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Abstract

In this paper, we obtain some sufficient conditions for an analytic function f(z),
defined on the unit disk 4, to be starlike of order α.
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1. Introduction
Let An be the class of all functionsf(z) = z + an+1z

n+1 + · · · which are
analytic in4 = {z; |z| < 1} and letA1 = A. A functionf(z) ∈ A is starlike
of orderα, if

Re

(
zf ′(z)

f(z)

)
> α, 0 ≤ α < 1,

for all z ∈ 4. The class of all starlike functions of orderα is denoted byS∗(α).
We writeS∗(0) simply asS∗. Recently, Li and Owa [3] proved the following:

Theorem 1.1. If f(z) ∈ A satisfies

Re

{
zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)}
> −α

2
, z ∈ 4,

for someα (α ≥ 0), thenf(z) ∈ S∗.

In fact, Lewandowski, Miller and Zlotkiewicz [1] and Ramesha, Kumar, and
Padmanabhan [7] have proved a weaker form of the above theorem. If the
number−α/2 is replaced by−α2(1−α)/4, (0 ≤ α < 2) in the above condition,
Li and Owa [3] have proved thatf(z) is in S∗(α/2).

Li and Owa [3] have also proved the following:

Theorem 1.2. If f(z) ∈ A satisfies∣∣∣∣zf ′′(z)

f ′(z)

(
zf ′(z)

f(z)
− 1

)∣∣∣∣ < ρ, z ∈ 4,

whereρ = 2.2443697, thenf(z) ∈ S∗.
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The above theorem withρ = 3/2 andρ = 1/6 were earlier proved by Li and
Owa [2] and Obradovic [6] respectively.

In this paper, we obtain some sufficient conditions for functions to be starlike
of orderβ. To prove our result, we need the following:

Lemma 1.3. [4] Let Ω be a set in the complex planeC and suppose thatΦ is a
mapping fromC2 ×4 to C which satisfiesΦ(ix, y; z) 6∈ Ω for z ∈ 4, and for
all real x, y such thaty ≤ −n(1 + x2)/2. If the functionp(z) = 1 + cnz

n + · · ·
is analytic in4 andΦ(p(z), zp′(z); z) ∈ Ω for all z ∈ 4, thenRe p(z) > 0.
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2. Sufficient Conditions for Starlikeness
In this section, we prove some sufficient conditions for function to be starlike
of orderβ.

Theorem 2.1. If f(z) ∈ An satisfies

Re

{
zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)}
> αβ

[
β +

n

2
− 1

]
+

[
β − αn

2

]
, z ∈ 4, 0 ≤ α, β ≤ 1,

thenf(z) ∈ S∗(β).

Proof. Definep(z) by

(1− β)p(z) + β =
zf ′(z)

f(z)
.

Thenp(z) = 1 + cnz
n + · · · and is analytic in4. A computation shows that

zf ′′(z)

f ′(z)
=

(1− β)zp′(z) + [(1− β)p(z) + β]2 − [(1− β)p(z) + β]

(1− β)p(z) + β

and hence

zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)
= α(1− β)zp′(z) + α(1− β)2p2(z)

+ (1− β)(1 + 2αβ − α)p(z) + β[αβ + 1− α]

= Φ(p(z), zp′(z); z),
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where

Φ(r, s; t) = α(1−β)s+α(1−β)2r2 +(1−β)(1+2αβ−α)r+β[αβ +1−α].

For all realx andy satisfyingy ≤ −n(1 + x2)/2, we have

Re Φ(ix, y; z) = α(1− β)y − α(1− β)2x2 + β[αβ + 1− α]

≤ −α

2
(1− β)n−

[nα

2
(1− β) + α(1− β)2

]
x2 + β[αβ + 1− α]

= −α

2
(1− β)n− α(1− β)

2
(n + 2− 2β)x2 + β(αβ + 1− α)

≤ β(αβ + 1− α)− α

2
(1− β)n

= αβ
(
β +

n

2
− 1

)
+

(
β − nα

2

)
.

LetΩ =
{
w; Re w > αβ

(
β + n

2
− 1

)
+

(
β − nα

2

)}
. ThenΦ(p(z), zp′(z); z)

∈ Ω andΦ(ix, y; z) 6∈ Ω for all realx andy ≤ −n(1 + x2)/2, z ∈ 4. By an
application of Lemma1.3, the result follows.

By takingβ = 0 andn = 1 in the above theorem, we have the following:

Corollary 2.2. [3] If f(z) ∈ A satisfies

Re

{
zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)}
> −α

2
, z ∈ 4,

for someα (α ≥ 0), thenf(z) ∈ S∗.

If we takeβ = α/2 andn = 1, we get the following:
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Corollary 2.3. [3] If f(z) ∈ A satisfies

Re

{
zf ′(z)

f(z)

(
α

zf ′′(z)

f ′(z)
+ 1

)}
> −α2

4
(1− α), z ∈ 4,

for someα (0 < α ≤ 2), thenf(z) ∈ S∗(α/2).

In fact, in the proof of the above theorem, we have proved the following: If
p(z) = 1 + cnz

n + · · · is analytic in4 and satisfies

Re(α(1− β)zp′(z) + α(1− β)2p2(z)

+ (1− β)(1 + 2αβ − α)p(z) + β[αβ + 1− α])

> αβ
[
β +

n

2
− 1

]
+

(
β − αn

2

)
,

thenRe p(z) > 0. Using a method similar to the one used in the above theorem,
we have the following:

Theorem 2.4.Letα ≥ 0, 0 ≤ β < 1. If f(z) ∈ An satisfies

Re

{
f(z)

z

(
α

zf ′(z)

f(z)
+ 1− α

)}
> −n

2
α(1− β) + β, z ∈ 4,

then

Re
f(z)

z
> β.

As a special case, we get the following: Iff(z) ∈ A satisfies

Re {f ′(z) + αzf ′′(z)} > −α

2
, z ∈ 4,
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α ≥ 0, then
Re f ′(z) > 0.

However, a sharp form of this result was proved by Nunokawa and Hoshino [5].

Theorem 2.5. Let0 ≤ β < 1, a = (n/2 + 1− β)2 andb = (n/2 + β)2 satisfy
(a + b)β2 < b(1− 2β). Let t0 be the positive real root of the equation

2a(1− β)2t2 + [3aβ2 + b(1− β)2]t + [(a + 2b)β2 − (1− β)2b] = 0

and

ρ2 =
(1− β)3(1 + t0)

2(at0 + b)

β2 + (1− β)2t0
.

If f(z) ∈ An satisfies∣∣∣∣zf ′′(z)

f ′(z)

(
zf ′(z)

f(z)
− 1

)∣∣∣∣ ≤ ρ, z ∈ 4,

thenf(z) ∈ S∗(β).

Proof. Definep(z) by

(1− β)p(z) + β =
zf ′(z)

f(z)
.

Thenp(z) = 1 + cnz
n + · · · and is analytic in4. A computation shows that

zf ′′(z)

f ′(z)
=

(1− β)zp′(z) + [(1− β)p(z) + β]2 − [(1− β)p(z) + β]

(1− β)p(z) + β
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and hence

zf ′′(z)

f ′(z)

(
zf ′(z)

f(z)
− 1

)
=

(1− β)(p(z)− 1)

(1− β)p(z) + β
[(1− β)zp′(z)

+ [(1− β)p(z) + β]2 − [(1− β)p(z) + β)]]

≡ Φ(p(z), zp′(z); z).

Then, for all realx andy satisfyingy ≤ −n(1 + x2)/2, we have

|Φ(ix, y; z)|2

=
(1− β)2(1 + x2)

β2 + (1− β)2x2

{
[(1− β)y − β + β2 − (1− β)2x2]2

+[2β(1− β)− (1− β)]2x2
}

=
(1− β)2(1 + t)

β2 + (1− β)2t
{[(1− β)y − β + β2 − (1− β)2t]2

+ [2β(1− β)− (1− β)]2t}
≡ g(t, y),

wheret = x2 > 0 andy ≤ −n(1 + t)/2. Since

∂g

∂y
=

(1− β)3(1 + t)

β2 + (1− β)2t
[(1− β)y − β + β2 − (1− β)2t]2 < 0,

we have
g(t, y) ≥ g

(
t,−n

2
(1 + t)

)
≡ h(t).
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Note that

h(t) =
(1− β)3(1 + t)2

β2 + (1− β)2t

[
t
(n

2
+ 1− β

)2

+
(n

2
+ β

)2
]

.

Also it is clear thath′(−1) = 0 and the other two roots ofh′(t) = 0 are given
by

2a(1− β)2t2 + [3aβ2 + b(1− β)2]t + [(a + 2b)β2 − (1− β)2b] = 0,

wherea = (n/2 + 1− β)2 andb = (n/2 + β)2. Sincet0 is the positive root of
this equation we haveh(t) ≥ h(t0) and hence

|Φ(ix, y; z)|2 ≥ h(t0).

DefineΩ = {w; |w| < ρ}. ThenΦ(p(z), zp′(z); z) ∈ Ω andΦ(ix, y; z) 6∈ Ω
for all realx andy ≤ −n(1 + x2)/2, z ∈ 4. Therefore by an application of
Lemma1.3, the result follows.

If we taken = 1, β = 0, we havet0 =
√

73−1
36

and therefore we have the
following:

Corollary 2.6. [3] If f(z) ∈ A satisfies∣∣∣∣zf ′′(z)

f ′(z)

(
zf ′(z)

f(z)
− 1

)∣∣∣∣ < ρ, z ∈ 4,

whereρ2 = 827+73
√

73
288

, thenf(z) ∈ S∗.

http://jipam.vu.edu.au/
mailto:
mailto:vravi@svce.ac.in
mailto:
mailto:
http://jipam.vu.edu.au/


Sufficient Conditions for
Starlike Functions of Order α

V. Ravichandran, C. Selvaraj and
R. Rajalaksmi

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 11

J. Ineq. Pure and Appl. Math. 3(5) Art. 81, 2002

http://jipam.vu.edu.au

References
[1] Z. LEWANDOWSKI, S.S. MILLERAND E. ZŁOTKIEWICZ, Generating

functions for some classes of univalent functions,Proc. Amer. Math. Soc.,
56 (1976), 111–117.

[2] J.-L. LI AND S. OWA, Properties of the Salagean operator,Georgian Math.
J., 5(4) (1998), 361–366.

[3] J.-L. LI AND S. OWA, Sufficient conditions for starlikeness,Indian J. Pure
Appl. Math., 33 (2002), 313–318.

[4] S.S. MILLER AND P.T. MOCANU, Differential subordinations and in-
equalities in the complex plane,J. Differ. Equations, 67 (1987), 199–211.

[5] M. NUNOKAWA AND S. HOSHINO, One criterion for multivalent func-
tions,Proc. Japan Acad., Ser. A, 67 (1991), 35–37.
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