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ABSTRACT. Weighted versions of Grüss type inequalities of Dragomir and Fedotov are given.
Some related results are also obtained.
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1. I NTRODUCTION

In 1935, G. Grüss proved the following inequality:

(1.1)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx− 1

b− a

∫ b

a

f (x) dx · 1

b− a

∫ b

a

g (x) dx

∣∣∣∣
6

1

4
(Φ− ϕ) (Γ− γ) ,

provided thatf andg are two integrable functions on[a, b] satisfying the condition

(1.2) ϕ 6 f(x) 6 Φ andγ 6 g(x) 6 Γ for all x ∈ [a, b] .

The constant1
4

is best possible and is achieved for

f (x) = g (x) = sgn

(
x− a + b

2

)
.

The following result of Grüss type was proved by S.S. Dragomir and I. Fedotov [1]:
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Theorem 1.1.Letf, u : [a, b] → R be such thatu is L−Lipschitzian on[a, b], i.e.,

(1.3) |u (x)− u (y)| 6 L |x− y| for all x ∈ [a, b] ,

f is Riemann integrable on[a, b] and there exist the real numbersm, M so that

(1.4) m 6 f (x) 6 M for all x ∈ [a, b] .

Then we have the inequality

(1.5)

∣∣∣∣∫ b

a

f (x) du (x)− u (b)− u (a)

b− a

∫ b

a

f (t) dt

∣∣∣∣ 6 1

2
L (M −m) (b− a) ,

and the constant1
2

is sharp, in the sense that it cannot be replaced by a smaller one.

The following result of Grüss’ type was proved by S.S. Dragomir and I. Fedotov [2]:

Theorem 1.2. Let f, u : [a, b] → R be such thatu is L−lipschitzian on[a, b], and f is a
function of bounded variation on[a, b]. Denote by

∨b
a f the total variation off on [a, b]. Then

the following inequality holds:

(1.6)

∣∣∣∣∫ b

a

u (x) df (x)− f (b)− f (a)

b− a
·
∫ b

a

u (x) dx

∣∣∣∣ 6 1

2
L (b− a)

b∨
a

f.

The constant1
2

is sharp, in the sense that it cannot be replaced by a smaller one.

Remark 1.3. For other related results see [3].

Let us also state that the weighted version of (1.1) is well known, that is we have with condi-
tion (1.2) the following generalization of (1.1):

(1.7) |D (f, g; w)| 6 1

4
(Φ− ϕ) (Γ− γ) ,

where
D (f, g; w) = A (f, g; w)− A (f ; w) A (g; w) ,

and

A (f ; w) =

∫ b

a
w (x) f (x) dx∫ b

a
w (x) dx

.

So, in this paper we shall show that corresponding weighted versions of (1.5) and (1.6) are also
valid. Some related results will be also given.

2. RESULTS

Theorem 2.1. Let f, u : [a, b] → R be such thatf is Riemann integrable on[a, b] and u is
L−Lipschitzian on[a, b], i.e. (1.3) holds true. Ifw : [a, b] → R is a positive weight function,
then

(2.1) |T (f, u; w)| 6 L

∫ b

a

w (x) |f (x)− A (f ; w)| dx,

where

(2.2) T (f, u; w) =

∫ b

a

w (x) f (x) du (x)− 1∫ b

a
w (x) dx

∫ b

a

w (x) du (x)

∫ b

a

w (x) f (x) dx.

Moreover, if there exist the real numbersm, M such that (1.4) is valid, then

(2.3) |T (f, u; w)| 6 L

2
(M −m)

∫ b

a

w (x) dx.
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Proof. As in [1], we have

|T (f, u; w)| =
∣∣∣∣∫ b

a

w (x) [f (x)− A (f ; w)] du (x)

∣∣∣∣ 6 L

∫ b

a

w (x) |f (x)− A (f ; w)| dx.

That is, (2.1) is valid. Furthermore, from an application of Cauchy’s inequality we have:

(2.4) |T (f, u; w)| 6 L

(∫ b

a

w (x) dx

∫ b

a

w (x) (f (x)− A (f ; w))2 dx

) 1
2

,

from where we obtain

(2.5) |T (f, u; w)| 6 L · (D (f, f ; w))
1
2 ·
∫ b

a

w (x) dx.

From (1.7) forg ≡ f we get:

(2.6) (D (f, f ; w))
1
2 6

1

2
(Φ− ϕ) .

Now, (2.4) and (2.5) give (2.3). �

Now, we shall prove the following result.

Theorem 2.2. Let f : [a, b] → R be M−Lipschitzian on[a, b] and u : [a, b] → R be
L−Lipschitzian on[a, b]. If w : [a, b] → R is a positive weight function, then

(2.7) |T (f, u; w)| 6 L ·M ·
∫ b

a

∫ b

a
w (x) w (x) |x− y| dxdy∫ b

a
w (y) dy

.

Proof. It follows from (2.1)

|T (f, u; w)| 6 L ·
∫ b

a

w (x)

∣∣∣∣∣
∫ b

a
w (y) (f (x)− f (y)) dy∫ b

a
w (y) dy

∣∣∣∣∣ dx

6 L ·
∫ b

a

w (x)

∫ b

a
w (y) |f (x)− f (y)| dy∫ b

a
w (y) dy

dx

6 L ·M ·
∫ b

a

∫ b

a
w (x) w (x) |x− y| dxdy∫ b

a
w (y) dy

.

�

If in the previous result we setw (x) ≡ 1, then we can obtain the following corollary:

Corollary 2.3. Letf andu be as in Theorem 2.2, then,∣∣∣∣∫ b

a

f (x) du (x)− u (b)− u (a)

b− a

∫ b

a

f (t) dt

∣∣∣∣ 6 L ·M · (b− a)2

3
.
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4 J.E. PEČARIĆ AND B. TEPEŠ

Proof. The proof follows by the fact that∫ b

a

∫ b

a

|x− y| dxdy=

∫ b

a

(∫ b

a

|x− y| dx

)
dy

=

∫ b

a

(∫ y

a

(y − x) dx +

∫ b

y

(x− y) dx

)
dy

=
1

2

∫ b

a

(
(y − a)2 + (b− y)2) dy

=
1

3
(b− a)3 .

�

Theorem 2.4. Let f, u : [a, b] → R be such thatu is L−Lipschitzian on[a, b], and f is a
function of bounded variation on[a, b]. If w : [a, b] → R is a positive weight function, then the
following inequality holds:

|T (u, f ; w)| 6 ML

b∨
a

g 6 WML

b∨
a

f,

whereT (u, f ; w) is defined by (2.2),g : [a, b] → R is the functiong (x) =
∫ x

a
w (t) df (t),

W = supx∈[a,b]w (x) , M = max

{∫ b

a
w (t) (b− t) dt∫ b

a
w (t) dt

,

∫ b

a
w (t) (t− a) dt∫ b

a
w (t) dt

}
,

and
∨b

a g and
∨b

a f denote the total variation ofg andf on [a, b], respectively.

Proof. We have

T (u, f ; w) =

∫ b

a

w (x) u (x) df (x)− 1∫ b

a
w (x) dx

∫ b

a

w (x) df (x)

∫ b

a

w (x) u (x) dx

=

∫ b

a

w (x)

(
u (x)−

∫ b

a
w (t) u (t) dt∫ b

a
w (t) dt

)
df (x)

=

∫ b

a

(∫ b

a
w (t) (u (x)− u (t)) dt∫ b

a
w (t) dt

)
w (x) df (x).

Using the fact thatu is L−Lipschitzian on[a, b], we can state that:

|T (u, f ; w)| =

∣∣∣∣∣
∫ b

a

(∫ b

a
w (t) (u (x)− u (t)) dt∫ b

a
w (t) dt

)
w (x) df (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

(∫ b

a
w (t) (u (x)− u (t)) dt∫ b

a
w (t) dt

)
d

(∫ x

a

w (t) df (t)

)∣∣∣∣∣
6 Lsupx∈[a,b]

(∫ b

a
w (t) |x− t| dt∫ b

a
w (t) dt

)
b∨
a

(∫ x

a

w (t) df (t)

)

= ML

b∨
a

g.
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The constantM has the value

M = supx∈[a,b]

(∫ b

a
w (t) |x− t| dt∫ b

a
w (t) dt

)
.

If we denote a new functiony(x) as:

y (x) =

∫ b

a

w (t) |x− t| dt =

∫ x

a

w (t) (x− t) dt +

∫ b

x

w (t) (t− x) dt,

then the first derivative of this function is:

dy

dx
=

d

dx

(
x

∫ x

a

w (t) tdt−
∫ x

a

tw (t) dt +

∫ b

x

w (t) tdt− x

∫ b

x

w (t) dt

)
=

∫ x

a

w (t) dt + w (x) x− w (x) x− w (x) x−
∫ b

x

w (t) dt + w (x) x

=

∫ x

a

w (t) dt−
∫ b

x

w (t) dt;

and the second derivative is:

d2y

dx2
= w (x) + w (x) = 2w (x) > 0.

Obviouslyf is a convex function, so we have:

M = supx∈[a,b]

(∫ b

a
w (t) |x− t| dt∫ b

a
w (t) dt

)

= supx∈[a,b]

(
y(x)∫ b

a
w (t) dt

)

= max

{∫ b

a
w (t) (b− t) dt∫ b

a
w (t) dt

,

∫ b

a
w (t) (t− a) dt∫ b

a
w (t) dt

}
.

That is:

|T (u, f ; w)| =

∣∣∣∣∣
∫ b

a

(∫ b

a
w (t) (u (x)− u (t)) dt∫ b

a
w (t) dt

)
w (x) df (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

(∫ b

a
w (t) (u (x)− u (t)) dt∫ b

a
w (t) dt

)
w (x) df (x)

∣∣∣∣∣
6
∫ b

a

∫ b

a
w (t) |u (x)− u (t)| dt∫ b

a
w (t) dt

w (x) |df (x)|

6 supx∈[a,b]w (x) Lsupx∈[a,b]

(∫ b

a
w (t) |x− t| dt∫ b

a
w (t) dt

)
b∨
a

f

= WML

b∨
a

f.

�
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