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ABSTRACT. In this paper we characterize nonsmooth convex vector functions by first and sec-
ond order generalized derivatives. We also prove optimality conditions for convex vector prob-
lems involving nonsmooth data.
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1. INTRODUCTION

Let f : R® — R™ be a given vector function and C R™ be a pointed closed convex cone.
We say thatf is C'-convex if

flz+ (1 =t)y) —tf(z) - (1 -1)f(y) € C
for all z,y € R™ andt € (0,1). The notion ofC-convexity has been studied by many authors
because this plays a crucial role in vector optimization (see [4, 11, 13, 14] and the references
therein). In this paper we prove first and second order characterizations of nonsrhootirex
functions by first and second order generalized derivatives and we use these results in order to
obtain optimality criteria for vector problems.
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2 CLAUDIO CUSANO, MATTEO FINI, AND DAVIDE LA TORRE

The notions of local minimum point and local weak minimum point are recalled in the fol-
lowing definition.

Definition 1.1. A pointxy € R™ is called docal minimum poinflocal weak minimum poipof
(VO) if there exists a neighbourhoad of =, such that na: € U N X satisfiesf(z¢) — f(x) €

C\{0} (f(x0) — f(z) € int C).

A function f : R® — R™ is said to be locally Lipschitz at, € R" if there exist a constant
K,, and a neighbourhoot of =, such that]|f(z1) — f(z2)|| < Ky llx1 — x2|, Va1, 29 € U.
By Rademacher’s theorem, a locally Lipschitz function is differentiable almost everywhere (in
the sense of Lebesgue measure). Then the generalized Jacolfiatugf denoted by f (o),
exists and is given by

Of(xo) := cleonv {lim Vf(zy) : & — o, V f(x)) exists

whereclconv {. .. } stands for the closed convex hull of the set under the parentheses. Now
assume thaf is a differentiable vector function frolR™ to R"; if V f is locally Lipschitz at
1o, the generalized Hessian pfat z,, denoted by)? f(z,), is defined as

O*f (o) == clconv {lim V2f(xy) : zp — 20, V2f (1) €Xists.

Thusd? f(x) is a subset of the finite dimensional spdo@&™; L(R™;R")) of linear opera-

tors fromR™ to the spacd.(R™; R™) of linear operators fronR™ to R". The elements of

02 f(zo) can therefore be viewed as bilinear function®nf x R™ with values inR". For the
casen = 1, the terminology "generalized Hessian matrix" was used_ in [10] to denote the set
02 f(x0). By the previous construction, the second order subdifferential enjoys all properties of
the generalized Jacobian. For instan@ef,(z,) is a nonempty convex compact set of the space
L(R™; L(R™;R")) and the set valued map— 0 f(z) is upper semicontinuous. Lete R™;

in the following we will denote by.u the value of a linear operatdr : R™ — R™ at the point

u € R™ and by H (u, v) the value of a bilinear operatdi : R™ x R™ — R" at the point

(u,v) € R™ x R™. So we will set

Of(xo)(u) = {Lu: L € 9f(xo)}
and
O* f (o) (u,v) = {H(u,v) : H € 0*f(x0)}.
Some important properties are listed in the following ([9]).
e Mean value theorem. Letbe a locally Lipschitz function and b € R™.Then

f(b) — f(a) € clconv{df(z)(b—a): z € [a,b]}

where[a, b] = conv {a, b}.
e Taylor expansion. Lef be a differentiable function. IV f is locally Lipschitz and
a,b € R™ then

f(b) — fla) e Vf(a)(b—a)+ %clconv {0*f(x)(b—a,b—a):x € [a,b]}.

2. AFIRST ORDER GENERALIZED DERIVATIVE FOR VECTOR FUNCTIONS

Let f : R™ — R be a given function and, € R". For such a function, the definition of Dini
generalized derivativE'D atz in the directionu € R™ is
- f(xo + su) — f(x0)

fp(zo;u) = limsup
s]0 S
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Now let f : R" — R™ be a vector function ane, € R". We can define a generalized derivative
atzr, € R" in the sense of Dini as follows

k——+o0 Sk

The previous set can be empty; howeverfifs locally Lipschitz atz, then f'(zq;u) is a
nonempty compact subset&f*. The following lemma states the relations between the scalar
and the vector case.

Remark 2.1. If f(z) = (fi(x),..., fim(z)) then from the previous definition it is not difficult
to prove that

fp(@oiu) € (fi)p(aosu) X -+ X (fm)'(xo; u).
We now show that this inclusion may be strict.
Let us consider the functiofi(z) = (zsin(x~!), z cos(z™')); for it we have
fp(0:1) C {d € R : ||d|| = 1}
while
(f1)p(0;1) = (f2)p(0;1) = [-1,1].
Lemma 2.2. Let f : R® — R™ be a given locally Lipschitz vector function.at € R™. Then,
V¢ e R™, we haveﬁ_f,D(xo; u) € Efp(zo;u).
Proof. There exists a sequengg | 0 such that the following holds

r AV SRRy (€f)(@o +su) = (§f)(xo) . (Ef) (@0 + spu) — (£f)(w0)
Efp(xo;u) = hrrsllsoup . = k1—1>r—&l-loo o )

By trivial calculations and eventually by extracting subsequences, we obtain

_ zm:& kl_l,rfoo fi(xo + spu) — fi(wo) _ zm:&l — ¢l
i=1

s
k i=1

with 1 € 5 (o; u) and ther€ [ (zo: u) € Ef4(zo; w). O

Corollary 2.3. Let f : R* — R™ be a differentiable function at, € R". Thenf}(zo;u) =
V f(zo)u, Vu € R™.

We now prove a generalized mean value theorenyfor

Lemma 2.4.[6] Let f : R — R be a locally Lipschitz function. Thefu,b € R", 3o € [a, D]
such that

F(b) = f(a) < Fpla;b—a).

Theorem 2.5.Let f : R" — R™ be a locally Lipschitz vector function. Then the following
generalized mean value theorem holds

0€e f(b)— f(a) —cleconv {fp(x;b—a) : x € [a,b]} .
Proof. For eacht € R™ we have

() b) — (€£)(a) < Efplashb —a) = Ele, e € [hlasb — a),

wherea € [a, b] and then
E(f(b) = fla) —l) <0, € fpasb—a)
E(f(b) — f(a) —clconv {fp(x;b—a):x € [a,b]}) NR_ # 0, V€ € R™
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and a classical separation separation theorem implies
0€ f(b)— f(a) —clconv {fp(x;b—a) : x € [a,b]}.

Theorem 2.6.Let f : R — R™ be a locally Lipschitz vector function at. Thenf,(xo; u) C
Of (wo)(u).
Proof. Let! € f},(zo;u). Then there exists a sequenge| 0 such that

[— Lim f(xo + spu) — f(flfo)‘
k——4o00 Sk
So, by the upper semicontinuity 6ff, we have

[z + spu) — f(xo)

Sk

€ cleconv {0f(x)(u); x € [z, xo + Spul}

C Of(xo)(u) + €B,

whereB is the unit ball ofR™, Vn > ny(e). Sol € 0f(xo)u + eB. Taking the limit when
e — 0, we obtain € 9f(x¢)(u). O

Example 2.1.Let f : R — R?, f(z) = (2*sin(z~!) + 2%, 2?). fis locally Lipschitz atzy = 0
and 5 (0; 1) = (0,0) € D£(0)(1) = [—1,1] x {0}.

3. A PARABOLIC SECOND ORDER GENERALIZED DERIVATIVE FOR VECTOR
FUNCTIONS

In this section we introduce a second order generalized derivative for differentiable func-
tions. We consider a very different kind of approach, relying on the Kuratowski limit. It can
be considered somehow a global one, since set-valued directional derivatives of vector-valued
functions are introduced without relying on components. Unlike the first order case, there is not
a common agreement on which is the most appropriate second order incremental ratio; in this
section the choice goes to the second order parabolic ratio

hi(w,t,w, d) = 267 f(x + td + 27 '¢2w) — f(z) =tV f(x) - d]
introduced in[[1]. In fact, iff is twice differentiable at,, then
hfc(x, te,w,d) — Vf(z) - w+ Vif(x)(d,d)

for any sequence, | 0. Just supposing that is differentiable atry, we can introduce the
following second order set—valued directional derivative in the same fashion as the first order
one.

Definition 3.1. Let f : R® — R™ be a differentiable vector function at € R”. The second
order parabolic set valued derivative pht the pointz, in the directionsi, w € R is defined
as

D2 () (d, w) = {l I~ lim 2f(~’170+tkd+ Fw) — f(zo) —tkvf(ﬂfo)djk | O}.

k—+o0 ti

This notion generalizes to the vector case the notion of parabolic derivative introduced by
Ben-Tal and Zowe in]1]. The following result states some properties of the parabolic derivative.

Proposition 3.1. Suppose’ = (¢1, o) With ¢; : R" — R™i, my + mqy = m.
o D?f(xg)(w,d) C D¢y (z0)(w,d) X D*¢y(xo)(w,d).
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e If ¢, is twice differentiable at, then
D?f(x0)(w, d) = D?*¢1 (o) (w, d) x {Va(wo) - w + Va(20)(d, d)}.
Proof. Trivial. O
The following example shows that the inclusion(ifi can be strict.
Example 3.1. Consider the functiorf : R — R?, f(z) = (¢1(2), ¢2(z)),

r?sinln|z|, z#0
¢1(x) =
0, =0

—z%sin®In |z|(cosz — 2), #0
Pa(z) =
0, x=0
It is easy to check tha¥ f(0) = (0,0) and
D2(¢1, ¢2)(0)(d, w) - {l (ll, lg), ll < 0} N —int RQ = @
D*¢1(0)(d, w) = D*¢»(0)(d, w) = [-2d”, 2d°]
and this shows thab?(¢,, ¢2)(0)(d, w) # D?f1(0)(w,d) x D?f5(0)(d, w).
Proposition 3.2. Supposg¢ is differentiable in a neighbourhood of € R™. Then, the equality
D? f(xo)(w,d) = V f(x0) - w+ 02 f(0)(d, d)
holds for anyd, w € R", whered?f(xz,)(d,d) denotes the set of all cluster points of the se-
quences 2t ?[f(xo + txd) — f(z0) — teV f(z0) - d]} such that,, | 0.
Proof. Trivial. O
Proposition 3.3. D?f(z)(w,d) C V f(xg) - w + 0*f(xo)(d, d).

Proof. Let z € D?f(xo)(w,d). Then, we haveé:}(zo, t, w,d) — z for some suitable;, | 0.
Let us introduce the two sequences
A = 215];2[]((1?0 + tkd + 2_175%11)) — f(ZE() + tkd)}
and
bk = 2t];2[f(l’o + tkd) - f(l’o) - thf($o) . d]
such thathfc(xo,tk,w,d) = ay + bg. Sincef is differentiable near,, thena, converges to
V f(xo) - w and thusb, converges ta:; = z — Vf(xo) - w. Therefore, the thesis follows if
21 € 0 f(xo)(d, d) Given anyd € R™, let us introduce the functions
¢1(t) = [(9 F)(@o +td) = (0 f)(wo) = tV(0 - f)(zo) - d], ¢a(t) =1,
where(0 - f)(x) =6 - f(x). Thus, we have

61(te) = 4:(0)] _ 61(&0)
EOEONAD

for someg;, € [0, tx]. Since this sequence converged ta:;, we also have

PG : 1
lim =6- lim Vf(xeg+&d) — Vf(xg)|-df=0- 2z
kst oo ¢/2(§k:) k-t oo {gk [ f( 0 gk ) f( 0)} } 0
for somez, € 9*f(x0)(d,d). Hence the above argument implies that given ény R™ we
haved - (z; — zp) = 0 for somez, € 9*f(z0)(d, d). Since the generalized Hessian is a compact
convex set, then the strict separation theorem implies:thato? f () (d, d). O

0-b, =
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The following example shows that the above inclusion may be strict.
Example 3.2. Consider the function
flzy,20) = ([max {0, 71 + 29}]7, x%) )

Then, easy calculations show thais differentiable withV f; (z1, z2) = (0,0) wheneverr, =
—x1 and V fy(z1,22) = (0,225). MoreoverV f is locally Lipschitz nearr, = (0,0) and
actually f is twice differentiable at any with xy # —x;

V2 fi(z)(d,d) = _

0 if 1+ 29 <0
andV?2f,(z)(d,d) = 2d%. Therefore, we have

O f(zo)(d,d) = {(2a (d} + d3) ,2d3) : € [0,1]}.
On the contrary, it is easy to check that f () (w, d) = {(2(d? + d3),2d3)}.

4. CHARACTERIZATIONS OF CONVEX VECTOR FUNCTIONS
Theorem 4.1.1f f : R — R™ is C'-convex then
f(x) = f(0) € fp(w0,7 —70) +C
forall x € R™.
Proof. Sincef is C-convex atr, then it is locally Lipschitz at, [12]. For allz € R™ we have
H(f (x) — f(z0)) € f(tz + (1 - )z0) — f(z0) + C

Letl € fp,(wo;x — 0); then there exists, | 0 such that/Lottulz=20)=J50) _, 7 and

f(tr(x — 20) + 0) — f(0)
f(z) = f(zo) € I

Taking the limit wherk — +oo this impliesf(z) — f(xq) € f)(xo,x — o) + C O

+C.

Corollary 4.2. If f : R" — R™ is C-convex and differentiable at, then

f(x) = f(z0) € Vf(o)(® — 20) +C
forall x € R".

The following result characterizes the convexityfah terms of D? f.

Theorem 4.3.Let f : R® — R™ be a differentiable”’-convex function at, € R™. Then we
have

D2f(x0)(x —x0,0) C C
for all z € R™.

Proof. If D? f(zo)(z—=¢,0) is empty the thesis is trivial. Otherwise, let D? f(xq)(z—1,0).
Then there exists, | 0 such that

f(zo + ti(x — 20)) — f(20) — t&V f(20)(x — 70)

{ = lim

k—+o00 tz
Sincef is a differentiable”’-convex function therf (zo + tx(z — z0)) — f(xo) — t& V f (z0) (2 —
xp) € C and this implies the thesis. O
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5. OPTIMALITY CONDITIONS

We are now interested in proving optimality conditions for the problem

min f(x)

zeX

whereX is a given subset dR™. The following definition states some notions of local approx-
imation of X atz € cl X.

Definition 5.1.

e Thecone of feasible directionsf X atz is set:
F(X,z9) ={deR": Ja>0s.t.ag+td € X,Vt < a}
e Thecone of weak feasible direction$ X atz is the set:
WF(X,x9) ={deR": It | 0S.t.xg+1rd € X}
e Thecontingent conef X atz is the set:
T(X,z0) :={w € R" : Jw, — w, Ity | 0S.t.20 + trwy, € X}.
e Thesecond order contingent set X atx in the directiond € R" is the set:
T*(X,z0,d) :={w € R™ : It, | 0, Jwy, — w S.t. 29 + tpd + 275w, € X}

e Thelower second order contingent saft X atz, € cl X in the directiond € R" is the
set:

TX,20,d) == {w € R" : Vi, | 0, Jwy — w S.t. 29 + tpd + 2 3wy € X}
Theorem 5.1. Let x be a local weak minimum point. Then for dle F'(X, z,) we have
Ip(xo;d) N —int C' = 0.
If V fis locally Lipschtz atr, then, for alld € WF (X, xq), we have
Ip(zo; d) N (—int C)¢ # 0.
Proof. If f,(zo;d) is empty then the thesis is trivial. If € f,(zo;d) N —int C thenl =
limy o0 ZEHED=IE0) and f (g + td) — f(20) € —int C for all & sufficiently large. Suppose
now thatf is locally Lipschitz. In this cas¢},(xo; d) is nonempty for all € R". Ab absurdo,

supposefy,(xp; d) C —int C for somed € WF (X, xg). Letx, = x¢ + t,d be a sequence such
thatx, € X; by extracting subsequences, we have

= lim f(zo + ted) — f(x0)
k—-+o00 tk
andl € f,(zo;d) C —int C. Sinceint C' is open fork "large enough” we have

f(zo+ trd) € f(zo) —int C.

Theorem 5.2.1f x, € X is a local vector weak minimum point, then for eath D (f, zo) N
T(X, zo) the condition

(5.1) D? f(20)(d + w,d) N —int C' = ()

holds for anyw € T%(X, z,d). Furthermore, ifV f is locally Lipschitz atz, then the condi-
tion

(5.2) D?f(zo)(d + w,d) ¢ —int C
holds for anyd € D (f,z0) N T (X, ) and anyw € T?(X, zg, d).
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Proof. Ab absurdo, suppose there exist suitabkendw such that[(5]1) does not hold. Then,
givenanyz € D f(xo)(d+w,d)N—int C, there exists a sequenge| 0 such thah(xo, ty, d-+

w,d) — z. By the definition of the lower second order contingent set there exists also a
sequencey, — w such thate, = o + t,d + 272w, € X. Introducing also the sequence of
pointsiy, = xo + txd + 2712(d + w), we have both

Flow) = () = 278 [V f (@) - (wy —w — d) + ="
with ") — 0 and
f(@x) = f(w0) =tV f(wo) - d+ 27143 |2 + 7|
with ¢!” — 0. Therefore, we have

flag) = f(zo) =ty {(1 = 27)V f(wo) - d+ 27, [Vf(ik) S(wp —w) + 2+ ey + 5531 } .

Since
mn[Vf@w-w%—uo+z+d9+59]:ze-nnc

k—o00
and
(1 =27V f(z)-d € —C,
for k large enough we have
flzy) — f(zo) € =(C +intC) = —int C

in contradiction with the optimality aof,,.

Analogously, suppose there exist suitaleandw such that[(5]2) does not hold. By the
definition of the second order contingent cone, there exist sequepce® and w, — w
such thatry + #,d + 272w, € X. Taking the suitable subsequence, we can suppose that
h3 (o, ty, d+w, d) — = for somez € C. Then, we have € D?f(x,)(d +w,d) C —int C and
we achieve a contradiction just as in the previous case. O

The following example shows that the previous second order condition is not sufficient for
the optimality ofz.

Example 5.1. Suppose&” = R? andf : R* — R? with
Si(wr, w0, w8) = 23 4 205 — x5, fo(w1, 20, 3) = x5 — 3,
X ={2z eR®: 2] <das <2z}, 2} +25 >0}.
Choosing the point, = (0,0,0), we have
R xR x [27d2,d3] if dy =0
0 if dy #0
for any nonzeral € T'(X, z9) N D<(f,z9) = R x R x {0}. Therefore

T?(X, 20, d) :{

D?f(z0)(d + w,d) = (—w3 + 2d;, —w3) N —int R% =@

for anyw € T*(X, zo, d). However,z, is not a local weak minimum point since bothand f,
are negative along the curve described by the feasible poirts(t?, —t2,271t%) for ¢ # 0.
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There are at least two good explanations for such a fact. The second order contingent sets may
be empty and the corresponding optimality conditions are meaningless in such a case, since they
are obviously satisfied by any objective function. Furthermore, there is no convincing reason
why it should be enough to test optimality only along parabolic curves, as the above example
corroborates. The following result states a sufficient condition for the optimality wfhen f
is a convex function.

Definition 5.2. A subsetX C R™ is said to be star shapedatif [x¢,z] C X forallz € X,

Theorem 5.3. Let X be a star shaped set afy. If f is C-convex andf},(zo;x — z9) C
(—int C)¢, z € X, thenz, is a weak minimum point.

Proof. We haveyz € X,
f(z) = f(xo) € fp(xo, 2 —20) + C C (=it O)° 4+ C C (—int O)°
and this implies the thesis. O
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