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ABSTRACT. In this paper we characterize nonsmooth convex vector functions by first and sec-
ond order generalized derivatives. We also prove optimality conditions for convex vector prob-
lems involving nonsmooth data.
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1. I NTRODUCTION

Let f : Rn → Rm be a given vector function andC ⊂ Rm be a pointed closed convex cone.
We say thatf is C-convex if

f(tx + (1− t)y)− tf(x)− (1− t)f(y) ∈ C

for all x, y ∈ Rn andt ∈ (0, 1). The notion ofC-convexity has been studied by many authors
because this plays a crucial role in vector optimization (see [4, 11, 13, 14] and the references
therein). In this paper we prove first and second order characterizations of nonsmoothC-convex
functions by first and second order generalized derivatives and we use these results in order to
obtain optimality criteria for vector problems.
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2 CLAUDIO CUSANO, MATTEO FINI , AND DAVIDE LA TORRE

The notions of local minimum point and local weak minimum point are recalled in the fol-
lowing definition.

Definition 1.1. A point x0 ∈ Rn is called alocal minimum point(local weak minimum point) of
(VO) if there exists a neighbourhoodU of x0 such that nox ∈ U ∩X satisfiesf(x0)− f(x) ∈
C\{0} (f(x0)− f(x) ∈ int C).

A function f : Rn → Rm is said to be locally Lipschitz atx0 ∈ Rn if there exist a constant
Kx0 and a neighbourhoodU of x0 such that‖f(x1) − f(x2)‖ ≤ Kx0‖x1 − x2‖, ∀x1, x2 ∈ U .
By Rademacher’s theorem, a locally Lipschitz function is differentiable almost everywhere (in
the sense of Lebesgue measure). Then the generalized Jacobian off atx0, denoted by∂f(x0),
exists and is given by

∂f(x0) := cl conv {lim ∇f(xk) : xk → x0,∇f(xk) exists}

wherecl conv {. . . } stands for the closed convex hull of the set under the parentheses. Now
assume thatf is a differentiable vector function fromRm to Rn; if ∇f is locally Lipschitz at
x0, the generalized Hessian off atx0, denoted by∂2f(x0), is defined as

∂2f(x0) := cl conv {lim ∇2f(xk) : xk → x0,∇2f(xk) exists}.

Thus∂2f(x0) is a subset of the finite dimensional spaceL(Rm; L(Rm; Rn)) of linear opera-
tors fromRm to the spaceL(Rm; Rn) of linear operators fromRm to Rn. The elements of
∂2f(x0) can therefore be viewed as bilinear function onRm × Rm with values inRn. For the
casen = 1, the terminology "generalized Hessian matrix" was used in [10] to denote the set
∂2f(x0). By the previous construction, the second order subdifferential enjoys all properties of
the generalized Jacobian. For instance,∂2f(x0) is a nonempty convex compact set of the space
L(Rm; L(Rm; Rn)) and the set valued mapx 7→ ∂2f(x) is upper semicontinuous. Letu ∈ Rm;
in the following we will denote byLu the value of a linear operatorL : Rm → Rn at the point
u ∈ Rm and byH(u, v) the value of a bilinear operatorH : Rm × Rm → Rn at the point
(u, v) ∈ Rm × Rm. So we will set

∂f(x0)(u) = {Lu : L ∈ ∂f(x0)}

and
∂2f(x0)(u, v) = {H(u, v) : H ∈ ∂2f(x0)}.

Some important properties are listed in the following ([9]).

• Mean value theorem. Letf be a locally Lipschitz function anda, b ∈ Rm.Then

f(b)− f(a) ∈ cl conv {∂f(x)(b− a) : x ∈ [a, b]}

where[a, b] = conv {a, b}.
• Taylor expansion. Letf be a differentiable function. If∇f is locally Lipschitz and

a, b ∈ Rm then

f(b)− f(a) ∈ ∇f(a)(b− a) +
1

2
cl conv {∂2f(x)(b− a, b− a) : x ∈ [a, b]}.

2. A F IRST ORDER GENERALIZED DERIVATIVE FOR VECTOR FUNCTIONS

Let f : Rn → R be a given function andx0 ∈ Rn. For such a function, the definition of Dini
generalized derivativef

′
D atx0 in the directionu ∈ Rn is

f
′
D(x0; u) = lim sup

s↓0

f(x0 + su)− f(x0)

s
.
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Now letf : Rn → Rm be a vector function andx0 ∈ Rn. We can define a generalized derivative
atx0 ∈ Rn in the sense of Dini as follows

f ′D(x0; u) =

{
l = lim

k→+∞

f(x0 + sku)− f(x0)

sk

, sk ↓ 0

}
.

The previous set can be empty; however, iff is locally Lipschitz atx0 then f ′(x0; u) is a
nonempty compact subset ofRm. The following lemma states the relations between the scalar
and the vector case.

Remark 2.1. If f(x) = (f1(x), . . . , fm(x)) then from the previous definition it is not difficult
to prove that

f ′D(x0; u) ⊂ (f1)
′
D(x0; u)× · · · × (fm)′(x0; u).

We now show that this inclusion may be strict.
Let us consider the functionf(x) = (x sin(x−1), x cos(x−1)); for it we have

f ′D(0; 1) ⊂ {d ∈ R2 : ‖d‖ = 1}
while

(f1)
′
D(0; 1) = (f2)

′
D(0; 1) = [−1, 1].

Lemma 2.2. Let f : Rn → Rm be a given locally Lipschitz vector function atx0 ∈ Rn. Then,
∀ξ ∈ Rm, we haveξf

′
D(x0; u) ∈ ξf ′D(x0; u).

Proof. There exists a sequencesk ↓ 0 such that the following holds

ξf
′
D(x0; u) = lim sup

s↓0

(ξf)(x0 + su)− (ξf)(x0)

s
= lim

k→+∞

(ξf)(x0 + sku)− (ξf)(x0)

sk

.

By trivial calculations and eventually by extracting subsequences, we obtain

=
m∑

i=1

ξi lim
k→+∞

fi(x0 + sku)− fi(x0)

sk

=
m∑

i=1

ξil = ξl

with l ∈ f ′D(x0; u) and thenξf
′
D(x0; u) ∈ ξf ′D(x0; u). �

Corollary 2.3. Let f : Rn → Rm be a differentiable function atx0 ∈ Rn. Thenf ′D(x0; u) =
∇f(x0)u, ∀u ∈ Rn.

We now prove a generalized mean value theorem forf ′D.

Lemma 2.4. [6] Let f : Rn → R be a locally Lipschitz function. Then∀a, b ∈ Rn, ∃α ∈ [a, b]
such that

f(b)− f(a) ≤ f
′
D(α; b− a).

Theorem 2.5. Let f : Rn → Rm be a locally Lipschitz vector function. Then the following
generalized mean value theorem holds

0 ∈ f(b)− f(a)− cl conv {f ′D(x; b− a) : x ∈ [a, b]} .

Proof. For eachξ ∈ Rm we have

(ξf)(b)− (ξf)(a) ≤ ξf
′
D(α; b− a) = ξlξ, lξ ∈ f ′D(α; b− a),

whereα ∈ [a, b] and then

ξ(f(b)− f(a)− lξ) ≤ 0, lξ ∈ f ′D(α; b− a)

ξ (f(b)− f(a)− cl conv {f ′D(x; b− a) : x ∈ [a, b]}) ∩ R− 6= ∅, ∀ξ ∈ Rm
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4 CLAUDIO CUSANO, MATTEO FINI , AND DAVIDE LA TORRE

and a classical separation separation theorem implies

0 ∈ f(b)− f(a)− cl conv {f ′D(x; b− a) : x ∈ [a, b]} .

�

Theorem 2.6.Letf : Rn → Rm be a locally Lipschitz vector function atx0. Thenf ′D(x0; u) ⊂
∂f(x0)(u).

Proof. Let l ∈ f ′D(x0; u). Then there exists a sequencesk ↓ 0 such that

l = lim
k→+∞

f(x0 + sku)− f(x0)

sk

.

So, by the upper semicontinuity of∂f , we have

f(x0 + sku)− f(x0)

sk

∈ cl conv {∂f(x)(u); x ∈ [x0, x0 + sku]}

⊂ ∂f(x0)(u) + εB,

whereB is the unit ball ofRm, ∀n ≥ n0(ε). So l ∈ ∂f(x0)u + εB. Taking the limit when
ε → 0, we obtainl ∈ ∂f(x0)(u). �

Example 2.1.Let f : R → R2, f(x) = (x2 sin(x−1) + x2, x2). f is locally Lipschitz atx0 = 0
andf ′D(0; 1) = (0, 0) ∈ ∂f(0)(1) = [−1, 1]× {0}.

3. A PARABOLIC SECOND ORDER GENERALIZED DERIVATIVE FOR VECTOR

FUNCTIONS

In this section we introduce a second order generalized derivative for differentiable func-
tions. We consider a very different kind of approach, relying on the Kuratowski limit. It can
be considered somehow a global one, since set-valued directional derivatives of vector-valued
functions are introduced without relying on components. Unlike the first order case, there is not
a common agreement on which is the most appropriate second order incremental ratio; in this
section the choice goes to the second order parabolic ratio

h2
f (x, t, w, d) = 2t−2[f(x + td + 2−1t2w)− f(x)− t∇f(x) · d]

introduced in [1]. In fact, iff is twice differentiable atx0, then

h2
f (x, tk, w, d) → ∇f(x) · w +∇2f(x)(d, d)

for any sequencetk ↓ 0. Just supposing thatf is differentiable atx0, we can introduce the
following second order set–valued directional derivative in the same fashion as the first order
one.

Definition 3.1. Let f : Rn → Rm be a differentiable vector function atx0 ∈ Rn. The second
order parabolic set valued derivative off at the pointx0 in the directionsd, w ∈ Rn is defined
as

D2f(x0)(d, w) =

{
l : l = lim

k→+∞
2
f(x0 + tkd +

t2k
2
w)− f(x0)− tk∇f(x0)d

t2k
, tk ↓ 0

}
.

This notion generalizes to the vector case the notion of parabolic derivative introduced by
Ben-Tal and Zowe in [1]. The following result states some properties of the parabolic derivative.

Proposition 3.1. Supposef = (φ1, φ2) with φi : Rn → Rmi, m1 + m2 = m.

• D2f(x0)(w, d) ⊆ D2φ1(x0)(w, d)×D2φ2(x0)(w, d).
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• If φ2 is twice differentiable atx0, then

D2f(x0)(w, d) = D2φ1(x0)(w, d)× {∇φ2(x0) · w +∇2φ2(x0)(d, d)}.

Proof. Trivial. �

The following example shows that the inclusion in(i) can be strict.

Example 3.1.Consider the functionf : R → R2, f(x) = (φ1(x), φ2(x)),

φ1(x) =

{
x2 sin ln |x|, x 6= 0

0, x = 0

φ2(x) =

{
−x2 sin3 ln |x|(cos x− 2), x 6= 0

0, x = 0

It is easy to check that∇f(0) = (0, 0) and

D2(φ1, φ2)(0)(d, w) ⊂ {l = (l1, l2), l1l2 ≤ 0} ∩ −int R2
+ = ∅,

D2φ1(0)(d, w) = D2φ2(0)(d, w) = [−2d2, 2d2]

and this shows thatD2(φ1, φ2)(0)(d, w) 6= D2f1(0)(w, d)×D2f2(0)(d, w).

Proposition 3.2. Supposef is differentiable in a neighbourhood ofx0 ∈ Rn. Then, the equality

D2f(x0)(w, d) = ∇f(x0) · w + ∂2
∗f(x0)(d, d)

holds for anyd, w ∈ Rn, where∂2
∗f(x0)(d, d) denotes the set of all cluster points of the se-

quences{2t−2
k [f(x0 + tkd)− f(x0)− tk∇f(x0) · d]} such thattk ↓ 0.

Proof. Trivial. �

Proposition 3.3. D2f(x0)(w, d) ⊆ ∇f(x0) · w + ∂2f(x0)(d, d).

Proof. Let z ∈ D2f(x0)(w, d). Then, we haveh2
f (x0, tk, w, d) → z for some suitabletk ↓ 0.

Let us introduce the two sequences

ak = 2t−2
k [f(x0 + tkd + 2−1t2kw)− f(x0 + tkd)]

and
bk = 2t−2

k [f(x0 + tkd)− f(x0)− tk∇f(x0) · d]

such thath2
f (x0, tk, w, d) = ak + bk. Sincef is differentiable nearx0, thenak converges to

∇f(x0) · w and thusbk converges toz1 = z − ∇f(x0) · w. Therefore, the thesis follows if
z1 ∈ ∂2f(x0)(d, d). Given anyθ ∈ Rm, let us introduce the functions

φ1(t) = 2t−2[(θ · f)(x0 + td)− (θ · f)(x0)− t∇(θ · f)(x0) · d], φ2(t) = t2,

where(θ · f)(x) = θ · f(x). Thus, we have

θ · bk =
[φ1(tk)− φ1(0)]

[φ2(tk)− φ2(0)]
=

φ′1(ξk)

φ′2(ξk)

for someξk ∈ [0, tk]. Since this sequence converges toθ · z1, we also have

lim
k→+∞

φ′1(ξk)

φ′2(ξk)
= θ · lim

k→+∞
{ξ−1

k [∇f(x0 + ξkd)−∇f(x0)] · d} = θ · zθ

for somezθ ∈ ∂2f(x0)(d, d). Hence the above argument implies that given anyθ ∈ Rm we
haveθ · (z1− zθ) = 0 for somezθ ∈ ∂2f(x0)(d, d). Since the generalized Hessian is a compact
convex set, then the strict separation theorem implies thatz1 ∈ ∂2f(x0)(d, d). �
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6 CLAUDIO CUSANO, MATTEO FINI , AND DAVIDE LA TORRE

The following example shows that the above inclusion may be strict.

Example 3.2.Consider the function

f(x1, x2) =
(
[max {0, x1 + x2}]2, x2

2

)
.

Then, easy calculations show thatf is differentiable with∇f1(x1, x2) = (0, 0) wheneverx2 =
−x1 and∇f2(x1, x2) = (0, 2x2). Moreover∇f is locally Lipschitz nearx0 = (0, 0) and
actuallyf is twice differentiable at anyx with x2 6= −x1

∇2f1(x)(d, d) =

{
2(d2

1 + d2
2) if x1 + x2 > 0

0 if x1 + x2 < 0

and∇2f2(x)(d, d) = 2d2
2. Therefore, we have

∂2f(x0)(d, d) =
{(

2α
(
d2

1 + d2
2

)
, 2d2

2

)
: α ∈ [0, 1]

}
.

On the contrary, it is easy to check thatD2f(x0)(w, d) = {(2(d2
1 + d2

2), 2d
2
2)}.

4. CHARACTERIZATIONS OF CONVEX VECTOR FUNCTIONS

Theorem 4.1. If f : Rn → Rm is C-convex then

f(x)− f(x0) ∈ f ′D(x0, x− x0) + C

for all x ∈ Rn.

Proof. Sincef is C-convex atx0 then it is locally Lipschitz atx0 [12]. For allx ∈ Rn we have

t(f(x)− f(x0)) ∈ f(tx + (1− t)x0)− f(x0) + C

Let l ∈ f ′D(x0; x− x0); then there existstk ↓ 0 such thatf(x0+tk(x−x0))−f(x0)
tk

→ d and

f(x)− f(x0) ∈
f(tk(x− x0) + x0)− f(x0)

tk
+ C.

Taking the limit whenk → +∞ this impliesf(x)− f(x0) ∈ f ′D(x0, x− x0) + C �

Corollary 4.2. If f : Rn → Rm is C-convex and differentiable atx0 then

f(x)− f(x0) ∈ ∇f(x0)(x− x0) + C

for all x ∈ Rn.

The following result characterizes the convexity off in terms ofD2f .

Theorem 4.3. Let f : Rn → Rm be a differentiableC-convex function atx0 ∈ Rn. Then we
have

D2f(x0)(x− x0, 0) ⊂ C

for all x ∈ Rn.

Proof. If D2f(x0)(x−x0, 0) is empty the thesis is trivial. Otherwise, letl ∈ D2f(x0)(x−x0, 0).
Then there existstk ↓ 0 such that

l = lim
k→+∞

f(x0 + tk(x− x0))− f(x0)− tk∇f(x0)(x− x0)

t2k

Sincef is a differentiableC-convex function thenf(x0 + tk(x−x0))− f(x0)− tk∇f(x0)(x−
x0) ∈ C and this implies the thesis. �
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5. OPTIMALITY CONDITIONS

We are now interested in proving optimality conditions for the problem

min
x∈X

f(x)

whereX is a given subset ofRn. The following definition states some notions of local approx-
imation ofX atx0 ∈ cl X.

Definition 5.1.

• Thecone of feasible directionsof X atx0 is set:

F (X, x0) = {d ∈ Rn : ∃ α > 0 s.t.x0 + td ∈ X,∀t ≤ α}
• Thecone of weak feasible directionsof X atx0 is the set:

WF (X, x0) = {d ∈ Rn : ∃ tk ↓ 0 s.t.x0 + tkd ∈ X}
• Thecontingent coneof X atx0 is the set:

T (X, x0) := {w ∈ Rn : ∃wk → w, ∃tk ↓ 0 s.t.x0 + tkwk ∈ X}.
• Thesecond order contingent setof X atx0 in the directiond ∈ Rn is the set:

T 2(X, x0, d) := {w ∈ Rn : ∃ tk ↓ 0, ∃ wk → w s.t. x0 + tkd + 2−1t2kwk ∈ X}.
• The lower second order contingent setof X atx0 ∈ cl X in the directiond ∈ Rn is the

set:

T ii(X, x0, d) := {w ∈ Rn : ∀ tk ↓ 0, ∃ wk → w s.t. x0 + tkd + 2−1t2kwk ∈ X}.

Theorem 5.1.Letx0 be a local weak minimum point. Then for alld ∈ F (X, x0) we have

f ′D(x0; d) ∩ −int C = ∅.
If ∇f is locally Lipschtz atx0 then, for alld ∈ WF (X, x0), we have

f ′D(x0; d) ∩ (−int C)c 6= ∅.

Proof. If f ′D(x0; d) is empty then the thesis is trivial. Ifl ∈ f ′D(x0; d) ∩ −int C then l =

limk→+∞
f(x0+tkd)−f(x0)

tk
andf(x0 + tkd)− f(x0) ∈ −int C for all k sufficiently large. Suppose

now thatf is locally Lipschitz. In this casef ′D(x0; d) is nonempty for alld ∈ Rn. Ab absurdo,
supposef ′D(x0; d) ⊂ −int C for somed ∈ WF (X, x0). Let xk = x0 + tkd be a sequence such
thatxk ∈ X; by extracting subsequences, we have

l = lim
k→+∞

f(x0 + tkd)− f(x0)

tk
andl ∈ f ′D(x0; d) ⊂ −int C. Sinceint C is open fork "large enough" we have

f(x0 + tkd) ∈ f(x0)− int C.

�

Theorem 5.2. If x0 ∈ X is a local vector weak minimum point, then for eachd ∈ D≤(f, x0) ∩
T (X, x0) the condition

(5.1) D2f(x0)(d + w, d) ∩ −int C = ∅
holds for anyw ∈ T ii(X, x0, d). Furthermore, if∇f is locally Lipschitz atx0, then the condi-
tion

(5.2) D2f(x0)(d + w, d) * −int C

holds for anyd ∈ D≤(f, x0) ∩ T (X, x0) and anyw ∈ T 2(X, x0, d).
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Proof. Ab absurdo, suppose there exist suitabled andw such that (5.1) does not hold. Then,
given anyz ∈ D2f(x0)(d+w, d)∩−int C, there exists a sequencetk ↓ 0 such thath2

f (x0, tk, d+
w, d) → z. By the definition of the lower second order contingent set there exists also a
sequencewk → w such thatxk = x0 + tkd + 2−1t2kwk ∈ X. Introducing also the sequence of
pointsx̂k = x0 + tkd + 2−1t2k(d + w), we have both

f(xk)− f(x̂k) = 2−1t2k

[
∇f(x̂k) · (wk − w − d) + ε

(1)
k

]
with ε

(1)
k → 0 and

f(x̂k)− f(x0) = tk∇f(x0) · d + 2−1t2k

[
z + ε

(2)
k

]
with ε

(2)
k → 0. Therefore, we have

f(xk)−f(x0) = tk

{
(1− 2−1tk)∇f(x0) · d + 2−1tk

[
∇f(x̂k) · (wk − w) + z + ε

(1)
k + ε

(2)
k

]}
.

Since

lim
k→∞

[
∇f(x̂k) · (wk − w) + z + ε

(1)
k + ε

(2)
k

]
= z ∈ −int C

and

(1− 2−1tk)∇f(x0) · d ∈ −C,

for k large enough we have

f(xk)− f(x0) ∈ −(C + int C) = −int C

in contradiction with the optimality ofx0.
Analogously, suppose there exist suitabled andw such that (5.2) does not hold. By the

definition of the second order contingent cone, there exist sequencestk ↓ 0 and wk → w
such thatx0 + tkd + 2−1t2kwk ∈ X. Taking the suitable subsequence, we can suppose that
h2

f (x0, tk, d+w, d) → z for somez ∈ C. Then, we havez ∈ D2f(x0)(d+w, d) ⊆ −int C and
we achieve a contradiction just as in the previous case. �

The following example shows that the previous second order condition is not sufficient for
the optimality ofx̄.

Example 5.1.SupposeC = R2
+ andf : R3 → R2 with

f1(x1, x2, x3) = x2
1 + 2x3

2 − x3, f2(x1, x2, x3) = x3
2 − x3,

X =
{
x ∈ R3 : x2

1 ≤ 4x3 ≤ 2x2
1, x2

1 + x3
2 ≥ 0

}
.

Choosing the pointx0 = (0, 0, 0), we have

T 2(X, x0, d) =

{
R× R× [2−1d2

1, d
2
1] if d2 = 0

∅ if d2 6= 0

for any nonzerod ∈ T (X, x0) ∩D≤(f, x0) = R× R× {0}. Therefore

D2f(x0)(d + w, d) = (−w3 + 2d2
1,−w3) ∩ −int R2

+ = ∅

for anyw ∈ T 2(X, x0, d). However,x0 is not a local weak minimum point since bothf1 andf2

are negative along the curve described by the feasible pointsxt = (t3,−t2, 2−1t6) for t 6= 0.
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There are at least two good explanations for such a fact. The second order contingent sets may
be empty and the corresponding optimality conditions are meaningless in such a case, since they
are obviously satisfied by any objective function. Furthermore, there is no convincing reason
why it should be enough to test optimality only along parabolic curves, as the above example
corroborates. The following result states a sufficient condition for the optimality ofx0 whenf
is a convex function.

Definition 5.2. A subsetX ⊂ Rn is said to be star shaped atx0 if [x0, x] ⊂ X for all x ∈ X.

Theorem 5.3. Let X be a star shaped set atx0. If f is C-convex andf ′D(x0; x − x0) ⊂
(−int C)c, x ∈ X, thenx0 is a weak minimum point.

Proof. We have,∀x ∈ X,

f(x)− f(x0) ∈ f ′D(x0, x− x0) + C ⊂ (−int C)c + C ⊂ (−int C)c

and this implies the thesis. �
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