A GEOMETRIC INEQUALITY INVOLVING A MOBILE POINT IN THE PLACE OF THE TRIANGLE

XIAO-GUANG CHU

Suzhou Hengtian Trading Co. Ltd., Suzhou 215128, Jiangsu People's Republic of China

EMail: srr345@163.com

YU-DONG WU

Department of Mathematics Zhejiang Xinchang High School Shaoxing 312500, Zhejiang, China EMail: yudong.wu@yahoo.com.cn

Received: 04 March, 2008

Accepted: 27 August, 2009

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: Primary 51M16; Secondary 51M25, 52A40.

Key words: Bottema's inequality, Euler's inequality, Fermat's sum, triangle, mobile point.

Abstract: By using **Bottema's inequality** and several identities in triangles, we prove a

weighted inequality concerning the distances between a mobile point P and three vertexes A, B, C of $\triangle ABC$. As an application, a conjecture with regard to

Fermat's sum PA + PB + PC is proved.

Acknowledgements: The authors would like to thank Dr. Zhi-Gang Wang and Zhi-Hua Zhang for their

enthusiastic help.

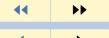
Dedicatory: Dedicated to Professor Lu Yang on the occasion of his 73rd birthday.

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents



Page 1 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

l	Introduction and Main Results	3
2	Preliminary Results	5
3	The Proof of Theorem 1.2	13
ļ	Remarks	15

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction and Main Results

For $\triangle ABC$, let a,b,c denote the side-lengths, A,B,C the angles, \triangle the area, p the semi-perimeter, R the circumradius and r the inradius, respectively. In addition, supposing that P is a mobile point in the plane containing $\triangle ABC$, let PA,PB,PC denote the distances between P and A,B,C, respectively. We will customarily use the cyclic symbol, that is: $\sum f(a) = f(a) + f(b) + f(c)$, $\sum f(a,b) = f(a,b) + f(b,c) + f(c,a)$, $\prod f(a) = f(a)f(b)f(c)$, etc.

The following inequality can be easily proved by making use of **Bottema's inequality**:

(1.1)
$$(PB + PC)\cos\frac{A}{2} + (PC + PA)\cos\frac{B}{2} + (PA + PB)\cos\frac{C}{2}$$

$$\geq p \cdot \frac{p^2 + 2Rr + r^2}{4R^2}.$$

Here we choose to omit the details. From inequality (1.1) and the following known inequality (1.2) and identity (1.3) (see [3, 4, 6]):

(1.2)
$$PA\cos\frac{A}{2} + PB\cos\frac{B}{2} + PC\cos\frac{C}{2} \ge p,$$

and

$$(1.3) q_1 = \cos^2 \frac{B-C}{2} + \cos^2 \frac{C-A}{2} + \cos^2 \frac{A-B}{2} = \frac{p^2 + 4R^2 + 2Rr + r^2}{4R^2},$$

we easily get

(1.4)
$$PA + PB + PC \ge p \cdot \frac{\cos^2 \frac{B-C}{2} + \cos^2 \frac{C-A}{2} + \cos^2 \frac{A-B}{2}}{\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}}.$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu

vol. 10, iss. 3, art. 79, 2009

Title Page

Contents

Page 3 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Considering the refinement of inequality (1.4), Chu [2] posed a conjecture as follows.

Corollary 1.1. For any $\triangle ABC$,

(1.5)
$$PA + PB + PC \ge p \cdot \frac{\cos \frac{B-C}{2} + \cos \frac{C-A}{2} + \cos \frac{A-B}{2}}{\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}}.$$

The main object of this paper is to prove Conjecture 1.1, which is easily seen to follow from the following stronger result.

Theorem 1.2. In $\triangle ABC$, we have

(1.6)
$$(PB + PC)\cos\frac{A}{2} + (PC + PA)\cos\frac{B}{2} + (PA + PB)\cos\frac{C}{2}$$

 $\geq p \cdot \left[\cos\frac{B - C}{2} + \cos\frac{C - A}{2} + \cos\frac{A - B}{2} - 1\right].$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Preliminary Results

In order to prove our main result, we shall require the following four lemmas.

Lemma 2.1. In $\triangle ABC$, we have that

(2.1)
$$q_2 = \cos \frac{B-C}{2} \cdot \cos \frac{C-A}{2} \cdot \cos \frac{A-B}{2} = \frac{p^2 + 2Rr + r^2}{8R^2},$$

(2.2)
$$\cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2} = \frac{p}{4R},$$

(2.3)
$$q_3 = \sum_{n=0}^{\infty} \cos \frac{B}{2} \cos \frac{C}{2} \cos \frac{B-C}{2} \left(b^2 + c^2 - a^2\right)$$
$$= \frac{p^4 + 2Rrp^2 - r\left(2R+r\right)\left(4R+r\right)^2}{4R^2},$$

(2.4)
$$q_4 = \frac{1}{2} \sum \left(\cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} \right) \left(b^2 + c^2 - a^2 \right)$$
$$= \frac{(2R + 3r) p^2 - r (4R + r)^2}{2R},$$

and

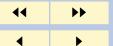
(2.5)
$$Q = \sum \left(\cos \frac{B - C}{2} - \cos \frac{C - A}{2} \cos \frac{A - B}{2} \right)$$
$$= q_1 - 3q_2 - \frac{p\Delta^4 \prod (b - c)^2}{a^2 b^2 c^2 \prod (X + x)},$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents



Page 5 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where

(2.6)
$$X = a\sqrt{bc(p-b)(p-c)}, \qquad Y = b\sqrt{ca(p-c)(p-a)},$$
$$Z = c\sqrt{ab(p-a)(p-b)},$$

and

(2.7)
$$x = (b+c)(p-b)(p-c), y = (c+a)(p-c)(p-a),$$

 $z = (a+b)(p-a)(p-b).$

Proof. The proofs of identities (2.1) and (2.2) were given in [6]. Now, we present the proofs of identities (2.3) - (2.5). By utilizing the formulas

$$\cos \frac{A}{2} = \sqrt{\frac{p(p-a)}{bc}}, \qquad \sin \frac{A}{2} = \sqrt{\frac{(p-b)(p-c)}{bc}},$$
$$\cos \frac{B-C}{2} = \frac{b+c}{a} \sqrt{\frac{(p-b)(p-c)}{bc}},$$

and (see [5, pp.52])

$$\prod a = 4Rrp, \qquad \sum a = 2p \qquad \text{ and } \qquad \sum bc = p^2 + 4Rr + r^2,$$

we get that

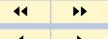
$$q_3 = p \sum_{a=0}^{\infty} \frac{(b+c)(p-b)(p-c)}{a^2bc} (b^2 + c^2 - a^2)$$
$$= \frac{p}{4a^2b^2c^2} \sum_{a=0}^{\infty} bc(b+c)(c+a-b)(a+b-c)(b^2 + c^2 - a^2)$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents



Page 6 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$= \frac{p}{4a^{2}b^{2}c^{2}} [6(ab+bc+ca)^{2}(a+b+c)^{3} - 8(ab+bc+ca)^{3}(a+b+c)$$

$$- (ab+bc+ca)(a+b+c)^{5} - 2abc(ab+bc+ca)(a+b+c)^{2}$$

$$+ 8abc(ab+bc+ca)^{2} - abc(a+b+c)^{4} - 4(a+b+c)a^{2}b^{2}c^{2}]$$

$$= \frac{p^{4} + 2Rrp^{2} - r(2R+r)(4R+r)^{2}}{4R^{2}}$$

and

$$\frac{1}{2} \sum \left(\cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} \right) \left(b^2 + c^2 - a^2 \right)
= \sum_{a=0}^{\infty} a^2 \cos^2 \frac{A}{2}
= \frac{p}{abc} \left(p \sum_{a=0}^{\infty} a^3 - \sum_{a=0}^{\infty} a^4 \right)
= \frac{p}{abc} \left[\frac{5}{2} (ab + bc + ca)(a + b + c)^2 - 2(ab + bc + ca)^2 - \frac{1}{2} (a + b + c)^4 - \frac{5}{2} (a + b + c)abc \right]
= \frac{(2R + 3r) p^2 - r (4R + r)^2}{2R}.$$

Thus, identities (2.3) and (2.4) hold true.

With (1.3), (2.1) and the formulas of half-angles, we obtain that

$$q_1 - 3q_2 = \frac{-p^2 + 8R^2 - 2Rr - r^2}{8R^2}$$
$$= \frac{1}{a^2b^2c^2} \sum x \left[bc(b+c) - (c+a)(a+b)(s-a)\right],$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

and

$$Q = \sum \left(\cos \frac{B - C}{2} - \cos \frac{C - A}{2} \cos \frac{A - B}{2} \right)$$
$$= \frac{\sum X \left[bc \left(b + c \right) - \left(c + a \right) \left(a + b \right) \left(s - a \right) \right]}{a^2 b^2 c^2}.$$

It is easy to see that

$$X - x = \frac{\Delta^2 (b - c)^2}{X + x}, \quad Y - y = \frac{\Delta^2 (c - a)^2}{Y + y}, \quad \text{and} \quad Z - z = \frac{\Delta^2 (a - b)^2}{Z + z}.$$

Then

$$a^{2}b^{2}c^{2}[Q - (q_{1} - 3q_{2})]$$

$$= \sum [bc(b+c) - (c+a)(a+b)(p-a)](X-x)$$

$$= \sum [bc(b+c) - (c+a)(a+b)(p-a)] \frac{\Delta^{2}(b-c)^{2}}{X+x}$$

$$= \sum p\Delta^{2} \frac{(a-b)(a-c)(b-c)^{2}}{(X+x)}.$$

Therefore,

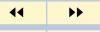
$$Q - (q_1 - 3q_2) = \sum p\Delta^2 \frac{(a-b)(a-c)(b-c)^2}{a^2b^2c^2(X+x)}$$
$$= \frac{p\Delta^2(a-b)(a-c)(b-c)}{a^2b^2c^2} \sum \frac{b-c}{X+x},$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents



Page 8 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where

$$\begin{split} &\frac{b-c}{X+x} + \frac{c-a}{Y+y} + \frac{a-b}{Z+z} \\ &= \frac{(b-c)\left(Y-X+y-x\right)}{(X+x)\left(Y+y\right)} + \frac{(a-b)\left(Y-Z+y-z\right)}{(Z+z)\left(Y+y\right)} \\ &= \frac{p\left(p-c\right)\left(b-c\right)\left(b-a\right)}{(X+x)\left(Y+y\right)} + \frac{pabc\left(p-c\right)\left(b-c\right)\left(b-a\right)}{(X+x)\left(Y+y\right)\left(X+Y\right)} \\ &\quad + \frac{p\left(p-a\right)\left(a-b\right)\left(b-c\right)}{(Z+z)\left(Y+y\right)} + \frac{pabc\left(p-a\right)\left(a-b\right)\left(b-c\right)}{(Z+z)\left(Y+y\right)\left(Z+Y\right)} \\ &= \frac{p\left(b-c\right)\left(a-b\right)}{\prod\left(X+x\right)} \left[(p-a)\left(X+x\right) - (p-c)\left(Z+z\right) \right] \\ &\quad + \frac{pabc\left(b-c\right)\left(a-b\right)}{\left(X+Y\right)\left(Y+Z\right)\prod\left(X+x\right)} \\ &\quad \times \left[(p-a)\left(X+x\right)\left(X+Y\right) - (p-c)\left(Z+z\right)\left(Y+Z\right) \right] \\ &= \frac{-\Delta^2\left(b-c\right)\left(a-b\right)\left(a-c\right)}{\prod\left(X+x\right)} \\ &\quad + \frac{p\left(b-c\right)\left(a-b\right)\left(a-c\right)}{\left(Z+X\right)\prod\left(X+x\right)} \left[abc\prod\left(p-a\right) - ca\left(p-b\right)Y \right] \\ &\quad + \frac{pabc\left(b-c\right)\left(a-b\right)\left(a-c\right)}{\left(X+Y\right)\left(Z+Y\right)\prod\left(X+x\right)} \left[abc\prod\left(p-a\right) - Y\prod\left(p-a\right) \\ &\quad + \frac{abc\left(Y-abc\right)\prod\left(p-a\right)}{Z+X} \\ &\quad + \frac{abc\left(pb+ca\right)\left(p-b\right)\prod\left(p-a\right) - ca\left(p-b\right)Y\prod\left(p-a\right)}{Z+X} \\ \end{split}$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents

44

4 }

Page 9 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$= \frac{-\Delta^{2}(b-c)(a-b)(a-c)}{\prod (X+x)} + \frac{pabc(b-c)(a-b)(a-c)}{(X+Y)(Z+Y)\prod (X+x)} \cdot \left\{ \left[\prod (p-a) - (p-b)\sqrt{ca(p-c)(p-a)} \right] (X+Y)(Y+Z) + abc \prod (p-a) \left[Y - abc + pb(p-b) + ca(p-b) - (p-b)\sqrt{ca(p-c)(p-a)} \right] + (Z+X)(abc-Y) \prod (p-a) \right\}$$

$$= \frac{-\Delta^{2}(b-c)(a-b)(a-c)}{\prod (X+x)},$$

which implies the assertion (2.5).

Lemma 2.2. For any $\triangle ABC$,

(2.8)
$$\sqrt{\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}\left(\cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2}\right)} \ge \frac{p}{2R}.$$

Proof. From Euler's inequality $R \ge 2r$, abc = 4Rrp, a+b+c = 2p and the law of sines, we obtain that

(2.9)
$$2R^2p \ge 4Rrp \iff R^2(a+b+c) \ge abc$$

 $\iff \sin A + \sin B + \sin C \ge 4\sin A\sin B\sin C.$

Taking

$$A o rac{\pi - A}{2}, \qquad B o rac{\pi - B}{2}, \qquad ext{and} \qquad C o rac{\pi - C}{2},$$

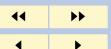
we easily get

$$(2.10) \cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2} \ge 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}.$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

> Title Page Contents



Page 10 of 16

Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Inequality (2.8) follows immediately in view of (2.10) and (2.2).

Lemma 2.3. In $\triangle ABC$, we have

$$(2.11) \quad \sum \cos \frac{B}{2} \cos \frac{C}{2} \left(b^2 + c^2 - a^2 \right) \ge \frac{p^4 + 2Rrp^2 - r\left(2R + r\right)\left(4R + r\right)^2}{4R^2}.$$

Proof. By employing (2.3) and the formulas of half-angles, inequality (2.11) is equivalent to

(2.12)
$$\sum \cos \frac{B}{2} \cos \frac{C}{2} \left(b^2 + c^2 - a^2 \right) \\ \geq \sum \cos \frac{B}{2} \cos \frac{C}{2} \cos \frac{B - C}{2} \left(b^2 + c^2 - a^2 \right),$$

or

(2.13)
$$\sum \frac{(b^2 + c^2 - a^2)}{a^2bc} \left[a\sqrt{bc(s-b)(s-c)} - (b+c)(s-b)(s-c) \right] \ge 0,$$

that is

(2.14)
$$\sum \frac{\Delta^2}{abc} \cdot \frac{(b^2 + c^2 - a^2)}{a(X+x)} (b-c)^2 \ge 0,$$

where X, Y, Z and x, y, z are given, just as in the proof of Lemma 2.1, by (2.6) and (2.7), respectively.

Without loss of generality, we can assume that $a \ge b \ge c$ to obtain

$$a(X+x) \ge b(Y+y) \ge c(Z+z),$$

and

$$(a-c)^2 \ge (b-c)^2,$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

and thus

$$\frac{\left(b-c\right)^{2}}{a\left(X+x\right)} \le \frac{\left(c-a\right)^{2}}{b\left(Y+y\right)}.$$

Hence, in order to prove inequality (2.14), we only need to prove that

(2.15)
$$\frac{\Delta^2}{abc} \left[\frac{(b^2 + c^2 - a^2)}{a(X+x)} (b-c)^2 + \frac{(c^2 + a^2 - b^2)}{b(Y+y)} (c-a)^2 \right] \ge 0.$$

We readily arrive at the following result for $a \ge b \ge c$,

$$\frac{\Delta^2}{abc} \left[\frac{(b^2 + c^2 - a^2)}{a(X+x)} (b-c)^2 + \frac{(c^2 + a^2 - b^2)}{b(Y+y)} (c-a)^2 \right]$$

$$\geq \frac{\Delta^2}{abc} \left(b^2 + c^2 - a^2 + c^2 + a^2 - b^2 \right) \frac{(c-a)^2}{b(Y+y)}$$

$$= 2c^2 \cdot \frac{\Delta^2}{abc} \cdot \frac{(c-a)^2}{b(Y+y)} \geq 0.$$

This shows that the inequality (2.15) or (2.11) holds true. The proof of Lemma 2.3 is thus complete.

Lemma 2.4 (Bottema's inequality, see [1, pp. 118, Theorem 12.56]). Let Δ' denote the area of $\triangle A'B'C'$, and a',b',c' the side-lengths of $\triangle A'B'C'$, respectively. Then

(2.16)
$$(a'PA + b'PB + c'PC)^2$$

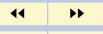
$$\geq \frac{1}{2}[a'^2(b^2 + c^2 - a^2) + b'^2(c^2 + a^2 - b^2) + c'^2(a^2 + b^2 - c^2)] + 8\Delta\Delta'.$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents



Page 12 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. The Proof of Theorem 1.2

Proof. It is easy to show that

$$a' = \cos\frac{B}{2} + \cos\frac{C}{2}, \qquad b' = \cos\frac{C}{2} + \cos\frac{A}{2}, \qquad \text{and}$$
 $c' = \cos\frac{A}{2} + \cos\frac{B}{2}$

are three side-lengths of a certain triangle. By using **Bottema's inequality** (2.16), in order to prove inequality (1.6), we only need to prove that

$$8\Delta\sqrt{\prod\cos\frac{A}{2}\sum\cos\frac{A}{2}} + \frac{1}{2}\sum\left(\cos\frac{B}{2} + \cos\frac{C}{2}\right)^{2}\left(b^{2} + c^{2} - a^{2}\right)$$
$$\geq p^{2}\left[\sum\cos\frac{B - C}{2} - 1\right]^{2}$$

or

(3.1)
$$8\Delta\sqrt{\prod\cos\frac{A}{2}\sum\cos\frac{A}{2}} + q_4$$

 $+\sum\cos\frac{B}{2}\cos\frac{C}{2}\left(b^2 + c^2 - a^2\right) + 2p^2Q \ge p^2\left(q_1 + 1\right).$

With identities (1.3), (2.4), (2.5), together with Lemma 2.2 and Lemma 2.3, in order to prove inequality (3.1), we only need to prove that

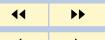
$$8\Delta \cdot \frac{p}{2R} + \frac{(2R+3r)p^2 - r(4R+r)^2}{2R} + \frac{p^4 + 2Rrp^2 - r(2R+r)(4R+r)^2}{4R^2}$$

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents



Page 13 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$+2p^{2} \left[\frac{-p^{2} + 8R^{2} - 2Rr - r^{2}}{8R^{2}} - \frac{p\Delta^{4} \prod (b-c)^{2}}{a^{2}b^{2}c^{2} \prod (X+x)} \right]$$

$$\geq p^{2} \left(\frac{p^{2} + 4R^{2} + 2Rr + r^{2}}{4R^{2}} + 1 \right)$$

or

$$(3.2) \qquad \frac{-p^4 + (4R^2 + 20Rr - 2r^2)p^2 - r(4R + r)^3}{4R^2} \ge \frac{2p^3\Delta^4 \prod (b - c)^2}{a^2b^2c^2 \prod (X + x)}.$$

From the known identities (see [5])

$$\Delta = rp$$
 and

$$(b-c)^{2}(c-a)^{2}(a-b)^{2} = 4r^{2}[-p^{4} + (4R^{2} + 20Rr - 2r^{2})p^{2} - r(4R+r)^{3}],$$

inequality (3.2) is equivalent to

$$(3.3) \qquad \qquad \prod (X+x) \ge 2r^4 p^5.$$

For $X \ge x$, and with the following two known identities (see [5, pp.53])

$$\prod (b+c) = 2p(p^2 + 2Rr + r^2), \qquad \prod (p-a) = r^2 p,$$

we obtain

$$\prod (X+x) \ge 8 \prod x = 8 \prod (b+c) \prod (p-a)^2$$
$$= 16r^4p^3(p^2 + 2Rr + r^2) > 16r^4p^5 > 2r^4p^5.$$

Therefore, inequality (3.3) holds. This completes the proof of Theorem 1.2.

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

4. Remarks

Remark 1. From inequalities (1.2) and (1.6), it is easy to see that inequality (1.5) holds.

Remark 2. In view of

$$\sum \cos \frac{B-C}{2} \ge \sum \cos^2 \frac{B-C}{2} = \frac{p^2 + 4R^2 + 2Rr + r^2}{4R^2}$$

$$\iff \sum \cos \frac{B-C}{2} - 1 \ge \frac{p^2 + 2Rr + r^2}{4R^2},$$

it follows that inequality (1.6) is a refinement of inequality (1.1).

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu vol. 10, iss. 3, art. 79, 2009

Title Page
Contents

Contonto

44

>>

Page 15 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] O. BOTTEMA, R.Ž. DJORDEVIĆ, R.R. JANIĆ, D.S. MITRINOVIĆ AND P.M.VASIĆ, *Geometric Inequalities*, Wolters-Noordhoff Publishing, Groningen, The Netherlands, (1969).
- [2] X.-G. CHU, A conjecture of the geometric inequality, Website of Chinese Inequality Research Group http://www.irgoc.org/bbs/dispbbs.asp?boardid=5&Id=2507&page=17.(in Chinese)
- [3] X.-G. CHU, A class of inequality involving a moving point inside triangle, *J. Yibin Univ.*, **6** (2006), 20–22. (in Chinese)
- [4] M.S. KLAMKIN, Geometric inequalities via the polar moment of Inertia, *Math. Mag.*, **48** (1975), 44–46.
- [5] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, Recent Advances in Geometric Inequalities, Acad. Publ., Dordrecht, Boston, London, (1989).
- [6] X.-Z. YANG AND H.-Y. YIN, The comprehensive investigations of trigonometric inequalities for half-angles of triangle in China, *Studies of Inequalities*, Tibet People's Press, Lhasa, (2000), 123–174. (in Chinese)

A Geometric Inequality

Xiao-Guang Chu and Yu-Dong Wu

vol. 10, iss. 3, art. 79, 2009

Title Page

Contents

44 >>>

4

Page 16 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756