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Abstract

In this paper we find some lower and upper bounds of the form n
Hn−c for the

function π(n), in which Hn =
∑n

k=1
1
k . Then, we consider H(x) = Ψ(x + 1) + γ

as generalization of Hn, such that Ψ(x) = d
dx log Γ(x) and γ is Euler constant;

this extension has been introduced for the first time by J. Sándor and it helps
us to find some lower and upper bounds of the form x

Ψ(x)−c for the function
π(x) and using these bounds, we show that Ψ(pn) ∼ log n, when n → ∞ is
equivalent with the Prime Number Theorem.

2000 Mathematics Subject Classification: 11A41, 26D15, 33B15.
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1. Introduction
As usual, letP be the set of all primes andπ(x) = #P∩[2, x]. If Hn =

∑n
k=1

1
k
,

then easily we have:

(1.1) γ + log n < Hn < 1 + log n (n > 1),

in which γ is the Euler constant. So,Hn = log n + O(1) and considering the
prime number theorem [2], we obtain:

π(n) =
n

Hn +O(1)
+ o

(
n

log n

)
.

Thus, comparing n
Hn+O(1)

with π(n) seems to be a nice problem. In 1959,
L. Locker-Ernst [4] affirms that n

Hn− 3
2

, is very close toπ(n) and in 1999, L.

Panaitopol [6], proved that forn ≥ 1429 it is actually a lower bound forπ(n).
In this paper we improve Panaitopol’s result by provingn

Hn−a
< π(n) for

everyn ≥ 3299, in whicha ≈ 1.546356705. Also, we find same upper bound
for π(n). Then we consider generalization ofHn as a real value function, which
has been studied by J. Sándor [7] in 1988; forx > 0 let Ψ(x) = d

dx
log Γ(x),

in which Γ(x) =
∫∞

0
e−ttx−1dt, is the well-known gamma function [1]. Since

Γ(x + 1) = xΓ(x) andΓ(1) = −γ, we haveHn = Ψ(n + 1) + γ, and this
relation led him to define:

(1.2)

H : (0,∞) −→ R,

H(x) = Ψ(x+ 1) + γ,
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as a natural generalization ofHn, and more naturally, it motivated us to find
some bounds forπ(x) concerningΨ(x). In our proofs, we use the obvious
relation:

(1.3) Ψ(x+ 1) = Ψ(x) +
1

x
.

Also, we need some bounds of the form x
log x−1− c

log x
, which we yield them by

using the following known sharp bounds [3], for π(x):

(1.4)
x

log x

(
1 +

1

log x
+

1.8

log2 x

)
≤ π(x) (x ≥ 32299),

and

(1.5) π(x) ≤ x

log x

(
1 +

1

log x
+

2.51

log2 x

)
(x ≥ 355991).

Finally, using the above mentioned bounds concerningπ(x), we show that
Ψ(pn) ∼ log n, whenn → ∞ is equivalent with the Prime Number Theorem.
To do this, we need the following bounds [3], for pn:

(1.6) log n+ log2 n− 1 +
log2 n− 2.25

log n

≤ pn

n
≤ log n+ log2 n− 1 +

log2 n− 1.8

log n
,

in which the left hand side holds forn ≥ 2 and the right hand side holds for
n ≥ 27076. Also, by log2 n we meanlog log n and base of all logarithms ise.
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2. Bounds of the Form x
log x−1− c

log x

Lower Bounds.We are going to find suitable values ofa, in which x
log x−1− a

log x
≤

π(x). Considering (1.4) and lettingy = log x, we should study the inequality

1

y − 1− a
y

≤ 1

y

(
1 +

1

y
+

9

5y2

)
,

which is equivalent with

y4

y2 − y − a
≤ y2 + y +

9

5
,

and supposingy2 − y − a > 0, it will be equivalent with(
4

5
− a

)
y2 −

(
a+

9

5

)
y − 9a

5
≥ 0,

and this forces4
5
− a > 0, or a < 4

5
. Let a = 4

5
− ε for someε > 0. Therefore

we should study
1

y − 1−
4
5
−ε

y

≤ 1

y

(
1 +

1

y
+

9

5y2

)
,

which is equivalent with:

(2.1)
25εy2 + (25ε− 65)y + (45ε− 36)

5y3
(
5y2 − 5y + (5ε− 4)

) ≥ 0.
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The equation25εy2 +(25ε−65)y+(45ε−36) = 0 has discriminant25∆1 with
∆1 = 169+14ε−155ε2, which is non-negative for−1 ≤ ε ≤ 169

155
and the greater

root of it, isy1 = 13−5ε+
√

∆1

10ε
. Also, the equation5y2 − 5y + (5ε − 4) = 0 has

discriminant∆2 = 105−100ε, which is non-negative forε ≤ 21
20

and the greater

root of it, isy2 = 1
2
+
√

∆2

10
. Thus, (2.1) holds for every0 < ε ≤ min{169

155
, 21

20
} =

21
20

, with y ≥ max
0<ε≤ 21

20

{y1, y2} = y1. Therefore, we have proved the following

theorem.

Theorem 2.1.For every0 < ε ≤ 21
20

, the inequality:

x

log x− 1−
4
5
−ε

log x

≤ π(x),

holds for all:

x ≥ max

{
32299, e

13−5ε+
√

169+14ε−155ε2

10ε

}
.

Corollary 2.2. For everyx ≥ 3299, we have:

x

log x− 1 + 1
4 log x

≤ π(x).

Proof. Taking ε = 21
20

in above theorem, we yield the result forx ≥ 32299.
For 3299 ≤ x ≤ 32298, we check it by a computer; to do this, consider the
following program in MapleV software’s worksheet:
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restart:
with(numtheory):
for x from 32298 by -1 while
evalf(pi(x)-x/(log(x)-1+1/(4*log(x))))>0
do x end do;

Running this program, it starts checking the result fromx = 32298 and ver-
ify it, until x = 3299. This completes the proof.

Upper Bounds.Similar to lower bounds, we should search suitable values of
b, in which π(x) ≤ x

log x−1− b
log x

. Considering (1.5) and lettingy = log x, we

should study
1

y

(
1 +

1

y
+

251

100y2

)
≤ 1

y − 1− b
y

.

Assumingy2 − y − b > 0, it will be equivalent with(
151

100
− b

)
y2 −

(
b+

251

100

)
y − 251b

100
≤ 0,

which forcesb ≥ 151
100

. Let b = 151
100

+ ε for someε ≥ 0. Therefore we should
study

1

y

(
1 +

1

y
+

251

100y2

)
≤ 1

y − 1−
151
100

+ε

y

,

which is equivalent with:

(2.2)
10000εy2 + (10000ε+ 40200)y + (25100ε+ 37901)

100y3
(
100y2 − 100y − (100ε+ 151)

) ≥ 0.
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The quadratic equation in the numerator of (2.2), has discriminant40000∆1

with ∆1 = 40401−17801ε−22600ε2, which is non-negative for−40401
22600

≤ ε ≤ 1

and the greater root of it, isy1 = −201−50ε+
√

∆1

100ε
. Also, the quadratic equation

in denominator of it, has discriminant1600∆2 with ∆2 = 44 + 25ε, which is
non-negative for−44

25
≤ ε and the greater root of it, isy2 = 1

2
+
√

∆2

5
. Thus,

(2.2) holds for every0 ≤ ε ≤ min{1,+∞} = 1, with y ≥ max
0≤ε≤1

{y1, y2} = y2.

Finally, we note that for0 ≤ ε ≤ 1, the functiony2(ε) is strictly increasing and
so,

6 < e
1
2
+
√

44
5 = ey2(0) ≤ ey2(ε) ≤ ey2(1) = e

1
2
+
√

69
5 < 9.

Therefore, we obtain the following theorem.

Theorem 2.3.For every0 ≤ ε ≤ 1, we have:

π(x) ≤ x

log x− 1−
151
100

+ε

log x

(x ≥ 355991).

Corollary 2.4. For everyx ≥ 7, we have:

π(x) ≤ x

log x− 1− 151
100 log x

.

Proof. Taking ε = 0 in above theorem, yields the result forx ≥ 355991. For
7 ≤ x ≤ 35991 it has been checked by computer [5].
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3. Bounds of the Form n
Hn−c and x

Ψ(x)−c
Theorem 3.1.

(i) For everyn ≥ 3299, we have:

n

Hn − a
< π(n),

in whicha = γ + 1− 1
4 log 3299

≈ 1.5463567.

(ii) For everyn ≥ 9, we have:

π(n) <
n

Hn − b
,

in whichb = 2 + 151
100 log 7

≈ 2.77598649.

Proof. Forn ≥ 3299, we have

γ + log n ≥ a+ log n− 1 +
1

4 log n
,

and considering this with the left hand side of (1.1), we obtain n
Hn−a

< n
log n−1+ 1

4 log n

and this inequality with Corollary2.2, yields the first part of theorem.
Forn ≥ 9, we have

b+ log n− 1− 151

100 log n
> 1 + log n

and considering this with the right hand side of (1.1), we obtain n
log n−1− 151

100 log n

<
n

Hn−b
. Considering this, with Corollary2.4, completes the proof.

http://jipam.vu.edu.au/
mailto:mmhassany@srttu.edu
http://jipam.vu.edu.au/


Approximation of π(x) by Ψ(x)

Mehdi Hassani

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 14

J. Ineq. Pure and Appl. Math. 7(1) Art. 7, 2006

http://jipam.vu.edu.au

Theorem 3.2.

(i) For everyx ≥ 3299, we have:

x

Ψ(x)− A
< π(x),

in whichA = 1− Ψ(3299)
3298

− 3299
13192 log 3299

≈ 0.9666752780.

(ii) For everyx ≥ 9, we have:

π(x) <
x

Ψ(x)−B
,

in whichB = 2 + 151
100 log 7

− γ ≈ 2.198770832.

Proof. Let Hx be the step function defined byHx = Hn for n ≤ x < n + 1.
Considering (1.2), we haveH(x− 1) < Hx ≤ H(x).

Forx ≥ 3299, by considering part (i) of the previous theorem, we have:

π(x) >
x

Hx − a
≥ x

H(x)− a
=

x

Ψ(x+ 1) + γ − a
.

Thus, by considering (1.3), we obtain:

π(x) >
x− 1

Ψ(x) + 1
x

+ γ − a
≥ x− 1

Ψ(x) + 1
3299

+ γ − a
≥ x

Ψ(x)− A
,

in which A = Ψ(3299) − 3299
3298

(
Ψ(3299) + 1

3299
+ γ − a

)
= 1 − Ψ(3299)

3298
−

3299
13192 log 3299

.
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Forx ≥ 9, by considering second part of previous theorem, we obtain:

π(x) <
x+ 1

Hx+1 − b
<

x

H(x− 1)− b
=

x

Ψ(x) + γ − b
=

x

Ψ(x)−B
,

in whichB = b− γ = 2 + 151
100 log 7

− γ, and this completes the proof.

http://jipam.vu.edu.au/
mailto:mmhassany@srttu.edu
http://jipam.vu.edu.au/


Approximation of π(x) by Ψ(x)

Mehdi Hassani

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 14

J. Ineq. Pure and Appl. Math. 7(1) Art. 7, 2006

http://jipam.vu.edu.au

4. An Equivalent for the Prime Number Theorem
Theorem3.2, seems to be nice; because using it, for everyx ≥ 3299 we obtain:

(4.1)
x

π(x)
+ A < Ψ(x) <

x

π(x)
+B.

Moreover, considering this inequality with (1.4) and (1.5), we yield the follow-
ing bounds forx ≥ 355991:

log x

1 + 1
log x

+ 2.51
log2 x

+ A < Ψ(x) <
log x

1 + 1
log x

+ 1.8
log2 x

+B.

Also, by puttingx = pn, nth prime in (4.1), for n ≥ 463 we yield that:

(4.2)
pn

n
+ A < Ψ(pn) <

pn

n
+B.

Considering this inequality with (1.6), for everyn ≥ 27076 we obtain:

log n+ log2 n+ A− 1 +
log2 n− 2.25

log n

< Ψ(pn) < log n+ log2 n+B − 1 +
log2 n− 1.8

log n
.

This inequality is a very strong form of an equivalent of the Prime Number
Theorem (PNT), which assertsπ(x) ∼ x

log x
and is equivalent withpn ∼ n log n

(see [1]). In this section, we have another equivalent as follows:
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Theorem 4.1. Ψ(pn) ∼ log n, whenn → ∞ is equivalent with the Prime
Number Theorem.

Proof. First suppose PNT. Thus, we havepn = n log n+ o(n log n). Also, (4.2)
yields thatΨ(pn) = pn

n
+O(1). Therefore, we have:

Ψ(pn) =
n log n+ o(n log n)

n
+O(1) = log n+ o(log n).

Conversely, supposeΨ(pn) = log n + o(log n). By solving (4.2) according to
pn, we obtain:

nΨ(pn)−Bn < pn < nΨ(pn)− An.

Therefore, we have:

pn = nΨ(pn) +O(n) = n
(
log n+ o(log n)

)
+O(n) = n log n+ o(n log n),

which, this is PNT.
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