

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 5, Issue 4, Article 103, 2004

LUPAŞ-DURRMEYER OPERATORS

NAOKANT DEO

DEPARTMENT OF APPLIED MATHEMATICS DELHI COLLEGE OF ENGINEERING BAWANA ROAD, DELHI - 110042, INDIA. dr naokant deo@yahoo.com

Received 27 March, 2004; accepted 26 September, 2004 Communicated by A. Lupaş

ABSTRACT. In the present paper, we obtain Stechkin-Marchaud-type inequalities for some approximation operators, more precisely for Lupaş-Durrmeyer operators defined as in (1.1).

Key words and phrases: Stechkin-Marchaud-type inequalities, Lupas Operators, Durrmeyer Operators.

2000 Mathematics Subject Classification. 26D15.

1. Introduction

Lupaş proposed a family of linear positive operators mapping $C[0,\infty)$ into $C[0,\infty)$, the class of all bounded and continuous functions on $[0, \infty)$, namely,

$$V_n(f,x) = \sum_{k=0}^{\infty} p_{n,k}(x) f\left(\frac{k}{n}\right), \quad x \in [0,\infty),$$

where $p_{n,k}(x) = \binom{n+k-1}{k} x^k (1+x)^{-n-k}$. Motivated by Derriennic [1], Sahai and Prasad [5] proposed modified Lupaş operators defined, for functions integrable on $[0, \infty)$, by

(1.1)
$$B_n(f,x) = (n-1) \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} p_{n,k}(t) f(t) dt.$$

Wicken discussed Stechkin-Marchaud-type inequalities in [2] for Bernstein polynomials and obtained the following results:

$$w_{\phi}^{2}\left(f, \frac{1}{\sqrt{n}}\right) \le Cn^{-1} \sum_{k=1}^{n} \left\|\phi^{-\alpha}(B_{k}f - f)\right\|_{\infty}.$$

The main object of this paper is to give Stechkin-Marchaud-type inequalities for Lupaş-Durrmeyer operators. In the end of this section we introduce some definitions and notations.

ISSN (electronic): 1443-5756

^{© 2004} Victoria University. All rights reserved.

The author is grateful to Prof. Dr. Alexandru Lupaş, University of Sibiu, Romania for valuable suggestions that greatly improved this paper. 066-04

2 NAOKANT DEO

Definition 1.1. For $0 \le \lambda \le 1$, $0 < \alpha < 2r$, $0 \le \beta \le 2r$, $0 \le \alpha(1 - \lambda) + \beta \le 2r$

(1.2)
$$||f||_0 = ||f||_{0,\alpha,\beta,\lambda} = \sup_{x \in I} \left\{ \left| \phi^{\alpha(\lambda-1)-\beta}(x) f(x) \right| \right\},$$

(1.3)
$$C_{\alpha,\beta,\lambda}^{0} = \{ f \in C_{B}(I), ||f||_{0} < \infty \},$$

(1.4)
$$||f||_r = ||f||_{r,\alpha,\beta,\lambda} = \sup_{x \in I} \left\{ \left| \phi^{2r + \alpha(\lambda - 1) - \beta}(x) f^{(2r)}(x) \right| \right\}$$

and

(1.5)
$$C_{\alpha,\beta,\lambda}^{r} = \left\{ f \in C_{B}(I), f^{(2r-1)} \in AC_{loc}, \|f\|_{r} < \infty \right\},$$

where
$$\phi(x) = \sqrt{x(1+x)}$$
 and $r = 0, 1, 2, ...$

Definition 1.2. Peetre's K-functional is defined as

(1.6)
$$w_{\phi^{\lambda}}^{2r}(f,t)_{\alpha,\beta} = \sup_{0 < h < t} \sup_{x \pm rh\phi^{\lambda}(x) \in I} \left\{ \left| \phi^{\alpha(\lambda-1)-\beta}(x) \Delta_{h\phi^{\lambda}}^{2r} f(x) \right| \right\}$$

and

(1.7)
$$K_{\phi^{\lambda}}(f, t^{2r})_{\alpha, \beta} = \inf_{g^{(2r-1)} \in AC_{loc}} \left\{ \|f - g\|_0 + t^{2r} \|g\|_r \right\},$$

where AC_{loc} is the space of real valued absolute continuous and integrable functions on [0, 1].

In second section of the paper, we will give some basic results, which will be useful in proving the main theorems; while in Section 3 the main results are given.

2. AUXILIARY RESULTS

Some basic results are given here.

Lemma 2.1. Suppose that for nonnegative sequences $\{\sigma_n\}$, $\{\tau_n\}$ with $\sigma_1 = 0$ the inequality $\sigma \leq \left(\frac{k}{n}\right)^p \sigma_k + \tau_k$, $(1 \leq k \leq n)$, is satisfied for $n \in \mathbb{N}$, p > 0. Then one has

(2.1)
$$\sigma_n \le B_p n^{-p} \sum_{k=1}^n k^{p-1} \tau_k.$$

Lemma 2.2. For $f^{(2s)} \in C^0_{\alpha,\beta,\lambda}$, $s \in N_0$, the following inequalities hold

(2.2)
$$||B_n^{(2s)}f||_r \le C_1 n^r ||f^{(2s)}||_0,$$

and

(2.3)
$$||B_n^{(2s)}f||_r \le C_2 n^{r + \frac{\alpha(1-\lambda)}{2} + \frac{\beta}{2}} ||f^{(2s)}||_{\infty}.$$

Lemma 2.3. For $f^{(2s)} \in C^r_{\alpha,\beta,\lambda}$, $s \in N_0$, the following inequality holds

Lemma 2.4. Let us suppose that $f^{(2s)} \in C^0_{\alpha,\beta,\lambda}, \ s \in N_0, \ 0 \le \alpha(1-\lambda) + \beta \le 2$, then

(2.5)
$$||B_n^{(2s)}f||_r \le C \left(\sum_{k=1}^n k^{r-1} ||(B_k f - f)^{(2s)}||_0 + ||f^{(2s)}||_\infty \right).$$

Lemma 2.5. Suppose that $r \in \mathbb{N}$, $x \pm rt \in I$, $0 \le \beta \le 2r$, $0 \le t \le \frac{1}{16r}$, then

(2.6)
$$\int_{-\frac{t}{2r}}^{\frac{t}{2r}} \cdots \int_{-\frac{t}{2r}}^{\frac{t}{2r}} \phi^{-\beta} \left(x + \sum_{j=1}^{2r} u_j \right) du_1 \cdots du_{2r} \le C(\beta) t^{2r} \phi^{-\beta}(x).$$

3. MAIN RESULTS

We are now ready to prove the main results of this paper.

Theorem 3.1. For the modulus of smoothness and K-functional

(3.1)
$$K_{\phi^{\lambda}}\left(f^{(2s)}, \frac{1}{n^{r}}\right)_{\alpha, \beta} \leq C n^{-r} \left(\sum_{k=1}^{n} k^{r-1} \left\| (B_{k}f - f)^{(2s)} \right\|_{0} + \left\| f^{(2s)} \right\|_{\infty} \right),$$

$$(3.2) w_{\phi^{\lambda}}^{2r} \left(f^{(2s)}, \frac{1}{\sqrt{n}} \right)_{\alpha, \beta} \le C n^{-\frac{r}{2-\lambda}} \left(\sum_{k=1}^{\left[n^{\frac{1}{2-\lambda}}\right]} k^{-\frac{r-1}{2-\lambda}} \left\| (B_k f - f)^{(2s)} \right\|_0 + \left\| f^{(2s)} \right\|_{\infty} \right),$$

where $\|\cdot\|_{\infty}$ denotes the supremum norm.

Proof of (3.1). Taking $\frac{n}{2} \le m \le n$ such that $\|(B_m f - f)^{(2s)}\|_0 \le \|(B_k f - f)^{(2s)}\|_0$, $(\frac{n}{2} < k \le n)$, we have

$$K_{\phi^{\lambda}}\left(f^{(2s)}, \frac{1}{n^{r}}\right)_{\alpha,\beta} \leq \left\| (B_{m}f - f)^{(2s)} \right\|_{0} + n^{-r} \left\| f_{m}^{(2s)} \right\|_{r}$$

$$\leq \frac{2^{r}}{n^{r}} \sum_{k=\frac{n}{2}}^{n} k^{r-1} \left\| (B_{k}f - f)^{(2s)} \right\|_{0}$$

$$+ Cn^{-r} \left(\sum_{k=1}^{m} k^{r-1} \left\| (B_{k}f - f)^{(2s)} \right\|_{0} + \left\| f^{(2s)} \right\|_{\infty} \right)$$

$$\leq Cn^{-r} \left(\sum_{k=1}^{n} k^{r-1} \left\| (B_{k}f - f)^{(2s)} \right\|_{0} + \left\| f^{(2s)} \right\|_{\infty} \right).$$

Proof of (3.2). By definition of K-functional there exists $g \in C^r_{\alpha,\beta,\lambda}$ such that

(3.3)
$$||f^{(2s)} - g||_0 + n^{-\frac{r}{2-\lambda}} ||g||_r \le K_{\phi^{\lambda}} \left(f, n^{-\frac{r}{2-\lambda}} \right)_{\alpha,\beta}$$

and

(3.4)
$$\left| \Delta_{h\phi^{\lambda}(x)}^{2r} f^{(2s)}(x) \right| \le C\phi^{\alpha(1-\lambda)+\beta}(x) \left\| f^{(2s)} \right\|_{0}$$

by Lemma 2.5 for above $g,\; 0< h\phi^{\lambda}(x)<\frac{1}{16r},\; x\pm rh\phi^{\lambda}(x)\in I,$

$$\left| \Delta_{h\phi^{\lambda}(x)}^{2r} g(x) \right| \le C h^{2r} \phi^{(-2r+\alpha)(1-\lambda)+\beta}(x) \left\| g \right\|_r.$$

Using (3.4) and (3.5), again for $0 < h\phi^{\lambda}(x) < \frac{1}{16r}, \ x \pm rh\phi^{\lambda}(x) \in I$, we get

$$(3.6) \qquad \left| \Delta_{h\phi^{\lambda}(x)}^{2r} f^{(2s)}(x) \right| \leq C \phi^{\alpha(1-\lambda)+\beta}(x) \left\{ \left\| f^{(2s)} - g \right\|_{0} + h^{2r} \phi^{2r(\lambda-1)}(x) \left\| g \right\|_{r} \right\}.$$

4 NAOKANT DEO

For $x \pm rh\phi^{\lambda}(x) \in I$, we obtain

(3.7)
$$h^2 \phi^{2(\lambda - 1)}(x) \le \left[\frac{1}{2} n^{\frac{1}{2 - \lambda}} \right]^{-1}.$$

From (3.6) and (3.7) we have

$$(3.8) \quad \left| \Delta_{h\phi^{\lambda}(x)}^{2r} f^{(2s)}(x) \right| \\ \leq C \phi^{\alpha(1-\lambda)+\beta}(x) K_{\phi^{\lambda}} \left(f^{(2s)}, \left[\frac{1}{2} n^{\frac{1}{2-\lambda}} \right]^{-1} \right)_{\alpha,\beta} \\ \leq C \phi^{\alpha(1-\lambda)+\beta}(x) n^{-\frac{r}{2-\lambda}} \left(\sum_{k=1}^{\left[n^{\frac{r}{2-\lambda}} \right]} k^{-\frac{r-1}{2-\lambda}} \left\| (B_k f - f)^{(2s)} \right\|_0 + \left\| f^{(2s)} \right\|_{\infty} \right).$$

Corollary 3.2. If $0 < \alpha < 2$, $f \in C_B(I)$, then

$$|(B_n f)(x) - f(x)| = O\left((n^{-1/2} \phi^{1-\lambda}(x))^{\alpha}\right) \Rightarrow w_{\phi^{\lambda}}^2(f, t) = O(t^{\alpha}),$$

where

$$w_{\phi^{\lambda}}^{2}(f,t) = \sup_{0 < h \le t} \sup_{x \pm h\phi^{\lambda}(x) \in I} \left\{ \left| \Delta_{h\phi^{\lambda}}^{2} f(x) \right| \right\}.$$

This is the inverse part in [3].

In (1.4) and (1.5), for $\delta_n(x) = \phi(x) + \frac{1}{\sqrt{n}}$, $\phi(x)$ replaced by $\delta_n(x)$, (3.1) also holds.

Corollary 3.3. If $0 < \alpha < 2r$, $f \in C_B(I)$, then

$$|(M_n f)(x) - f(x)| = O\left((n^{-1/2}\phi^{1-\lambda}(x))^{\alpha}\right) \Rightarrow w_{\phi\lambda}^{2r}(f, t) = O(t^{\alpha}),$$

where $(M_n f)(x)$ is linear combination of $(B_n f)(x)$.

This is the inverse parts in [4].

Remark 3.4. We also propose some other modifications of Lupaş operators as

$$M_n(f,x) = n \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} s_{n,k}(t) f(t) dt$$

where $s_{n,k}(t) = e^{-nt} \frac{(nt)^k}{k!}$ and $p_{n,k}(x)$ is defined in (1.1) for these operators M_n .

REFERENCES

- [1] M.M. DERRIENNIC, Sur l'approximation de fonctions integrables sur [0, 1] par des polynomes de Bernstein modifies, *J. Approx, Theory*, **31** (1981), 325–343.
- [2] E. VAN WICKEN, Stechkin-Marchaud type inequalities in connection with Bernstein polynomials, *Constructive Approximation*, **2** (1986), 331–337.
- [3] M. FELTEN, Local and global approximation theorems for positive linear operators, *J. Approx. Theory*, **94** (1998), 396–419.
- [4] S. GUO, C. LI AND Y. SUN, Pointwise estimate for Szasz-type, *J. Approx. Theory*, **94** (1998), 160–171.
- [5] A. SAHAI AND G. PRASAD, On simultaneous approximation by modified Lupaş operators, *J. Approx.*, *Theory*, **45** (1985), 122–128.