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ABSTRACT. In the present paper, we obtain Stechkin-Marchaud-type inequalities for some ap-
proximation operators, more precisely for Lupas-Durrmeyer operators defined ag in (1.1).
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1. INTRODUCTION

Lupas proposed a family of linear positive operators mapgiri@, o) into C' [0, oc), the
class of all bounded and continuous functiong@mo), namely,

Vilhe) =X na@i (£). v )

wherep, () = (") 2% (1 + z) "
Motivated by Derriennicl[1], Sahai and Prasad [5] proposed modified Lupas operators de-
fined, for functions integrable dn, co), by
L) Bufa) = (0= 1) pala) [ puslt) S0
k=0 0
Wicken discussed Stechkin-Marchaud-type inequalities lin [2] for Bernstein polynomials and
obtained the following results:

1 n
o ( f. —) <Cn S |07 (Bif — ).

The main object of this paper is to give Stechkin-Marchaud-type inequalities for Lupas-Durrmeyer
operators. In the end of this section we introduce some definitions and notations.
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Definition 1.1. For0 < A <1, 0<a<2r,0<<2r, 0<a(l—-XN)+5<2r

(12) I£1lo = 17l = 5B {62 2) ()]}
(13) 02,6,/\ = {f € CB(I)a HfHO < 00}7

(1.4) AN =11 asn = Sup {[@* OV () fO () |}
and

(1.5) nan =L €Cs(I), Y € ACi0, || fl, < 00},

where¢(z) = \/x(1 +z)andr =0,1,2,....

Definition 1.2. Peetre’sK -functional is defined as

(1.6) wh(ft)as= sup  sup  {|p"V P (@2)AYL f()]}
0<h<t zdrhe* (z)el

and

1.7 Kp(f,t*)apg = inf — g, Ft* ,

(L.7) Pt = b I =gl + gl }

whereAC,. is the space of real valued absolute continuous and integrable functidfislon
In second section of the paper, we will give some basic results, which will be useful in proving
the main theorems; while in Sectiph 3 the main results are given.
2. AUXILIARY RESULTS
Some basic results are given here.

Lemma 2.1. Suppose that for nonnegative sequenges}, {7,,} with o; = 0 the inequality
o < (8) o, + 7, (1 <k < n),is satisfied fom € N, p > 0. Then one has

(2.1) o0 < Bn "> k7

k=1

Lemma 2.2. For [ € CY ; |, s € Ny, the following inequalities hold

2.2) IBZf|, < Can” || £,
and
(23) HB1(128)fHT < 02nr+a(12—>\)+§ Hf(?s)”oo .

Lemma 2.3. For f*9) € C7 ; |, s € N,, the following inequality holds
(2.4) 1BE I, < [1F1l,

Lemma 2.4. Let us suppose that?) € C% ;,, s € Ny, 0 < (1 — A) + 3 < 2, then

25) B8], < (Z e (B — N+ ||f<2s>uoo) |
k=1
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Lemma 2.5. Supposethate N, x £rt € I, 0 < 5 < 2r, O<t<ﬁ,then

t t

(2.6) /_ /_ o (x + Zu]) duy -+ - dug, < C(B)t* ¢~ P ().

_t t
2r 27
3. MAIN RESULTS

We are now ready to prove the main results of this paper.

Theorem 3.1. For the modulus of smoothness aRdfunctional

@1 K, (f(23), %) <Cn" (Z FH(Bef = H®), + !{f(25>HOO> :
a,f k=1

1 T r—1
(32 i (f<28>,—) < On s EE B — N+ 172
5 (.0 S kg - 0+ )

where||-|| _denotes the supremum norm.

Proof of [3:1).Taking 2 < m < n such that|/(B.f— f)®)|, < |(Buf — )&
(5 <k <n),we have

K, (f@sxi) <l -

(2S>

m

n?”

2" o
<= KRB = NP,

=3

et (Sl -l 1.
k=1
w (S g - 1+ 11 )
k=1

Proof of [3.2).By definition of K -functional there existg € C” - such that

(3.3) 172 = g, +n 7% [lgll, < Ky (f, n—gx)aﬁ
and
(3.4) ‘Ahqb)‘(z ¥ 28)(1‘)‘ < C’¢O‘(1*>‘)+ﬁ(:v) Hf(Qs)HO

by Lemmg 2.5 for above, 0 < h¢*(z) < g, © £ rh¢*(z) € 1,

(3.5) A2 9] < CRETGre03 ) | g

Using (3.4) and[(3]5), again for< h¢*(z) < i, © £ rh¢*(z) € 1, we get

(3.6) ‘Ah¢A f@s)(l’)‘ < Co I (@) {{| £ — g]|, + p¥ 6> XD () g, } -
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Forx + rh¢?(z) € I, we obtain

(3.7) h2p? D (z) < [lmlkl B :
From (3.6) and[(317) we have

(38) Ao [ (@)

1
S C«gba(l—k)-i-ﬁ(l,)qu\ (f(Qs)’ |:_n2_1)\:| )
a,B

)

< Op N |37 R (Bef = N+ (172
k=1

Corollary 3.2. If 0 < a < 2, f € Cp(I), then
(Buf)(@) = f(2)| = O ((n~'26"(2))*) = win(f,1) = O(t%),

where
wik(f,t) = sup  sup {‘Azwf(x)‘}.

0<h<t z4ho*(z)el
This is the inverse part in [3].
In ) and ), fon,(z) = é(z) + J=, ¢(x) replaced by, (z), ) also holds.
Corollary 3.3. If 0 < a < 2r, f € Cg(I), then
(M, f) (@) = f(x)] = O ((n72¢' " Nx))*) = wir(f, 1) = O(t*),
where(M,, f)(x) is linear combination of B, f)(z).
This is the inverse parts inl[4].

Remark 3.4. We also propose some other modifications of Lupas operators as
Mo(fa) =3 pusle) [ sualt)f (0
k=0 0

wheres,, x(t) = e*"t(%)k andp,, ;(z)is defined in) for these operatavs,.
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