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ABSTRACT. Weighted versions of Griiss type inequalities of Dragomir and Fedotov are given.
Some related results are also obtained.
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1. INTRODUCTION

In 1935, G. Griss proved the following inequality:

ey [ [r@ewa— it @it [ywa

<1(<I>—90)(F—7),

4
provided thatf andg are two integrable functions dn, b] satisfying the condition
(1.2) e < f(x) < Pandy < g(x) < I'forallz € [a,b].

The constan& is best possible and is achieved for

[ @) = g (x) = sgn (x-a;b).

The following result of Griiss type was proved by S.S. Dragomir and |. Fedatov [1]:

ISSN (electronic): 1443-5756
(© 2003 Victoria University. All rights reserved.
065-03


http://jipam.vu.edu.au/
mailto:pecaric@mahazu.hazu.hr
http://mahazu.hazu.hr/DepMPCS/indexJP.html 
http://www.ams.org/msc/

2 J.E. FECARIC AND B. TEPES

Theorem 1.1.Let f, u : [a,b] — R be such that. is L—Lipschitzian ona, b}, i.e.,

(1.3) lu(x) —u(y)| < Lz —y| forall z € a,b],
f is Riemann integrable ofa, b] and there exist the real numbers M so that
(1.4) m < f(x) <M forall z € [a,b].

Then we have the inequality

t/f ) du (s /f d4 L(M —m)(b—a),

and the constar@ is sharp, in the sense that it cannot be replaced by a smaller one.

(1.5)

The following result of Griiss’ type was proved by S.S. Dragomir and |. Fedotov [2]:

Theorem 1.2.Let f,u : [a,b] — R be such that: is L—lipschitzian onla,b], and f is a

function of bounded variation ofa, b|. Denote by\/® f the total variation off on[a,5]. Then
the following inequality holds:

[u@ar ) - L0 P a < %an

The constang is sharp, in the sense that it cannot be replaced by a smaller one.

(1.6)

l\DI»—l

Remark 1.3. For other related results see [3].

Let us also state that the weighted versior] of|(1.1) is well known, that is we have with condi-
tion (1.2) the following generalization df (1.1):

(1.7) D(f.gw)l < 7 (@ —9) (T =),
where
D(f,giw) = A(f,gw) — A(f;w) A(g;w),
e Jiw (@) f(x)d
Afiw) = L Wiz T x.
(fiw) f;w(x)dx

So, in this paper we shall show that corresponding weighted versions Jof (1.5) and (1.6) are also
valid. Some related results will be also given.

2. REsuLTs

Theorem 2.1.Let f,u : [a,b] — R be such thatf is Riemann integrable ofu, b] and u is
L—Lipschitzian ona, b], i.e. (1.3) holds true. Ifv : [a,b] — R is a positive weight function,
then

(2.1) wummn<g/w@nﬂm—AMwmm

where

b b b
(2.2) T(f,u;w):/ w(x)f(x)du(x)—m/ w(x)du(x)/ w(x) f(z)dx.

Moreover, if there exist the real numbers M such that[(T.4) is valid, then

b
(2.3) T (f, u;w)| < g(M m)/ w (x) d.
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Proof. As in [1], we have

w0mwﬂ=/%wwwm—Aqmmmu><L/w@ﬂﬂ@—Amwwm

That s, [2.1) is valid. Furthermore, from an application of Cauchy’s inequality we have:

(2.4) T (f,uwsw)| < L (/abw () dx/abw () (f () — A(f;w))de)% ,

from where we obtain

N

(2.5) T (f,w;w)| < L-(D(f, f;w))

b
: / w (x) dx.
From (1.7) forg = f we get:
(2.6) (D(f, fiw)* <5 (@—4).
Now, (2.4) and[(2]5) give (2.3). O

Now, we shall prove the following result.

Theorem 2.2. Let f : [a,b] — R be M—Lipschitzian on|a,b] and u : [a,b] — R be
L—Lipschitzian ona, b]. If w : [a,b] — R is a positive weight function, then

2.7) T (foww)| <L M- S L w (2) w |:C—y|d:cdy

ff

Proof. It follows from (2.7)

Sl w () (f (2) = f () dy

T(f,u;w)| <L- w(x D dx
T (f, us0)] < L (2) o
L e @) @)~ fWldy
<L- w (x) 2
/a ) J2w (y) dy
<L.M. S fw x)bw |x—y|dxdy

a

If in the previous result we set (z) = 1, then we can obtain the following corollary:

Corollary 2.3. Let f andu be as in Theorein 2.2, then,

M- (b—a)
) du (z b_a /f dt‘ 3 .
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Proof. The proof follows by the fact that

/ab/ab|x—y|da;dy=/ab (/ablx—yldl’) dy
:/: (/ay(y—x)dx+/yb(x—y)d$> dy

5 [ (o b)) dy
:% (b—a)?).

O

Theorem 2.4.Let f,u : [a,b] — R be such that. is L—Lipschitzian on[a, ], and f is a
function of bounded variation dja, b]. If w : [a,b] — R is a positive weight function, then the
following inequality holds:

T (u, f;w)] ML\/g WML\/f

whereT (u, f; w) is defined b2)g : [a,b] — Ris the functiory (z) = [ w () df (¢),

W = sup [b}w(x) M:max{f“bw(t)(b_t)dt f;w(t)(t—a)dt}
re|a, ) f |

Pwtydt T [Tw(t)dt

and \/Z g and \/Z f denote the total variation af and f on [a, b], respectively.

Proof. We have

wmm:/mmmwm—ﬁiﬁﬁwm@w/mmmm

P Cfw®u)dt i
—lw@%wm ﬁmmﬁ)#()

_ (e ® @@ —upd)
L (g ) o

Using the fact that is L—Lipschitzian ona, b], we can state that:

WWwa=/<f Ug<> mmvww#@ﬁ

“l(f <¥;> )(/ M

b b
L w(t) :L‘—t|dt
< LSupr[a,b] (f f > \/ (/
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The constanf\/ has the value

M= Supxe[a,b} (f f( )

If we denote a new functiop(z) as

y(z)

then the first derivative of this function is:

dy
dr

d
dz

/:w(t)dt—/:w(t

and the second derivative is:
d2y

da?

Obviously f is a convex function, so

) dt;

w(x) + w (z)

we have:

|z —t| dt
(t) dt

= 2w (x) > 0.

b
()\x—t\dt
M = SUDgc[a,b] (f

= SUPgz¢[q,b] <

o dt)

= max { f
5

That is:

T (u, f;w)]

(=

[(=

/ Jyw

/abW(t) !x—t!dt:/:w(t)(x—t)dtJr/:w(t)(t_x)dt,

( /:w(t)tdt_/;tw(t)dtjt/:w(t)tdt—a:/:w(t)dt)

T b
/w(t)dt—l—w(a:)x—w(x)x—w(as)x—/w(t)dt—l—w(:v):v

() (b—t)dt fabw(t)(t—a)dt}
w(t)dt [ (t) dt '
w (t) (u(x) —u(t)d
3 w(z)df (x
[ t) ) (@) df ()
w (t) (u(z) — ())dt
3 w(z)df (x
Jiwiid ) e
() |u(x) — ()|dt
Pt dt w () |df (z)|

Jyw(®)

|x—t|dt

< Supxe[a,b]w (JI) Lsupaxe[a,b] (

S w ()
=WML\/ f.
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