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ABSTRACT. In this paper we find some lower and upper bounds of the fﬁf@g for the func-

tion 7 (n), in which H,, = >~;'_, +. Then, we consideH (z) = ¥(z + 1) + ~ as generalization

of H,, such that¥(z) = L logT'(x) and~ is Euler constant; this extension has been intro-
duced for the first time by J. Sandor and it helps us to find some lower and upper bounds of the
form g5 for the functionr(z) and using these bounds, we show tfrép,,) ~ logn, when

n — oo is equivalent with the Prime Number Theorem.
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1. INTRODUCTION

As usual, lef® be the set of all primes and(z) = #P N [2,z]. If H, =", 1, then easily
we have:

(1.2) v+logn < H, <1+logn (n>1),

in which ~ is the Euler constant. Sd{,, = logn + O(1) and considering the prime number
theorem([2], we obtain:

m(n)

S C— "
~ H,+0(1) ¢ logn )
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Thus, comparing#o(l) with 7(n) seems to be a nice problem. In 1959, L. Locker-Erinst [4]
affirms thatHn”%, is very close tor(n) and in 1999, L. Panaitopal[6], proved that for> 1429
it is actually a lower bound for (n).

In this paper we improve Panaitopol's result by provigd-. < w(n) for everyn > 3299,
in which a ~ 1.546356705. Also, we find same upper bound fafn). Then we consider
generalization off,, as a real value function, which has been studied by J. Sandor [7] in 1988;
forz > 0let U(z) = LlogD(z), in whichT'(z) = [° e"t*!dt, is the well-known gamma
function [1]. Sincel'(z 4+ 1) = 2I'(z) andI'(1) = —v, we haveH,, = ¥(n + 1) + ~, and this
relation led him to define:

H:(0,00) — R,
(1.2)

H(z) = U(z+1)+7,
as a natural generalization &f,, and more naturally, it motivated us to find some bounds for
7(x) concerning? (x). In our proofs, we use the obvious relation:

1
(1.3) VU(r+1)=V(x)+ =
Also, we need some bounds of the fot%qw_”{j, which we yield them by using the following
known sharp bounds|[3], for(x): ”
x 1 1.8
14 1 — ) < > 322
(1.4) log ( +10gx+log2x) < m(x) (x > 32299),
and
x 1 2.51
1. < 1 > 1).
(1.5) n(m)__logx ( ‘%1ogx‘+]og2x) (z > 355991)

Finally, using the above mentioned bounds concernifig), we show that¥(p,) ~ logn,

whenn — oo is equivalent with the Prime Number Theorem. To do this, we need the following

boundsl|[3], forp,,:

logy n — 2.25
logn

in which the left hand side holds far > 2 and the right hand side holds far> 27076. Also,

by log, n we meariog log n and base of all logarithms is

n 1 — 1.8
(1.6) logn +log,n — 1 + gp—glogn—|—log2n—1+M
n

logn

2. BOUNDS OF THE FORM — &% ——

Ing_l_logx

Lower Bounds.We are going to find suitable values @fin which o ———— < 7(x). Con-

sidering [(1.4) and letting = log x, we should study the inequality o

1 1 19
— < (1+-+— ),
y—1-4,"y y o oy

which is equivalent with
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and supposing? — y — a > 0, it will be equivalent with

4 9 +9 9a>0
5 Y 5 Y 5 =

and this forceéo —a>0,0ra < z. Leta = e for somee > 0. Therefore we should study

4
5
1 1 19
y—1-2" Y y 5y

25ey? + (25¢ — 65)y + (45¢ — 36) -

593 (5y% — By + (5e — 4)) -
The equatior2bey?+ (25¢—65)y+(45¢—36) = 0 has discriminan?5A; with A; = 169+ 14¢—
155¢2, which is non-negative for-1 < ¢ < 1% and the greater root of it, ig, = = 5163‘6F
Also, the equatiorBy2 — 5y + (be —4) = 0 has dlscrlmlnaan = 105 — 100e, which is
non-negative foe < and the greater root of it, i, = + @ Thus u) holds for every

0 < e < min{i® 21 = 20, with y > max {yl Y2} = 1. Therefore we have proved the
0<

which is equivalent with:

(2.1)

1557 20
—20

following theorem.

Theorem 2.1.For every0 < ¢ < 2L the inequality:

20’
T

i < m(z),
logx — 1 — log:p
holds for all:
T Z max {32299 613 56-‘—'\/1??};‘—145 15562 }

Corollary 2.2. For everyz > 3299, we have:
T
logx — 1+

< m(x).

4log:c

Proof. Takinge = 2} in above theorem, we yield the result fer> 32299. For3299 < z <
32298, we check it by a computer; to do this, consider the following program in MapleV soft-
ware’s worksheet:

restart:

with(numtheory):

for x from 32298 by -1 while
evalf(pi(x)-x/(log(x)-1+1/(4*log(x))))>0
do x end do;

Running this program, it starts checking the result from 32298 and verify it, untilz = 3299.
This completes the proof. O
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Upper Bounds.Similar to lower bounds, we should search suitable valuésiofwhichr(z) <
Con&denngES) and letting = log x, we should study

1 1 —I— 1 " 251 < 1
Y 100y? y—1-— %
Assumingy? — y — b > 0, it will be equivalent with
151 251 251b
- _ - <
(100 b) (b * 100) AT

which forcesh > 131, Leth = 12 + ¢ for somee > 0. Therefore we should study

1 1+1+ 251 1\ _ 1
y y  100y2 —y_l_%+e’

Y

logx— 1— logz

which is equivalent with:
10000ey? + (10000€ + 40200)y + (25100¢ + 37901)
100y?(100y? — 100y — (100€ + 151)) -
The quadratic equation in the numerator 0f(2.2), has discrimift&00 A, with A; = 40401 —
17801¢ — 226002, which is non-negative for 223t < ¢ < 1 and the greater root of it, i =

“2-0etvAsL | Also, the quadratic equation in denominator of it, has dlscr|m|mé(mA2 with

A, = 44 + 25¢, which is non-negative for 32 < ¢ and the greater root of it, ig, = 5 + %
Thus, (2.2) holds for ever§ < e < min{1, +oo} =1, withy > Orgagql{yl,yz} = y,. Finally,

we note that fof) < e < 1, the functiony,(e) is strictly increasing and so,

6 < ext s = (0 < () < i) = o350 < g,

(2.2)

Therefore, we obtain the following theorem.

Theorem 2.3. For every0 < ¢ < 1, we have:

m(x) < S (x > 355991).

_l’_
_ 100 "¢
logx — 1 — T

Corollary 2.4. For everyz > 7, we have:

(z) < -
m(r) <
1ng —1- 10é?cigx
Proof. Takinge = 0 in above theorem, yields the result for> 355991. For7 < z < 35991 it
has been checked by computer [5]. O
3. BOUNDS OF THE FORM 7= AND \p(;)_c
Theorem 3.1.
(i) For everyn > 3299, we have:
L < n(n)
o —a m(n),
inwhicha =~ +1 — m ~ 1.5463567.
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(i) Foreveryn > 9, we have:

in whichb = 2 + 151 _ ~ 2.77598649.

1001

Proof. Forn > 3299, we have
1
4logn’
and considering this with the left hand side [of {1.1), we obtath. < m and this
inequality with Corollary 2.p, yields the first part of theorem.
Forn > 9, we have

v+logn >a+logn — 1+

151
b+1 —1——>1 |
+ logn 100 Tog + logn

and considering this with the right hand side 1.1), we ob 5T

~100logn

sidering this, with Corollary 2|4, completes the proof. O

Theorem 3.2.

(i) Foreveryzr > 3299, we have:

T

W—_A<7T($)>

inwhichA = 1 — %829 _ ___3209 _ () 9666752780.

3298 13192 log 3299
(i) Foreveryz > 9, we have:

inwhichB =2+ 121 _ v~ 2198770832.

100log 7T

Proof. Let H, be the step function defined 8y, = H,, for n <z < n+ 1. Considering[(1]2),
we haveH (v — 1) < H, < H(x).

Forz > 3299, by considering part (i) of the previous theorem, we have:

T > T _ T
H.,—a H(x)—a Y(@+1)+y—a
Thus, by considering (11.3), we obtain:

r—1 S r—1 S

V(@) +i4+y—a " V(@) + 5 +yv—a  Y(x)—A

(x) >

m(x) >

in which A = W(3299) — % (\11(3299) + ﬁ +7 - a) =1- \Pg?;%)gsg) - 13193?323299'

Forx > 9, by considering second part of previous theorem, we obtain:

(z) < z+1 - x B x B x
" Hooi—b Hz—1-b U(x)+y-b U(z)—B
inwhich B = b — v = 2 + 55,= — 7, and this completes the proof. O
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4. AN EQUIVALENT FOR THE PRIME NUMBER THEOREM

Theorenj 3., seems to be nice; because using it, for avery299 we obtain:
T T
() ()
Moreover, considering this inequality with (1.4) and {1.5), we yield the following bounds for

x > 355991:

(4.1) +A<U(2) < +B.

log x log x
+A<V¥(x) <
1+@+2.51 (z) 1+@+1.8

log? x log?

Also, by puttingz = p,, n*" prime in (4.1), forn > 463 we yield that:

+ B.

(4.2) Pn pA<wp) <24 B.
n n
Considering this inequality with (1].6), for eveny> 27076 we obtain:

1 —2.25
10gn+log2n+A—1+M
logn

1 —1.8
< V¥(p,) < logn +log,n+ B — =t
logn
This inequality is a very strong form of an equivalent of the Prime Number Theorem (PNT),
which assertsr(z) ~ ToeT and is equivalent witlp, ~ nlogn (see [1]). In this section, we

have another equivalent as follows:
Theorem 4.1. ¥ (p,,) ~ logn, whenn — oo is equivalent with the Prime Number Theorem.

Proof. First suppose PNT. Thus, we hawg = nlogn + o(nlogn). Also, (4.2) yields that
U (p,) = 2= + O(1). Therefore, we have:
nlogn + o(nlogn)

U(p,) = + O(1) = logn + o(logn).

Conversely, supposg(p,,) = logn + o(logn). By solving [4.2) according tp,,, we obtain:
n¥(p,) — Bn < p, < n¥(p,) — An.
Therefore, we have:
pn =n¥(p,) + O(n) = n(logn + o(logn)) + O(n) = nlogn + o(nlogn),
which, this is PNT. O
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