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ABSTRACT. In this paper, we give a sufficient condition on a linear operatorLp(a, c)g(z) which
can guarantee that forα a complex number withRe(α) > 0,

Re
{

(1− α)
Lp(a, c)f(z)
Lp(a, c)g(z)

+ α
Lp(a + 1, c)f(z)
Lp(a + 1, c)g(z)

}
> ρ, ρ < 1,

in the unit diskE, implies

Re
{

Lp(a, c)f(z)
Lp(a, c)g(z)

}
> ρ

′
> ρ, z ∈ E.

Some interesting applications of this result are also given.
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1. I NTRODUCTION

Let A(p, n) denote the class functionsf normalized by

(1.1) f(z) = zp +
∞∑

k=p+n

akz
k (p, n ∈ N = {1, 2, 3, ...}),

which are analytic in the open unit diskE = {z : z ∈ C, |z| < 1}.
In particular, we setA(p, 1) = Ap andA(1, 1) = A1 = A.
The Hadamard product(f ∗ g)(z) of two functionsf(z) given by (1.1) andg(z) given by

g(z) = zp +
∞∑

k=p+n

bkz
k (p, n ∈ N),
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2 S. R. SWAMY

is defined, as usual, by

(f ∗ g)(z) = zp +
∞∑

k=p+n

akbkz
k = (g ∗ f)(z).

The Ruscheweyh derivative off(z) of orderδ + p− 1 is defined by

(1.2) Dδ+p−1f(z) =
zp

(1− z)δ+p
∗ f(z) (f ∈ A(p, n); δ ∈ R \ (−∞,−p])

or, equivalently, by

(1.3) Dδ+p−1f(z) = zp +
∞∑

k=p+n

(
δ + k − 1

k − p

)
akz

k,

wheref(z) ∈ A(p, n) andδ ∈ R \ (−∞,−p]. In particular, ifδ = l ∈ N
⋃
{0}, we find from

(1.2) or (1.3) that

Dl+p−1f(z) =
zp

(l + p− 1)!

dl+k−1

dzl+p−1

{
zl−1f(z)

}
.

The author has proved the following result in [4].

Theorem A. Let α be a complex number satisfyingRe(α) > 0 andρ < 1. Letδ > −p, f, g ∈
Ap and

Re

{
α

Dδ+p−1g(z)

Dδ+pg(z)

}
> γ, 0 ≤ γ < Re(α), z ∈ E.

Then

Re

{
Dδ+p−1f(z)

Dδ+p−1g(z)

}
>

2ρ(δ + p) + γ

2(δ + p) + γ
, z ∈ E,

whenever

Re

{
(1− α)

Dδ+p−1f(z)

Dδ+p−1g(z)
+ α

Dδ+pf(z)

Dδ+pg(z)

}
> ρ, z ∈ E.

The Pochhammer symbol(λ)k or the shifted factorial is given by(λ)0 = 1 and (λ)k =
λ(λ + 1)(λ + 2) · · · (λ + k− 1), k ∈ N. In terms of(λ)k, we now define the functionφp(a, c; z)
by

φp(a, c; z) = zp +
∞∑

k=1

(a)k

(c)k

zk+p, z ∈ E,

wherea ∈ R, c ∈ R \ z−0 ; z−0 = {0,−1,−2, . . . }.
Saitoh [3] introduced a linear operatorLP (a, c), which is defined by

(1.4) Lp(a, c)f(z) = φp(a, c, ; z) ∗ f(z), z ∈ E,

or, equivalently by

(1.5) Lp(a, c)f(z) = zp +
∞∑

k=1

(a)k

(c)k

ak+pz
k+p, z ∈ E,

wheref(z) ∈ Ap, a ∈ R, c ∈ R \ z−0 .
Forf(z) ∈ A(p, n) andδ ∈ R \ (−∞,−p], we obtain

(1.6) Lp(δ + p, 1)f(z) = Dδ+p−1f(z),

which can easily be verified by comparing the definitions (1.3) and (1.5).
The main object of this paper is to present an extension of Theorem A to hold true for a linear

operatorLP (a, c) associated with the classA(p, n).
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The basic tool in proving our result is the following lemma.

Lemma 1.1(cf. Miller and Mocanu [2, p. 35, Theorem 2.3 i(i)]). LetΩ be a set in the complex
planeC. Suppose that the functionΨ : C2 ×E −→ C satisfies the conditionΨ(ix2, y1; z) /∈ Ω
for all z ∈ E and for all realx2 andy1 such that

(1.7) y1 ≤ −1

2
n(1 + x2

2).

If p(z) = 1 + cnz
n + · · · is analytic in E and for z ∈ E, Ψ(p(z), zp′(z); z) ⊂ Ω, then

Re(p(z)) > 0 in E.

2. M AIN RESULTS

Theorem 2.1. Let α be a complex number satisfyingRe(α) > 0 andρ < 1. Leta > 0, f, g ∈
A(p, n) and

(2.1) Re

{
α

Lp(a, c)g(z)

Lp(a + 1, c)g(z)

}
> γ, 0 ≤ γ < Re(α), z ∈ E.

Then

Re

{
Lp(a, c)f(z)

Lp(a, c)g(z)

}
>

2aρ + nγ

2a + nγ
, z ∈ E,

whenever

(2.2) Re

{
(1− α)

Lp(a, c)f(z)

Lp(a, c)g(z)
+ α

Lp(a + 1, c)f(z)

Lp(a + 1, c)g(z)

}
> ρ, z ∈ E.

Proof. Let τ = (2aρ + nγ)/(2a + nγ) and define the functionp(z) by

(2.3) p(z) = (1− τ)−1

{
Lp(a, c)f(z)

Lp(a, c)g(z)
− τ

}
.

Then, clearly,p(z) = 1 + cnz
n + cn+1z

n+1 + · · · and is analytic inE. We setu(z) =
αLp(a, c)g(z)/Lp(a + 1, c)g(z) and observe from (2.1) thatRe(u(z)) > γ, z ∈ E. Making
use of the familiar identity

z(Lp(a, c)f(z))′ = aLp(a + 1, c)f(z)− (a− p)Lp(a, c)f(z),

we find from (2.3) that

(2.4) (1− α)
Lp(a, c)f(z)

Lp(a, c)g(z)
+ α

Lp(a + 1, c)f(z)

Lp(a + 1, c)g(z)
= τ + (1− τ)

[
p(z) +

u(z)

a
zp′(z)

]
.

If we defineΨ(x, y; z) by

(2.5) Ψ(x, y; z) = τ + (1− τ)

(
x +

u(z)

a
y

)
,

then, we obtain from (2.2) and (2.4) that

{Ψ(p(z), zp′(z); z) : |z| < 1} ⊂ Ω = {w ∈ C : Re(w) > ρ}.
Now for all z ∈ E and for all realx2 andy1 constrained by the inequality (1.7), we find from
(2.5) that

Re{Ψ(ix2, y1; z)} = τ +
(1− τ)

a
y1 Re(u(z))

≤ τ − (1− τ)nγ

2a
≡ ρ.
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HenceΨ(ix2, y1; z) /∈ Ω. Thus by Lemma 1.1,Re(p(z)) > 0 and henceRe
{

Lp(a,c)f(z)

Lp(a,c)g(z)

}
> τ

in E. This proves our theorem. �

Remark 2.2. Theorem A is a special case of Theorem 2.1 obtained by takinga = δ + p and
c = n = 1, which reduces to Theorem 2.1 of [1], whenp = 1.

Corollary 2.3. Letα be a real number withα ≥ 1 andρ < 1. Leta > 0, f, g ∈ A(p, n) and

Re

{
Lp(a, c)g(z)

Lp(a + 1, c)g(z)

}
> γ, 0 ≤ γ < 1, z ∈ E.

Then

Re

{
Lp(a + 1, c)f(z)

Lp(a + 1, c)g(z)

}
>

α(2aρ + nγ)− (1− ρ)nγ

α(2a + nγ)
, z ∈ E,

whenever

Re

{
(1− α)

Lp(a, c)f(z)

Lp(a, c)g(z)
+ α

Lp(a + 1, c)f(z)

Lp(a + 1, c)g(z)

}
> ρ, z ∈ E.

Proof. Proof follows from Theorem 2.1 (Sinceα ≥ 1). �

In its special case whenα = 1, Theorem 2.1 yields:

Corollary 2.4. Let a > 0, f, g ∈ A(p, n) and Re
{

Lp(a,c)g(z)

Lp(a+1,c)g(z)

}
> γ, 0 ≤ γ < 1, then for

ρ < 1,

Re

{
Lp(a + 1, c)f(z)

Lp(a + 1, c)g(z)

}
> ρ, z ∈ E,

implies

Re

{
Lp(a, c)f(z)

Lp(a, c)g(z)

}
>

2aρ + nγ

2a + nγ
, z ∈ E.

If we set

v(z) =
Lp(a + 1, c)f(z)

Lp(a + 1, c)g(z)
−

(
1

α
− 1

)
Lp(a, c)f(z)

Lp(a, c)g(z)
,

then fora > 0, α > 0 andρ = 0, Theorem 2.1 reduces to

Re(v(z)) > 0, z ∈ E

implies

(2.6) Re

{
Lp(a, c)f(z)

Lp(a, c)g(z)

}
>

nαγ

2a + nαγ
, z ∈ E,

wheneverRe(Lp(a, c)g(z)/Lp(a + 1, c)g(z)) > γ, 0 ≤ γ < 1. Let α →∞.
Then (2.6) is equivalent to

Re

{
Lp(a + 1, c)f(z)

Lp(a + 1, c)g(z)
− Lp(a, c)f(z)

Lp(a, c)g(z)

}
> 0 in E

implies

Re

{
Lp(a, c)f(z)

Lp(a, c)g(z)

}
> 1 in E,

wheneverRe(Lp(a, c)g(z)/Lp(a + 1, c)g(z)) > γ, 0 ≤ γ < 1.
In the following theorem we shall extend the above result, the proof of which is similar to

that of Theorem 2.1.
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Theorem 2.5.Leta > 0, ρ < 1, f, g ∈ A(p, n) andRe
{

lp(a,c)g(z)

Lp(a+1,c)g(z))

}
> γ, 0 ≤ γ < 1.

If

Re

{
Lp(a + 1, c)f(z)

Lp(a + 1, c)g(z)
− Lp(a, c)f(z)

Lp(a, c)g(z)

}
> −nγ(1− ρ)

2a
, z ∈ E,

then

Re

{
Lp(a, c)f(z)

Lp(a, c)g(z)

}
> ρ, z ∈ E,

and

Re

{
Lp(a + 1, c)f(z)

Lp(a + 1, c)g(z)

}
>

ρ(2a + nγ)− nγ

2a
, z ∈ E.

Using Theorem 2.1 and Theorem 2.5, we can generalize and improve several other interesting
results available in the literature by takingg(z) = zp. We illustrate a few in the following
theorem.

Theorem 2.6.Leta > 0, ρ < 1 andf(z) ∈ A(p, n). Then

(a) for α a complex number satisfyingRe(α) > 0, we have

Re

{
(1− α)

Lp(a, c)f(z)

zp
+ α

Lp(a + 1, c)f(z)

zp

}
> ρ, z ∈ E,

implies

Re

{
Lp(a, c)f(z)

zp

}
>

2aρ + n Re(α)

2a + n Re(α)
, z ∈ E.

(b) for α real andα ≥ 1, we have

Re

{
(1− α)

Lp(a, c)f(z)

zp
+ α

Lp(a + 1, c)f(z)

zp

}
> ρ, in E

implies

Re

{
Lp(a + 1, c)f(z)

zp

}
>

(2a + n)ρ + n(α− 1)

2a + nα
in E

(c) for z ∈ E,

Re

{
Lp(a + 1, c)f(z)

zp
− Lp(a, c)f(z)

zp

}
> −n(1− ρ)

2a

implies

Re

{
Lp(a + 1, c)f(z)

zp

}
>

(2a + n)ρ− n

2a
.

Remark 2.7. By takinga = δ + p, c = n = 1 in Theorem 2.6 we obtain Theorem 1.6 of the
author [4], which whenp = 1 reduces to Theorem 2.3 of Bhoosnurmath and Swamy [1].

In a manner similar to Theorem 2.1, we can easily prove the following, which whenr = 1
reduces to part (a) of Theorem 2.6.
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Theorem 2.8.Leta > 0, r > 0, ρ < 1 andf(z) ∈ A(p, n).Then forα a complex number with
Re(α) > 0, we have

Re

{(
Lp(a, c)f(z)

zp

)r}
>

2aρr + n Re(α)

2ar + n Re(α)
, z ∈ E,

whenever

Re

{
(1− α)

(
Lp(a, c)f(z)

zp

)r

+ α

(
Lp(a + 1, c)f(z)

zp

) (
Lp(a, c)f(z)

zp

)r−1
}

> ρ,

z ∈ E.
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