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Poincaré inequality, variable exponent.

We consider Poincaré type inequalities of integral form for variable exponents.
We give conditions under which these inequalities do not hold as well as condi-
tions under which they hold.
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1. Introduction and preliminaries

One of the classical Poincaré inequalities states

/ww%msaMnmu/wwmw%‘WGwa
G G

whereG is a bounded open set&" (V > 1) andp > 1.

In Fu [2], this inequality withp replaced by a bounded variable expongnt) is
given as a lemma. Namely, lgfx) be a bounded measurable function@rsuch
thatp(z) > 1 for all z € G. We shall say that the Poincaré inequality (PI, for short)
holds onG for p(-) if there exists a constait > 0 such that

P) AWMWWMSQLWﬂMWWx

for all o € CJ(G). Fu's lemma asserts tha®lj always holds. However, as was
already remarked inl] pp. 444-445, Example] in the one dimensional case, this is
false. We shall give some types ) for which (PI) does not hold.

We remark here that the following norm-form of the Poincaré inequality holds
for variable exponents (cf3[ Theorem 3.10]):

lellzro@ < CllIVelllzeor @)

for all ¢ € C}(G) provided thap(z) is continuous ort7, where|| - | 200)(c) denotes

the (Luxemburg) norm in the variable exponent Lebesgue spaeé’) (see Bj for
definition). Thus, our results show that we must distiguish between norm-form and
integral-form when we consider the Poincaré inequalities for variable exponents.
We also consider a slightly weaker form: we shall say that the weak Poincaré
inequality (wPlI, for short) holds o for p(-) if there exists a constaidt > 0 such
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that

(wPi) [ letp dxsc(u [ 1wetop das)

for all p € C}(G). We shall see that this weak Poincaré inequality does not always
hold either.

The main purpose of this paper is to give some sufficient conditiops-onnder
which (P1) or (wPI) holds, and our results show th&t{ holds for a fairly large class
of non-constanp(x) and (vPI) holds forp(x) in a larger class.
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2. Invalidity of Poincaré type inequalities

For a measurable functigriz) onG andE C G, let

p =esssup p(z) and py = essinf p(z).
zeE el

Lemma 2.1. Letp(z) and¢(x) be measurable functions d@r such thatd < p; <
pd < ooand0 < g5 < ¢t < oo

1. If there exist a compact séf and open set&';, G such that' C G, € Gy C

G, |K| > 0andgg > pf, & . then there exists a sequenge, } in C5(G)
such that
Vo, (x)|P@ d
¢ I [on(@)]"® da
asn — oo.

2. If there exist a compact séf and open set&';, G, such thatk’ C G; € G, C

G, |K| > 0andq); < Ponar then there exists a sequenfeg, } in C}(G)\ {0}
such that
Sy V(@) P de
Vi, () [P dw — 0 and ¢ 0
I s ()1 d
asn — oQ.
Proof. Choosep;, € C}(G) such thatp; = 1 onG; and Spty; C Gb.
(1) Supposey; > pg2\a. For simplicity, writeq, = ¢, andp, = pg2\G—1. Let

©n =np1, n=1,2,.... Then

/ Vepu| de :/ 7np(m)|V901|p(m) dx < np?/ IV [P da
G G2\G1 a
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and
[l o> [ o i > o )
G K

These inequalities show that the sequefigg} has the required properties.
(2) Supposey; < p, - Write ¢ = g andp, = p, o Letn, = (1/n)p1, n =
1,2,.... Then

/ Vel da = / POV PO de < / Vor [P d
G G2\G1 G

and
[l o> [ 00 o> o)
G K
Thus the sequendg),,} has the required properties. O
By takingp(z) = ¢(x) in this lemma, we readily obtain
Proposition 2.2.

1. If there exist a compact séf and open set&';, G such that' € G; € Gy C
G, |K| > 0andpy > pJGrQ\E, then (vP1) does not hold fop(-) onG.

2. If there exist a compact séf and open set&'|, GG, such thatk’ C G; € G, C
G, |K| > 0andp}; < Ponar then @) does not hold fop(-) onG.
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3. Validity of Poincaré Type Inequalities in One-Dimensional Case

We shall say thaf (¢) on (to, t;) is of type (L) if there isr € (t¢, t1) such thatf(¢)
is non-increasing ofY,, ) and non-decreasing dm, t;).

Proposition 3.1. Let N = 1 andG = (a, b).

1. If p(t) is monotone (i.e., non-decreasing or non-increasing) or of type (L) on
G, then

b b
[ s ar < B masan 6 150 po
for f € C3(G), where|G| = b — a andp™ = p..
2. If p(t) is monotone o, then
b b
[ uwroa<e [ opoa

for f € C}(G), where the constan depends only op™ and|G|.

Proof. (I) First, we consider the casg = (0, 1). Let f € C3(G).
(I-1) Suppose(t) is non-increasing of0, 7), 0 < 7 < 1. Then, for0 < ¢t < T,

t p(t) t
rore < ([ipelas) < [ 1@ rods
0 0

t L) 1P ds N6y PO g
< [asr @y as<er [ pas
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Hence

T 2 1
[iseroasToar [15 e poas
0 0

Similarly, if p(t) is non-decreasing o(r’r, 1),0 <7 < 1,then

(1-
/ FOPO < = If )P
Poincaré Type Inequalities
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(I-3) The case(t) is monotone and f'||; < 1.
We may assume thatt) is non-decreasing. Set

Ey={te(0.1); [f/() <1}, Ex={te(0,1);[f(t)]>1},

m@%=4mmﬂfwﬂﬁ and mﬂ%=/ £(s)] ds.

(0,6)NE>
Then for0 <t < 1

t p(t)
o0 < ([ 1relas) = (0 + m)
< or'-l (gl (t)p(t) + gg(t)P(t))_

Sincep(s) < p(t) for0 < s < tand|f(s)| < 1fors e Ej,

mw@s/ W@W@%S/ P& P9ds< | 17 ()1 ds.
(0,t)ﬂE1 (O,t)ﬂE1 FE1

On the other hand, singg(t) < ||f'|l1 < 1 and|f’(s)| > 1for s € Es,

w0 <o) = [ Ifelds< [ 1560 ds
(O,t)ﬁEg E->

Hence

1
fOP <2 [ s
0
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in case||f'||; < 1.
(I-4) Combining (I-2) and (I-3), we have3(?) for all f € C3(G) if p(t) is mono-
tone.

(Il) The general case: L&t = (a,b) andf € C}(G). Let
9(t) = fla+t(b—a)) and q(t) = p(a+i(b—a))

for0 <t < 1. Then
b 1
[ 1 s = v -a) [ loor
a 0

/rg ()] dt = —/| ()P ds

< max(1, (b — apP™Y) / 1 () [P ds.

and

Hence, applyingd.1) and (3.2) to ¢(¢) andq(t), we obtain the required inequalities
of the proposition. (In fact, we can také= (1 + 2*" ) max(|G|, |G|"").) O

Poincaré Type Inequalities
Fumi-Yuki Maeda
vol. 9, iss. 3, art. 68, 2008

Title Page
Contents
44 44
< >
Page 10 of 13
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:fymaeda@h6.dion.ne.jp
http://jipam.vu.edu.au

4. Validity of Poincaré Type Inequalities in Higher-Dimensional
Case

Theorem 4.1.LetN > 2andG C G’ x (a, b) with a bounded open sé& c RN !
and setG,, = {t € (a, b) : (2/,t) € G} fora’ € G'.

1. If t — p(a’,t) is monotone or of type (L) on each componentof for a.e.
' € G (with respect to thé N — 1)-dimensional Lebesgue measure), then
(wP1) holds forp(-) onG.

2. If t — p(a’,t) is monotone on each component(of for a.e.z’ € G’ (with
respect to th¢ NV — 1)-dimensional Lebesgue measure), thel) bolds forp(-)
onG.

Proof. Fix 2/ € G’ for a moment and lef; be the components af,.. If ¢ €
C3(G), thent — (2, t) belongs taC; (1) for eachj. Thus, by Propositiofs. 1, if
t — p(2’,t) is monotone or of type (L) on eadh, then

/z (e P dt < |1;] + max(1, |Ij!p+)/l V(2! £ dt,
’ J

so that

J

and ift — p(a’,t) is monotone on each then

lp(a, )P dt < |Gy + max(1, (b — a)"") / V(2! )P d;
G

x! 2!

/ (e )P dr < C(p*, 1) / Veola!, )" dt,
1; 9
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so that

J

Hence, integrating over’ with respect tar’, we obtain the assertion of the theorem.
O

(!, )P dt < C(pt,b— a)/ V(2 )P dt.
G

x! a!

The following proposition is easily seen by a change of variables:

Proposition 4.2. (P1) and (vP!) are diffeomorphically invariant. More precisely,
let G; and G, be bounded open sets addz) = (¢(z),...,on(x)) be a C*-
)diffeomorphism of7; onto G5. SupposeVe;|, j = 1,...,N and [V, j =
1,..., N are all bounded, wher®~'(y) = (¥1(y),...,¥n(y)), and supposé <

a < Jp(z) < gforall z € Gy. Letp,(z) = po(P(2)) for x € G;. Then, PI) (resp.
(wP1)) holds forp;(-) on G if and only if it holds forp,(-) on Gs.

Combining Theorend.1 with this Proposition, we can find a fairly large class of
p(z) for which (PI) (as well as\(/P1)) holds.
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