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ABSTRACT. We consider Poincaré type inequalities of integral form for variable exponents. We
give conditions under which these inequalities do not hold as well as conditions under which
they hold.
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1. INTRODUCTION AND PRELIMINARIES

One of the classical Poincaré inequalities states

LWQWMSCW%WMLWﬂMW% Ve € CL(G),

whereG is a bounded open set&" (N > 1) andp > 1.

In Fu [2], this inequality withp replaced by a bounded variable expongt) is given as a
lemma. Namely, lep(z) be a bounded measurable function@rsuch thatp(z) > 1 for all
x € G. We shall say that the Poincaré inequality (P, for short) holdg:dor p(-) if there
exists a constart’ > 0 such that

P mewmmsqéwwmmwx

for all ¢ € C}(G). Fu's lemma asserts thPI) always holds. However, as was already
remarked inl[l, pp. 444-445, Example] in the one dimensional case, this is false. We shall give
some types of(-) for which (P]) does not hold.

We remark here that the following norm-form of the Poincaré inequality holds for variable
exponents (cf.[3, Theorem 3.10]):

el oy < ClIVElll ooy

forall ¢ € Cj(G) provided thap(z) is continuous ort7, where| - || .o () denotes the (Luxem-
burg) norm in the variable exponent Lebesgue sgate(G) (see [3] for definition). Thus, our
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results show that we must distiguish between norm-form and integral-form when we consider
the Poincaré inequalities for variable exponents.

We also consider a slightly weaker form: we shall say that the weak Poincaré inequality (wPlI,
for short) holds or: for p(+) if there exists a constait > 0 such that

(wPi) [ ot dasgc(u [ 19ewpe daz)

for all » € C}(G). We shall see that this weak Poincaré inequality does not always hold either.
The main purpose of this paper is to give some sufficient conditions-prmnder which|(Rl)

or (wPI) holds, and our results show that|(PI) holds for a fairly large class of non-copétant

and (wP]) holds fop(z) in a larger class.

2. INVALIDITY OF POINCARE TYPE INEQUALITIES
For a measurable functigr{z) onG andE C G, let

ph =esssup p(z) and py = essinf p(z).
z€E el

Lemma 2.1. Letp(x) and ¢(x) be measurable functions d@# such that) < p; < pf < oo
and0 < q; < ¢/ < 0.

(1) If there exist a compact sét and open set§s;, G, such thatk’ ¢ G; € G, C G,
|K| > 0andg; > pa\a , then there exists a sequengg, } in C3(G) such that

S IV o (@) [P da:
fG |(Pn(x>’(I(x) dx

/ |on ()1 dz — oo and
€

asn — oo.
(2) If there exist a compact sét and open set§/;, GG such that’ ¢ G; € Gy C G,
|K| > 0andqj < Pg,\ar then there exists a sequeng, } in CJ(G) \ {0} such that

Jo |V on (@) [P) da
Jo [¥n(@)]9®) dae

/ |V, ()P daz — 0 and
G
asn — oo.

Proof. Choosep; € C}(G) such thatp; = 1 onG; and Spty; C Gb.
(1) Suppose . > p22\G—1. For simplicity, writeg; = g5 andp,
1,2,.... Then

/ [Vipn| dor = / OV P dr < a2 / Vo [P@ da
G G2\G1 G

= pa\a. Lety, =npy, n =

and
/|g0n\q(x) dx > / nd@) do > n?|K]|.
a K

These inequalities show that the sequefigg} has the required properties.
(2) Suppose;. < Py Write ¢, = ¢} andp, = Py Lety, = (1/n)p1, n=1,2,....
Then

/ [V ") de = / 7”_p(x)|V901|p(x) dr <n™ " / |V [P@) da
G G2\G1 G

and
[t [ oo > i)
G K
Thus the sequendg),, } has the required properties. O

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 68, 5 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

POINCARE TYPE INEQUALITIES 3

By takingp(x) = ¢(z) in this lemma, we readily obtain

Proposition 2.2.
(1) If there exist a compact sét and open set§/;, G, such thatk’ C G; € Gy C G,
|K| > 0andpy > p22\G—1, then (wP|l) does not hold fgr(-) onG.
(2) If there exist a compact sét and open set§/;, GG such thatk’ ¢ G; € Gy C G,
|K| > 0andpj. then Er) does not hold fai(-) onG.

< pGQ\GT’
3. VALIDITY OF POINCARE TYPE INEQUALITIES IN ONE-DIMENSIONAL CASE

We shall say thaff(t) on (to, t;) is of type (L) if there isT € (t¢, t;) such thatf(¢) is
non-increasing of(t,, 7) and non-decreasing dm, ;).

Proposition 3.1. Let N = 1 andG = (a, b).
(1) If p(t) is monotone (i.e., non-decreasing or non-increasing) or of type (L& athen

b b
[ rwro e < B maxen, 60 [ @

for f € C3(G), where|G| = b — a andp™ = p..
(2) If p(t) is monotone oid7, then

b b
[sopoa<e [ opo

for f € C}(G), where the constart depends only op™ and|G]|.

Proof. (I) First, we consider the casg = (0, 1). Let f € C3(G).
(I-1) Suppose(t) is non-increasing of0, 7), 0 < 7 < 1. Then, for0 < ¢t < 7,

0
ror < ([ireras) < [irorods

/(1+|f()|p( )ds<t+/ ' () [P ds,

/wa ﬁ<—+¢/v )

Similarly, if p(t) is non-decreasing ofr, 1) 0 <7 <1,then

/LfP ar < LT /!f ) e

Hence, ifp(t) is monotone or of type (L) oy, then

1 1
(3.1) /|ﬂmwnus§+[:wunwwt

(I-2) The casd|f’||; := fo |f/(t)] dt > 1.
In this case,
1 / _1 1 /
v [irola=3 [ prola

| S P e N
_—+§ 121" (t) | dt§§+2 1f ()|
0 0
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so that

N | —

1
<2 [ o P
0
Hence, by[(3]1), we have

1 1
(32) [ uoroa<ave = [ oo

in case|| f'||; > 1.
(I-3) The case(t) is monotone and f'||; < 1.
We may assume thatt) is non-decreasing. Set

— (e (O [fM) <1} By={te 0.1 (1) > 1},
(1) = "(s)] ds d g¢,(t) = '(s)] ds.
"o /(Ovmwmr and g(t) /WEQ\fU\

Thenfor0 <t <1
t p(t) ©
P < ( [ 17 ds) — (9u() + 920

< 2p+—1 (91 (t)P(t) + 92(15)10(?5))'
Sincep(s) < p(t) for0 < s < tand|f(s)| < 1fors e Fj,

w0 < [ @< [ i< [
(0,)NEy (0,)NE;

On the other hand, sinag(¢) < |||l < 1 and|f’(s)| > 1fors € EQ,

galt)P < ga(t) = / s [ 17 pe

(0,t)NE>
Hence

PP <2 /01 [f(s) ") ds

forall 0 < ¢ < 1, and hence

1 1
[ isapoar <o [y peas
0 0
in case||f'||; < 1.

(I-4) Combining (I-2) and (I-3), we havé (3.2) for glle C}(G) if p(t) is monotone.
(Il) The general case: L&t = (a,b) andf € C}(G). Let
g(t) = fla+t(b—a)) and q(t) =pla+tb—a))

for0 <t < 1. Then , )
[ ds = -a) [ o a
a 0

/0 Ig’(t)|dt=%/ I(b—a)f (s)]P ds

< max(1 +1/]f ) [P

and
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Hence, applying[(3]|1) andl (3.2) ) and¢(t), we obtain the required inequalities of the
proposition. (In fact, we can tak@& = (1 + 27" ~') max(|G|, |G[?").) O

4. VALIDITY OF POINCARE TYPE INEQUALITIES IN HIGHER-DIMENSIONAL CASE

Theorem 4.1.Let N > 2 andG C G’ x (a, b) with a bounded open sét' ¢ RY~! and set
Gy ={t€(a,b): (2 t) € G}foraz' € G'.

(1) If t — p(2’,t) is monotone or of type (L) on each componen&of for a.e.z’ € G’
(with respect to thé V' — 1)-dimensional Lebesgue measure), tHen {wPI) holdgfor
onG.

(2) If t — p(2’,t) is monotone on each component®f for a.e.z’ € G’ (with respect to
the (N — 1)-dimensional Lebesgue measure), tHen (Pl) holdgforon G.

Proof. Fix 2/ € G’ for a moment and lef; be the components af,.. If ¢ € Cj(G), then
t — (', t) belongs taC} (1;) for eachj. Thus, by Propositioh 3.1, ifi— p(2’,t) is monotone
or of type (L) on eacli;, then

[ e O dt < 1 max(LILP) [ Ve o
1; ;

so that

(@, PP dt < |G| + max(L, (b — a)”") / V(' )" dt;
G

and ift — p(2’,t) is monotone on each then

/ el )" dt < Ot 1)) / V(' " dt,
I; I

z!

so that
(!, P dt < C(p* b — a)/ Vo', ) .

Hence, integrating over’ with respect tar’, we obtain the assertion of the theorem. [

x/

The following proposition is easily seen by a change of variables:

Proposition 4.2. (PI) and (wP}]) are diffeomorphically invariant. More precisely, (&t andG»
be bounded open sets addz) = (¢1(z),...,¢n(x)) be a C!-)diffeomorphism of7; onto
Gs. SupposeVe;|, j =1,...,N and|Vyy|, 7 = 1,..., N are all bounded, wheré~!(y) =
(Y1(y), - ¥n(y)), and suppos® < a < Jo(z) < Bforall z € Gi. Letpi(z) = p2(P(2))
for z € G;. Then,[(F]l) (resp(wP1)) holds fgr,(-) on G| if and only if it holds forp,(-) on Gs.

Combining Theorem 4]1 with this Proposition, we can find a fairly large claggoffor
which (P]) (as well ag (wPP1)) holds.
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