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Abstract

This paper gives two distinct generalizations of the extended Hilbert's integral
inequality with the same best constant factor involving the /3 function. As appli-
cations, we consider some equivalent inequalities.
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If f,g > 0, suchthat < [;° f?(z)dz < co and0 < [;* ¢*(x)dz < oo, then

the famous Hilbert’s integral |nequaI|ty is given by

(1.1) /OOO /OOO %dmym{/j f2(x)dx/0m92(x)dx} ,

where the constant factaris the best possible (se&]]. Inequality (L.1) had
been generalized by Hardy-Ries3 as:
If p > 1,%—1— =1,0 < [;° fP(z)dz < coand0 < [;° g%(x)dz < oo, then

(1.2) /Om/ooo%g;y)dmy
wrg U e { [ o)

where the constant fact(g{m— is the best possible. When= ¢ = 2, in-
equality (L.2) reduces toX.1). <Ne call (L.2) Hardy-Hilbert's integral inequality,
which is important in analysis and its applications (sgg [

In recent years, by introducing a parametemnd thes function, Yang [, €]
gave an extension of.(2) as:

If A > 2—min{p,q},0 < [;~ 2" fP(z)dx < coand0 < [~z

N

Agd(z)dx <
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0o, then

wo [ [ TR
<k,\(p){/0 x“fp(x)dx}; {/Ooo;cl e )dx};,

where the constant facté (p) = B <p+; 2 A 2) is the best possibleq(u, v)

is the 5 function). Its equivalent mequahty is (seﬂ [2.12)]):

aa [Ty | [T Il <y [T o

p .
where the constant fact@k, (p)]? = [B (f‘%, pta=2 )| is the best possible.

When\ = 1, inequality (L.3) reduces to1.2), and (L.4) reduces to the equiv-
alent form of (L.2) as:

(1.5) /0 ( i ji;dx> dy < [Sinz£>]p Ooofp@)dx.

Forp = ¢q = 2, by (1.3), we have\ > 0, and
= [ f@)g(y)
(1.6) /0 /O @ty dxd
<B (%, %) {/000 o' 2 (x)dx /000 xl_ng(x)dx}Q .
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We define (.6) as the extended Hilbert’s integral inequality. Recently, Yang
et al. [L(] provided an extensive account of the above results and Ydmgaje
a reverse of 1.4) with the same best constant factor. The main objective of
this paper is to build two distinct generalizations @fj, with the same best
constant factor but different fromL(3). As applications, we consider some
equivalent inequalities.

For this, we need some lemmas.
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We have the formula of thg function as (see]):
tu_l

B(u,v):/o Wdt:

Lemma 2.1 (see]). Ifp> 1, .+ =1w(0) >0, f,g >0, f € LE(E) and
g € L1(FE), then the welghted Holders inequality is as follows:

@2 [ v <{ [ w(a)fﬂ(amo}’l’ { w(a)g%)da};,

where the equality holds if and only if there exists non-negative real numbers
and B, such that they are not all zero antlf?(¢) = Bg?(0), a.e. inE.

Lemma 2.2.If r > 1,and X > 0, define the weight functian, (r, z) as

> 1
2.3 wi(r,z) = A(1‘3‘)/ A dy.
(2.3) Arz) = o Y

or(rz) = B (%A(l—%))

Proof. Settingy = zu in the integral of 2.3), we find

1y [ (zu) A/
wa(r, ) :xk(l—T)/O ;A(iﬁ)k

:/ooo <1+1u>A

By (2.1), we have 2.4) and the lemma is proved. O

(2.1) B(v,u) (u,v > 0).

Then we have

(2.4)

xdu

A
ur tdu.
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Note. It is obvious that fop > 1, - + - = 1 and\ > 0, one has

(2.5) wr(p,z) = B (éa é) = wx(q, 7).

pq

Lemma2.3.1fp>1, -+ . =1and0 < e <\, one has

1_(A—ec A ?
(2.6) >—B( 5,—+5)—( b )
€ p q D A—¢
Proof. Settingx = yu in Iy, in view of (2.1), one has
e’} 0 1 Apc
I = / y 1E {/ —u * du] dy
! 1 1/y (1 + u>>\
) o0 1 e
—1—e ? d
fo V (+ur } !

I:E_Idu] dy

[

™

1B()\_8 A 8) / /uz’ dudy.
p

By calculating the above integral, one hasy. The lemma is proved.

]
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Lemma2.4.1fp>1, -+ . =1and0 < e < A(p — 1), one has

o0 Ate o0 1 Ate
Iy = / Z//\ql/ — 2 ldady
’ 1 1 (z+y)
1_ [\ A A -
2.7) >—B<—_f,_+§)_<__i) |
€ a pp P q P
Proof. Settingx = yu in I, in view of (2.1), one has
o > 1 Ate
o 1y (L+u)
*° & ]_ Ate
—1—€ A— -1
= — »du|d
/1 Y [/0 0+ u)Au u} Y

1

y ]_ Ate
—1—¢ A— -1
- W | d

1 /A A & v .
> -B (— = E, -+ E) —/ yl/ W dudy.
e \¢g pp p 1 0

By calculating the above integral, one has/j. The lemma is proved.

]
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Theorem3.1.1f f,g > 0,p > 1, ;lﬁ% =1,A>0,suchthad < [;* a7~ ' fP(z)dx

<ooand0 < [;% a9 " g!(2)dx < oo, then
[T f@)9(y)
(3.1) /0 /0 @ty dzdy
é é = p—1-=A rp g ~ q—1-X q %
<B(p,q) {/o T f(a:)da:} {/0 x g(x)d:c} ;

e [Tye | [T L]

QA [

where the constant factoi3 (%, %) and [B <%7 2)]17 are all the best possible.

Inequality 3.2 is equivalent to §.1). In particular, for A = 1, one has the
following two equivalent inequalities:

* [ f(@)g(y)

<[ ([ o)

p
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(3.4) /Uw p—2 (/ﬂ”%dx)pd% Sinz )

Proof. By (2.2), one has

A '_/ / (x +y 1 1

:/0 /o (m+y (Z’_i)m f(x)] l(iz_i)mg(y)] dady
: {/OOO [/0OO (z jy) (zz_i);dy] fp(l‘)dfﬁ}p
. " {/0oo [/ooo (Jciy)A (zz_i); dl"] gq(y)dy}q-

If (3.5) takes the form of an equality, then by Lemd, there exist real num-
bersA and B, such that they are not all zero, and

e

= B(miy)’\ (zZ:/\)p g%(y), a.e.in(0,00) x (0,00).
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Hence we find
AP fP(z) = By *¢(y), a.e. in(0,00) x (0,00).
It follows that there exists a constafit such that

AzP 2 fP(z) = C,  a.e. in(0,00);
By ¢(y) = C, a.e.in(0,00).

Without loss of generality, suppose that~ 0. One has On the Extended Hilbert's
Integral Inequality
p—A—1 ¢p — £ in(0 ;
x f (l‘) = Ay a.e. II"I( ,OO), Bicheng Yang

which contradicts the fact that < [~ a2?~'"* f(z)dz < co. Hence, B.5)

takes the form of strict inequality, and b.8), we may rewrite 8.5) as e reee
Contents
36) Ji< {/ w,\(q,x)xplAfp(x)dx}p <« >
0
oo 1 4 | 2
—1-X ¢ !
X { / wA(p, )y g (y)dy} : Go Back
0
Hence by 2.5), one hasg.1). Close
For0 < e < \, settingf(z) andg(y) as: Quit
~ N Page 11 of 19
f(z) =yg(y) =0, z,y € (0,1);
~ A—p—e A—g—e J. Ineq. Pure and Appl. Math. 5(4) Art. 96, 2004
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then we find

(3.7) {/OOO xp_l_A;p(x)dx} {/Oooxq ERYRC: )d:c}é = é

If there exists\ > 0, such that the constant factor i&.{) is not the best pos-
sible, then there exists a positive numbBern with K < B (%, %)) such that

RS

(3.1 is still valid if one replace®3 (%, g) by K. In particular, one has

h= 6/ / ( + y
<eK { /O PN (x)dx}; { /0 h quAEq(w)dx}é .

Hence by 2.6) and @3.7), one has
2
£ D
) . (A P ) < K.

(—a)\
<

K (¢ — 0%). This contradicts the fact that’® <

and thenB (A 2)

B ( ; 2) It follows that the constant factor ir3(1) is the best possible.

Since0 < [~ 2?7 fP(z)dx < oo, there existd; > 0, such that for any
T > Ty, one hag) < fOT P12 fP(x)dr < co. We set

gy, T) := P D1 l/OT(f(—x)Adx]p_l,

z+y)
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and use §.1) to obtain
T
0< / Yy gy, T)dy
0
T T p
:/ yk(p—l)—l |:/ f(.’lj) dl':| dy
0 (x +y)*
/ / fl@ dxdy
x + 3/ On the Extended Hilbert'S

A A 1 v T L d Integral Inequality
— pP—1l=A[fp g—1-\ q
(38) <B <p’ q) {/0 x f (a:)dx} {/0 y g (y,T)dy} . chens Yan

Hence we find

Title Page
T 1-2
0< / yq_l_’\gq(y,T)dy} Contents
0 1 4 >
T T P v
- { / 1= { / /(@) Ad:c] dy} S >
0 o (x+y)
) . % Go Back
(3.9) <B (]—?, 5) {/ xpl’\fp(x)d:v} : Close
0
Quit

It follows that0 < [ y?~'~*¢%(y, c0)dy < co. Hence 8.8) and @.9) are strict

inequalities a§” — co. Thus inequality 8.2) holds. Page 13 of 19
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On the other hand, if3 2) is valid, by Holder’s inequality4.2), one has

I

(3.10)

f(x)g(y)

dzd
@ty Y

([ [ o] o)
X {/Ooo yq”gq(y)dy}q

Hence by 8.2), one has{.1). It follows that 3.2) is equivalent to §.1).

If the constant factor in3.2) is not the best possible, one can get a contra-
diction that the constant factor i8.() is not the best possible by using.{0).

The theorem is thus proved.

Theorem 3.2.1f f,g > 0,p > 1, - + - = 1, A > 0, such that

and

0< / PV £ (1) dr < 00
0

0< / 2 DN g4 (1) dg < oo,
0
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then

(3.11) /Ooo /OOO %dwdy
oG e
[ s
(3.12) /Ooo T UOOO %dm}pdy

< [B (i) é)]p/m PN #P (1) g,
b q 0

p .
where the constant factorB (%, 2) and [B (%,3 are the best possible.

Inequality 8.12) is equivalent to §.11). In particular, for A = p > 1, one has
the following two equivalent inequalities:

<[ f(r)g(y)
(3.13) /0 /0 —(x ) dzdy

oo £p . 0 g A
SRR UV LT
p—11J, z®D 0 x
and

> ooal e fle) ? R N A €
(314) /0 Y Uo (I+y)pdx] dy<(p—1) 0 217
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Proof. By (2.2), one has

h = // x+y ddy
[ | () o)

yP=N/p?
% zla—N/a 9(y) | dady On the Extended Hilbert'S

Integral Inequality

1
00 o 1 (a—Np/q? b -
- {/ [/ ( + y)> (x o | W) S ()de i
0 0 rTy Y
. - | y(p_/\)q/pQ q : Title Page
(3.15) x /0 /0 (z+y)* \ xl@eN/a dx| g(y)dy ¢ Contents

<44 44
Following the same manner &%.¢), one has
< >
(3.16) J < {/ wx(p, JZ):L“(p_l)(l_)‘)fp(q})dm}p Go Back
’ ) Close
X {/ wx(q, z)x @ DA=N ga (g )dx}q. Quit
0

Page 16 of 19
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For0 < e < A(p — 1), settingf(z) andg(y) as:

f@)=9g(y) =0, =z,ye(0,1)

P 75(3/) = yk_l_Ta T,y € [1700)7

S~
=
Il
8
P
L
|
>

by Lemma2.4and the same way of Theoreiril, we can show that the constant
factor in 3.11]) is the best possible.

In a similar fashion to Theoref 1, we can show thaB(12) is valid, which is
equivalent to 8.11). By the equivalence of3(11) and 3.12), we may conclude
that the constant factor i3(12) is the best possible. The theorem is proved]

Remark 3.1. (i) For p = ¢ = 2, both inequalities §.1) and 3.11) reduce
to (1.6). Inequalities 8.1) and (3.11) are distinct generalizations of.(6)

with the same best constant faciBr(%, %) but different from{.3).

(i) Since inequalities3.3) and (1.2) are different, we may conclude that in-
equality 3.1) is not a generalization ofl(3).

(i) Since all the given inequalities are with the best constant factors, we have
obtained some new results.
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