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ABSTRACT. In this paper, we obtain some sufficient conditions for an analytic fungtian,
defined on the unit disk\, to be starlike of ordet.
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1. INTRODUCTION

Let A, be the class of all functiong(z) = z + a,12"™ + - - - which are analytic iP\ =
{z;|z| < 1} and letA; = A. Afunction f(z) € A is starlike of order, if
Re <zf’(z)) >a, 0<a<l,
/()
forall z € A. The class of all starlike functions of ordeilis denoted bys*(«/). We write S*(0)
simply asS*. Recently, Li and Owe_|3] proved the following:
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Theorem 1.1.1f f(z) € A satisfies

w9 (R ) o

for somex (o > 0), thenf(z) € S*.

In fact, Lewandowski, Miller and Zlotkiewicz [1] and Ramesha, Kumar, and Padmanabhan
[7] have proved a weaker form of the above theorem. If the numbef2 is replaced by
—a?(1 —a)/4, (0 < a < 2) in the above condition, Li and Owal[3] have proved tfi@) is in
S*(a/2).

Li and Owa [3] have also proved the following:

Theorem 1.2.1f f(z) € A satisfies

zf12)<2f%2)
f'(z) \ f(2)

wherep = 2.2443697, thenf(z) € S*.

—1)‘<p, z€eN,

The above theorem with = 3/2 andp = 1/6 were earlier proved by Li and Owal[2] and
Obradovic[6] respectively.

In this paper, we obtain some sufficient conditions for functions to be starlike of Grder
prove our result, we need the following:

Lemma 1.3. [4] Let(2 be a set in the complex plaideand suppose thab is a mapping from
C? x A to C which satisfiesb(iz,y; z) € Q for = € A, and for all realz, y such thaty <
—n(142%)/2. If the functionp(z) = 14¢,2"+- - - is analyticinA and®(p(z), 2p'(2); z) € Q
forall z € A, thenRep(z) > 0.

2. SUFFICIENT CONDITIONS FOR STARLIKENESS

In this section, we prove some sufficient conditions for function to be starlike of grder

Theorem 2.1.1f f(2) € A, satisfies

I%{?é?Qﬁﬁg»+o}>aﬁw+g—4%{ﬁ—%q,ze&ogaﬁgl,

thenf(z) € S*(9).

Proof. Definep(z) by
2f'(2)
f(z)

Thenp(z) =1+ ¢,2" + - - - and is analytic iA. A computation shows that

2f"(z) _ (1=B)2p'(2) + [(1 = B)p(z) + B]* — [(1 — B)p(2) + B

(1-=08)p(z) + 8=

f'(2) (1—0)p(z) + 6
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and hence
ZJJ:;(;)) (O‘ ZJJ:;S) * 1) = a(l1=B)2p'(2) + a(l = §)°p*(2)
+ (1= 06)(1+2a8 —a)p(z) + Blaf+ 1 — af
= &(p(2), 2p'(2); 2),
where

O(r,s:t) =a(l = B)s +a(l — B2+ (1 = B)(1 4 208 — a)r + flaf + 1 —al.
For all realz andy satisfyingy < —n(1 + z?)/2, we have
Re®(iz,y; 2) = a(l — B)y — a(l — B)%2* + BlaB +1 — a]
< -1 =Bn— [T (A=) +a(l— B a*+ flaf+1 - a]

- —%(1—5)71— a(l;ﬁ)(n+2—25)x2+ﬁ(aﬁ+1—a)
< Baf+1-a)=S(1—P)n

o (o5 -1) (- %),

Let @ = {w;Rew >aB(B+2—-1)+ (B—"2)}. Then®(p(z),zp'(z);2) € Q and
D (ix,y; z) € Q for all realz andy < —n(1+ 2?)/2, z € A. By an application of Lemmja 1.3,
the result follows. O

By taking3 = 0 andn = 1 in the above theorem, we have the following:

Corollary 2.2. [3] If f(z) € A satisfies
2f'(2) ( 2f"(2) )} a
Re{ 702 af’(z) +1 > 5’ z€e N,

for somex (o > 0), thenf(z) € S*.

If we take3 = a/2 andn = 1, we get the following:
Corollary 2.3. [3] If f(z) € A satisfies
2f'(z) [ =f"(2) ot
Re{ ) (a 6 +1)p> 4(1 a), z€N,

for somen (0 < a < 2), thenf(z) € S*(a/2).

In fact, in the proof of the above theorem, we have proved the followingzlf = 1+c¢, 2"+
- is analytic in/A and satisfies

Re(a(1 — B)p/ () + a(1 — B)*0%(2) + (1 — B)(1 + 208 — a)p(2) + flaf + 1 — a)
n an
>oB[s+5-1]+(0-F).
thenRe p(z) > 0. Using a method similar to the one used in the above theorem, we have the

following:
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Theorem 2.4.Leta > 0,0 < 5 < 1. If f(2) € A, satisfies

Re{f(j> (af}{;g) +1 —a)} > —ga(l —B)+B, z€A,

then
ho £2)

e —= > [.
z
As a special case, we get the following:fifz) € A satisfies

Re{f'(z) + azf"(2)} > —%, z €N,

a >0, then

Re f'(2) > 0.
However, a sharp form of this result was proved by Nunokawa and Hoshino [5].
Theorem 2.5.Let0 < 8 < 1,a = (n/2+1— 3)*andb = (n/2 + 3)? satisfy(a + b)3>
< b(1 —20). Lett, be the positive real root of the equation

2a(1 — B)*t* + [3a8* + b(1 — B)*]t + [(a + 2b) 5% — (1 — 3)?b] = 0

and
o (1=P)*(141to)*(ato +b)
B2+ (1 — )2t '

If f(2) € A, satisfies

2f"(2) (Zf’(Z)

o (1) < seo

thenf(z) € S*(B).

Proof. Definep(z) by

2f'(2)
f(z)

Thenp(z) =1+ ¢,2" + - - - and is analytic iA. A computation shows that

2f"(z) _ (1=B)2p'(2) + [(1 = B)p(2) + B> — [(1 — B)p(2) + f]

(1—=0P)p(z) + 6 =

f'(2) (1=B)p(z) +p
and hence
2f"(2) (21'(z)
ﬁ@)< (= Q
(1-5)p) —1)
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Then, for all realr andy satisfyingy < —n(1 + 2?)/2, we have
| (i, y; 2)

~(1=p)2A+2?) B B 2_ (1 _ B)2422

- 32+ (1 —5)21'2 {[(1 ﬁ)y B+ (1 ﬁ) ]
+26(1 = 8) - (1 - B)P*2°}

(1 =0)01+1) 2 2,12

- 624‘(1—5)%{[(1_5)1/_5_‘_5 _(1_6) t]
+[26(1 - 5) - (1 - B))*t}

=g(t,y),
wheret = 22 > 0 andy < —n(1 +t)/2. Since
dg _ (1-p)>°(1+1)

oy 52+(1_5>2t[(1—6)y—ﬂ+52—(1—5)%}2<o,

we have
glt,y) > g (t, —g(l + t)) = h(t).

(1 =prPa+r)2 n 2 2
M) = = {t<§+1_5> +(3+9) } ‘

Also itis clear that'(—1) = 0 and the other two roots ¢f (t) = 0 are given by

2a(1 — B)** + [3a8% + b(1 — B)*)t + [(a + 2b) B> — (1 — 3)b] = 0,

wherea = (n/2+1— 3)? andb = (n/2 + 3)%. Sincet, is the positive root of this equation we
haveh(t) > h(ty) and hence

Note that

| (i, y; 2)|* > h(to).
DefineQ) = {w; |w| < p}. Then®(p(z), 2p'(2); 2) € Q and®(ix,y; z) ¢ 2 for all realz and
y < —n(1+2%)/2, = € A. Therefore by an application of LemralL.3, the result follow&]

If we taken = 1, 8 = 0, we havely = % and therefore we have the following:
Corollary 2.6. [3] If f(z) € A satisfies

2f"(2) (Zf’(Z)

f'(z) \ f(z)

wherep? = 8271V thenf(z) € S*.

—1)‘<p, z€eN,
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