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ABSTRACT. By using Bottema’s inequality and several identities in triangles, we prove a
weighted inequality concerning the distances between a mobile pbiand three vertexes
A, B,C of AABC'. As an application, a conjecture with regard to Fermat’s sufn- P B+ PC

is proved.
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1. INTRODUCTION AND MAIN RESULTS

For AABC, leta, b, c denote the side-lengthsgl, B, C' the anglesA the areap the semi-
perimeter,R the circumradius and the inradius, respectively. In addition, supposing thas
a mobile point in the plane containilABC, let PA, PB, PC denote the distances between
P and A, B, C, respectively. We will customarily use the cyclic symbol, that}s:f(a) =

fa) + f(b) + f(e), 22 f(a,b) = f(a,b) + f(b,¢) + f(c,a), [T f(a) = f(a) f () f(c), etc.
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2 X.-G. CHU AND Y.-D. Wu

The following inequality can be easily proved by making us8aofttema’s inequality:
p? + 2Rr + r?
4R? '
Here we choose to omit the details. From inequality|(1.1) and the following known inequality
(1.2) and identity[(1]3) (seel[3] 4, 6]):

A B C
(1.2) PAcos 2 + PB cos Bl + PC cos 3 >p,

A B
(1.1) (PB+ PC)cos 5T (PC + PA) cos -5t (PA+ PB) cos% >p-

and
B-C , C—A 2 A—B  p*+4R*+2Rr 412

1. = cos?
(1.3) g1 = cos + cos + cos 5 iR ,
we easily get
2 2 2
(1.4) PA+PB+ PC >p- G .

A B
cosg—i-cosg%—cosg

Considering the refinement of inequality (1.4), Chu [2] posed a conjecture as follows.

Conjecture 1.1. Forany AABC,

coSs B?C + cos C;A + cos A;B

¢
2

1.5 PA+PB+PC>p-
(1.5) =P cosé+cos§+cos

The main object of this paper is to prove Conjecfure 1.1, which is easily seen to follow from
the following stronger result.

Theorem 1.2.In AABC, we have

(1.6) (PB+ PC)cos g + (PC + PA) cos g + (PA+ PB)cos g

B-C C—-A A—-B
> p- |cos 5 -+ cos 2 + cos

1.

2. PRELIMINARY RESULTS

In order to prove our main result, we shall require the following four lemmas.

Lemma 2.1. In AABC, we have that
B-C C—-A A—B  p*+2Rr+r?

(2-1) g2 = COS COS 5 - COS 5 SR2 ,
(2.2) coS 3 cOS 5 cos% = ﬁ%,
B C B-C
(2.3) g3 = Z CO8 - €08 o €08 —— (62 + - a2)
_ p*+2Rrp? —r (2R +7) (AR + 1)’
B 4R? ’
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1 2 B 2, C 2, 2 2
(2.4) q4:§Z(cos §+cos 5)(1) +c —a)
_ (2R+3r)p? —r (4R +7)’
B 2R ’
and
B-C C—-A A—B
(2.5) Q:Z(COS 5 TS cos— )
AT (b —¢)?
=q1 — 3¢ — 5221_[( ) ’
a?? [ (X + )
where
(2.6) X =aybc(p—b)(p—c), Y =bealp—c)(p—a),

Z=c\/ab(p—a) (p—b).

and

(2.7) r=(b+c)(p—0)(p—0c, y=(ct+a)(p—c)(p—a),
z=(a+b)(p—a)(p—10).

Proof. The proofs of identitie (2] 1) and (2.2) were given(in [6]. Now, we present the proofs of
identities [2.8) -{(Z2]5). By utilizing the formulas

A [plp—a) : é_\/(p—b)(p—C)
cos 5=\ T e sin 5 ™ ,
COSB—C:l)qLc\/(]D—b)(p—c)7
2 a be

and (see |5, pp.52])

Ha:le?“p, Za:2p and ZbC=p2+4Rr+r2,

we get that
_ b+c)p=0)(p—¢) 1o, 2
QB—PZ T (b* + & —a?)
— o beb ) (ca—b)(a+b—o) (B +E - a?)
- @[6(&1)4‘ be + ca)*(a+ b+ c)® — 8(ab+ be + ca)’(a+ b+ c)

— (ab + be + ca)(a + b+ ¢)® — 2abc(ab + be + ca)(a + b+ c)?
+ 8abe(ab + be + ca)? — abe(a + b+ ¢)* — 4(a + b+ c)a’b*c?)

_ p'+2Rrp? —r (2R +7) (4R + 1)’
B AR?
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and
% z:(cos2 g + cos g) (62 +2— a2)
= Z a? cos? é
~ abe ( Z Z )

% {5(ab + be + ca)(a + b+ c)* — 2(ab + be + ca)?
a

1 )
_§(a+ b+c) — §(a~|— b+ c¢)abe

_ (2R+3r)p* —r (4R + 1)
2R
Thus, identities[(2]3) and (2.4) hold true.
With (L.3), [2.1) and the formulas of half-angles, we obtain that

—p? +8R%? — 2Rr — 1r?

G — 3¢ = S R2
= o S le(b o) — (e a) (a+8) (s — o),
and
B — C—-—A A-B
Q= <cos — CoS 2 coS 5 )
_ 2 X[be(bte)—(cta)(a+tb)(s—a)
a2b2c2 ’
It is easy to see that
Ao _ A%(e—a)’ _ Aa—b)"
X — ¢ = X1z Y_y_Y—ﬂ/’ and Z—Z—Z—_i_z-
Then
a*b*c’[Q — (q1 — 3¢2))]
= fbe(b+¢) = (c+a)(a+b)(p — a)|(X — )
:Z[bc(b+c)—(c+a)(a+b>(p—a>]A)g+;)
o(a—b)(a——c)(b—c)?
_ZpA (X + ) '
Therefore,

O — (1 — 3g5) = ZPAZa—b Ya—c)(b—c)?

a’b?>c?(X + x)
~ pA%*(a—b)(a—c)(b—rc) b—c
B a?b?c? X+’
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where

b—c c—a a—b
X+m+Y+y+Z+z
(b)Y -X+y—2) (a—b)(Y -Z+y—2)
N (X +2)(Y+y) (Z+2)(Y +y)
_pp—c)(b—c)(b—a)  pabc(p—c)(b—c)(b—a)
(X +2) (Y +y) (X+2)(Y+y)(X+Y)

plp—a)(a=0b)(b—c) pabc(p—a)(a—0b)(b—rc)

(Z+2)(Y+y) (Z+2) Y4y (Z+Y)

_rlb-ola—b) [(p—a)(X +2)— (p—c)(Z+2)]

[1(X +2)

pabc (b — ¢) (a — b)
X+Y)Y+2)]][(X +2)
X[p—a)(X+2)(X+Y)—(p—c)(Z+2) (Y + 2)]

_|_

(Z"‘X X—l—ac)
pabe (b—c) (a —b) (a —c
(X+Y)(Z+YV)]][(X +2) [abCH(p—a)—YH(p_a)
Labe(Y —abo) [T(p —a)

Z+ X
. abe(pb + ca) (p—b)H(p—a)—ca(p—b)YH(p—a)}
4+ X
_ —A%b—c)(a—Db)(a—rc) pabc(b — ¢)(a — b)(a — ¢)
[T(X +2) (X—I—Y)(Z+Y)H(X+x)
-{[H(p—a (p — b)\/ca(p a)](X+Y)(Y—|—Z)

—I—abcH(p— a [ — abc 4 pb(p — b) + ca(p — b) — (p — b)\/calp — ¢)(p — a)

+(Z + X)(abe - Y) [ (0 - a)}
_ —A%(b—c)(a—1b)(a—c)
[T(X +2)

which implies the assertiop (2.5). O

Lemma 2.2. ForanyAABC,

(2.8) COSACOSBCOSC COSA+COSB+COSC > P
' 2 2 2 2 2 2 ) T 2R’
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Proof. FromEuler’s inequality R > 2r, abc = 4Rrp, a + b + ¢ = 2p and the law of sines, we
obtain that

(2.9) 2R*p > 4Rrp <= R*(a + b+ c) > abc
<= sinA+sinB +sinC > 4sin Asin Bsin C.

Taking

and C —

we easily get

C B C
2.1 — — — > 4cos — — —.
(2.10) cos 5 + cos 5 + cos 5 = cos 5 cos 5 cos 5

Inequality [2.8) follows immediately in view of (2.1L0) arjd (2.2). O

Lemma 2.3.In AABC, we have

- p*+2Rrp® —r (2R +71) (AR +r)?
- 4R? .

Proof. By employing [(2.B) and the formulas of half-angles, inequdlity (2.11) is equivalent to

B C
(2.11) ZCOSECOSE (62 +c - a2)

B Cls, 2 5 B C — 2., 2 2
. - — — > — — —
(2.12) Zcos 5 €855 (b +c a)_Zcos 5 €08 5 COs — (b +c a),
or
(b + % — a?)
(2.13) ZT[a\/bc(s—b)(s—c)—(b—i—c)(s—b)(s—c)] >0,
that is
A% (B2 + 2 —a?) 9
. =TT T h—e)? >
(2.14) Zabc a(X +x) (b= 20,

where X, Y, Z andz,y, z are given, just as in the proof of Lemra]2.1, by [(2.6) gnd| (2.7),
respectively.
Without loss of generality, we can assume that b > ¢ to obtain

a(X+z)>b(Y+y) >c(Z+2),

and

and thus

< :

a(X+z) = b(Y +y)
Hence, in order to prove inequalify (2]14), we only need to prove that
A2 T(0* + 2 —a?) (A +a® —b?)

(2.19) abe | a(X + ) (=0’ b(Y +v)

(c—a)?| >0.
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We readily arrive at the following result far> 6 > ¢,

A2 T(B2 4 2 — g2 24 42 2
fll M(b—c)%rm—)(c—af
abc | a(X + ) bY +y)
A? (c —a)?

S C I B I S S

_abc( remadhata )b(Y+y)
2 . 2
A*  (c—a) >0

—9c2. .7/
© G B(Y +y) ©

This shows that the inequality (2]15) ¢r (2.11) holds true. The proof of Lemma 2.3 is thus
complete. 0

Lemma 2.4(Bottema’s inequality, seel[1, pp. 118, Theorem 12.56gt A’ denote the area of
ANA'B'C’, andd’, b, ¢ the side-lengths o\ A’ B’C’, respectively. Then

(2.16) (d’PA+VPB+ ¢ PC)

1
[a’2(b2+02 —Cl2) —I—b’2(02 _'_GZ _ b2) —|—C/2(CL2—|—b2 —62)] —|—8AA/.

>
-2

3. THE PROOF OF THEOREM [1.2

Proof. It is easy to show that

' = B+ ¢ b = C+ A and
@' = cos o + cos o, = cos o +cos o,
/ cosA—i-CosB
d = - —
2 2

are three side-lengths of a certain triangle. By uddogtema’s inequality (2.16), in order to
prove inequality[(1J6), we only need to prove that

2
8A\/HCOS§ZCOS§+%Z (cos§+cos§> (b2+02—a2)
2
> p’ {ZCOSB;C—l}

or

A A
(3.1) 8A\/HCOS§ZCOSE+Q4

B C
+ZCOSECOSE(b2+C2—a2) +20°Q > p* (n +1).
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With identities [1.B),[(214)[(2]5), together with Lemimal2.2 and Lerimga 2.3, in order to prove
inequality [3.1), we only need to prove that

2 4 2 4 2 4 2
8A-ﬁ+(2R+3r)p r (4R +1) LP +2Rrp" —r (2R+7r) (4R + )

2R 2R 4R?
e —p® +8R* —2Rr —r* pATT (b —¢)?
P 8R? a?? [ (X + 2)
*+4R? 4 2Rr +r*

>p? (L 1
> (1)

or

(3.2) —p* + (AR2 4+ 20Rr — 2r2) p? — r (AR +1)° S 23N (b — ¢)?

4R? T [[(X +ax)

From the known identities (seel [5])

A = rpand
(b—c)*(c—a)*(a —b)? = 4r*[—p* + (4R? + 20Rr — 2r*)p* — r(4R +r)?],

inequality [3.2) is equivalent to
(3.3) [[(X +2) =2
For X > x, and with the following two known identities (see [5, pp.53])

[[o+e) =2p0" +2Rr ++%),  [[(p—a)=7"p,

we obtain
[[x+x)=8]]z=8]]C+]](—0a)
= 16r'p*(p* + 2Rr + %) > 167"p° > 2r'p°.
Therefore, inequality (3]3) holds. This completes the proof of Theprem 1.2. O

4. REMARKS

Remark 1. From inequalities (1]2) an@l (1.6), it is easy to see that inequflity (1.5) holds.

Remark 2. In view of

B-C B-C 24+ 4R? + 2R 2
Zcos ZZCOS2 > :p+ 4;2 r+r
B-C p? + 2Rr + r?
N
<:>Zcos 5 > 7 ,

it follows that inequality[(1.6) is a refinement of inequality (1.1).
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