dotp=lg(z) } 2(6 +p) +~ ‘
whenever

D6+p—1f D6+:Df
Re {(1 —a) D5+P—1g((j)) + ozDMngj;} >p,z€E.

The Pochhammer symbol), or the shifted factorial is given by\), = 1 and (\), =
AA+1D)(A+2)--- (A+k—1), k € N. Interms of(\),, we now define the function,(a, ¢; 2)

by

o0
a
gbacz—zp—l—g (a) kk“’, 2 €EF,
Clk

= (©
wherea € R, c € R\ 2,52, = {0, — e
Saitoh [3] introduced a linear operatbp(a, ¢), which is defined by
1.4) Ly(a,c)f(z) = ¢pla,c,;2) * f(z), z € F,
or, equivalently by
(1.5) L,(a,c)f Z: (c_ g p? TP, z €k,

wheref(z) € A,,a € R,c e R\ z;.
For f(z) € A(p,n) andé € R\ (—oo, —p|, we obtain
(1.6) Ly(6 +p, 1) f(z) = D" f(2),
which can easily be verified by comparing the definitigns|(1.3) (1.5).

The main object of this paper is to present an extension of Thgofem A to hold true for a linear
operatorL p(a, c) associated with the clasf{p, n).
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The basic tool in proving our result is the following lemma.

Lemma 1.1(cf. Miller and Mocanul[2, p. 35, Theorem 2.3 i(i)]l.et2 be a set in the complex
planeC. Suppose that the functioh: C? x F — C satisfies the conditioW (iz», y1; 2) &
forall z € FE and for all realz, andy,; such that

1
(1.7) Y < —5”(1 +3).
If p(2) = 14 ¢,2" + --- is analytic inE and forz € E, U(p(z),zp'(2);2) C Q, then
Re(p(z)) > 0in E.
2. MAIN RESULTS

Theorem 2.1. Let« be a complex number satisfyiig(a) > 0 andp < 1. Leta > 0, f,g €
A(p,n)and

Ly(a,c)g(2)
(2.1) Re {aLp(a—l—l,c)g(z)} > 7, 0 <y <Rela), z€E.
Then L(aof(z)) . 2

pla,c)f(z ap + ny ;

Re { L,(a,c)g(z) } - 2a +ny’ €L

whenever
Ly(a,c)f(2) Ly(a+1,¢)f(2)

22 Re{ 1= ) 20 T e T} P

Proof. Let T = (2ap + ny)/(2a + ny) and define the functiop(z) by
1 [ Lp(a, 0)f(2)
2.3 p(z)=(1—-71 l{p’——T .
Then, clearly,p(z) = 1 + ¢,2" + ¢12™ + --- and is analytic inE. We setu(z) =

aLy(a,c)g(z)/Ly(a + 1,¢)g(z) and observe fronf (2.1) thadte(u(z)) > v, z € E. Making
use of the familiar identity
2(Ly(a, ) f(2)) = aLly(a+1,¢)f(z) — (a — p)Ly(a,c) f(2),
we find from [2.3) that
24 (- a@z;g 2 agigz el s [W) + 100

If we define¥(z, y; z) by
(2.5) U(x,y;2) =7+ (1 —71) (x + uiz)y) ,
then, we obtain fron{ (2]2) anfl (2.4) that

{U(p(2),20'(2);2) : |2| <1} € Q@ ={w € C : Re(w) > p}.
Now for all z € E and for all realz, andy, constrained by the inequality (1.7), we find from

(2.5) that

Loy Re(u(2)

<7_m
- 2a

Re{W(izo,y1;2)} =7+

p.
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HenceV (ixq, y1; 2) ¢ . Thus by LemmlRe(p(z)) > 0 and henceie {%} > T
in E. This proves our theorem. O

Remark 2.2. Theoreni A is a special case of Theorem 2.1 obtained by takirgd + p and
¢ =n = 1, which reduces to Theorem 2.1 of [1], whenr= 1.

Corollary 2.3. Leta be a real number witly > 1 andp < 1. Leta > 0, f, g € A(p,n) and

Ly(a,c)g(z)
R P 0< 1 E.
e{Lp(a+1,c)g(z) =7 Sy<b2€

Then

Re{Lp(a+ 1,c)f(z)} > a2ap +ny) — (1 — p)n77 L cE.

Ly(a+1,¢c)g(2) a(2a + ny)
whenever
Ly(a,c)f(z) L (a—l—l,c)f(z)}
Re l—« b\ a p > 7 s e E
{( )Lp(a7c)g(z) Ly(a+1,c)g(2) P

Proof. Proof follows from Theorerp 2|1 (Sinee > 1). N

In its special case whem = 1, Theorenj 2.1 yields:

Corollary 2.4. Leta > 0, f,g € A(p,n) and Re{M} > ~,0 < v < 1, then for

Lp(a+1,c)g(z)

p <1,

L 1

Re{ P(a+ 7C)f(z)}>p’ ZGE,

Ly(a+1,¢)g(z)

implies
Re{Lp(a,c)f(z)} - 2ap—|rnfy7 L cE.
Ly(a,0)g(=) f ~ 2a+my
If we set

o(z) = Lyla+1,0)f(2) <l B 1) Ly(a,c)f(z)
~ Ly(a+1,¢)9(2) o L,(a,c)g(z)’
then fora > 0, > 0 andp = 0, Theorenj 2.1 reduces to
Re(v(2)) >0, z€E
implies
Ly(a,c)f(2) no-y
@9 S rre) R L

wheneveRe(L,(a,c)g(z)/Ly(a+1,¢)g(z)) > 7,0 <y < 1. Leta — oo.
Then [2.6) is equivalent to

Lp(a +1,0)f(2) Lp(a, o) f(z) .
fte { L(at1,09(z)  Ly(wcgl(z) } 20k

implies
Re {M} ~1inE,
Ly(a,c)g(2)
wheneveRe(L,(a, c)g(2)/Ly(a+1,¢)g(z)) > v, 0 <~y < 1.
In the following theorem we shall extend the above result, the proof of which is similar to
that of Theorem 2]1.
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Theorem 2.5.Leta > 0,p < 1, f,g € A(p,n) andRe{%} >, 0<y<1.

If
Lt 1Of() _ Ldf)) _ mi-p)
Re{um+4mmw> LM&@%@}> a0 PSP
then
o Lp(a,c)f(z) -
I‘{mm@m@}>“ <
and

Using Theorem 2|1 and Theorém|2.5, we can generalize and improve several other interesting
results available in the literature by takingz) = 2P. We illustrate a few in the following
theorem.

Theorem 2.6.Leta > 0, p < land f(z) € A(p,n). Then
(a) for a a complex number satisfyiiRe(«) > 0, we have

Re {(1 — ) Lp(d’jf(z) + osz<a +le’ J () } > p, z el
implies
Ly(a,c)f(2) 2ap + nRe(a)
Re{ 2P }> 2a +nRe(a)’ ze b
(b) for o real anda: > 1, we have
Re {(1 —a) Lp(a,zi)f(z) + osz(a +le’ )f() } > p, in E
implies
Re {Lp<a +1,9f(») } L @Qatnptnfe-1) . o
2P 2a + na
(c) forz € F,
m{%@+Ldﬂﬂ_%@@ﬂd}>JM—m
4 2P 2a
implies

2P 2a

Re{Lp(a+1,c)f(z)} _(atmp—n

Remark 2.7. By takinga = 6 + p,c¢ = n = 1 in Theorenj 2.6 we obtain Theorem 1.6 of the
author [4], which whem = 1 reduces to Theorem 2.3 of Bhoosnurmath and Swamy [1].

In a manner similar to Theorem 2.1, we can easily prove the following, which wher
reduces to part (a) of TheorgmP.6.
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Theorem 2.8.Leta > 0,7 > 0, p < 1 and f(z) € A(p,n).Then fora a complex number with
Re(a)) > 0, we have

o (L) ) ntets
whenever
Re { 1-a) (Lp<a,(;>f<z>)" Y (Lp<a+ L c>f<z>) (Lp(a,f;)f(Z))’"_l} -
z e k.
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