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Some estimations and inequalities are given for the higher order central mo-
ments of a random variable taking values on a finite interval. An application is
considered for estimating the moments of a truncated exponential distribution.
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Distribution functions and density functions provide complete descriptions of
the distribution of probability for a given random variable. However they do
not allow us to easily make comparisons between two different distributions.
The set of moments that uniquely characterizes the distribution under reason-
able conditions are useful in making comparisons. Knowing the probability
function, we can determine the moments, if they exist. There are, however, ap-
plications wherein the exact forms of probability distributions are not known or
are mathematically intractable so that the moments can not be calculated. As
an example, an application in insurance in connection with the insurer’s pay-
out on a given contract or group of contracts follows a mixture or compound
probability distribution that may not be known explicitly. It is this problem that
motivates to find alternative estimations for the moments of a probability distri-
bution. Based on the mathematical inequalities, we develop some estimations
of the moments of a random variable taking its values on a finite interval.

SetX to denote a random variable whose probability functiofi iga, b] C
R — R, and its associated distribution functién: [, b] — [0, 1].

Denote byM, thert" central moment of the random variabtedefined as

b
(1.2) MT:/(t—,u)T'dF, r=0,1,2,...,

wherey is the mean of the random variable It may be noted that/, = 1,
M, = 0 and M, = o2, the variance of the random variable

When reference is made to th& moment of a particular distribution, we
assume that the appropriate integfallj converges for that distribution.
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We first prove the following theorem for the higher central moments of the

random variableX.

Theorem 2.1.For the random variableX with distribution function? : [a, b] —

[0, 1],

2.1) /ba) ~H)(t— a)"dF

-2 ()

Proof. Expressing the left hand side &f.() as

[o=0@-arar = [0~ (= wlle - + (s - a)"aF

and using the binomial expansion

=+ = =3 ()

k=0

t—ﬂ) _k7

we get

/ (b 1)t — a)"dF

[(b — )Mm—k - Mm—k:-l-l] , M = 1, 2, 3, e

Moments Inequalities of A
Random Variable Defined Over
A Finite Interval

Pranesh Kumar

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 4 of 24

J. Ineq. Pure and Appl. Math. 3(3) Art. 41, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:kumarp@unbc.ca
http://jipam.vu.edu.au/

and hence the theorem. O]

In practice numerical moments of order higher than the fourth are rarely con-
sidered, therefore, we now derive the results for the first four central moments  Moments Inequalities of A
of the random variablé& based on Theorem 1. SEI RN L SO

A Finite Interval
Corollary 2.2. Form =1,k =10,1in (2.1), we have

Pranesh Kumar

b
(2.2) [ =0 = @iF = - @ - a) - Mo |
a Title Page
This is a result in Theorem 1 by Barnett and Dragomjr | Contents
Corollary 2.3. Form =2,k =10,1,21in (2.1, « N
b
@3) [ (6-0)(t—aPdF = (b= (=P +1(6— ) ~ 2 )Mo Ms. <
Corollary 2.4. Form = 3,k = 0,1, 2, 3, we have fromZ.1) Go Back
. Close
(2.4) / (b—1)(t — a)*dF Quit
= (b= 1)1 =)’ + 3(n = )b — ) ~ (1 — )Mo Page 5 of 24

+ [(b—p) —3(p —a)|Ms — My.
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We apply Hélder’s inequality4] and results of Barnett and Dragomit][to
derive the bounds for the central moments of the random varigble

Theorem 3.1.For the random variableéX with distribution function?” : [a, b] —
0,1], we have

Lir+1)I'(s+1)

bh— r+s+1 |
(b—a) L(r+s+2)

||f||007
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b
(3.1) / (b—1)"(t — a)dF <
(b—a)**5[B(rg+1,sq+ 1] - ||f]l,
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forp > 1, %4—%:1,7“,320.

Proof. Let? = a(1 —u) + bu. Then Title Page
' 1 Contents
/a (b - t)r(t - a)sdt = (b — a)r+s+1 . /0 (1 _ U)Tusdu, « N
Since [} u(1 — u)rduy = JrUEey) p R
o U u)du = MU,
Go Back
b
Cir+1)I(s+1)
b—1)'(t —a)dt = (b—a)™" Close
/a( )'(t —a) (b—a) D(r+s+2) -
ui
Using the property of definite integral, S
b
(32) / (b - t)s(t - a)TdF Z 07 fOI’ T, S Z 0; J. Ineq. Pure and Appl. Math. 3(3) Art. 41, 2002
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we get,
b
/ (b—1)(t — a) dF

<11l / (b—1)*(t — aydt.

I'(r+1)I'(s+1)
L(r+s+2)

= (b—a) st || flles fOr ;s >0,

the first inequality in 8.1).
Now applying the Holder's integral inequality,

/b(b —t)*(t — a)"dF

{ [ e [ [ o=n— o]

— )’ 4 [B(rg+ 1.sq+ 1)] - [|f]»
the second inequality irB(2). ]

Theorem 3.2.For the random variableX with distribution function? : [a, b] —
[0, 1],

I(r+1)I'(s+1)
L(r+s+2)

< /b(b— 1) (t — a)"dF

(3.3) m(b—a) T
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b Cir+1DI(s+1)

< M(b—
< M{(b ['(r+s+2)

7,8 > 0.

Proof. Noting that ifm < f < M, a.e. ona, b], then

m(b—1)°(t —a)" < (b—1)°(t —a)" f < M(b—1)°(t —a)",

a.e. onfa, b and by integrating ove, b|, we prove the theorem. O
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It is seen from 2.2) and @3.2) that the upper bound faok/,, variance of the
random variableX, is
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(3.4) My < (b—p)(u—a). Title Page
Consideringr = (b — u1) andy = (1 — a) in the elementary result Contents
44 44
(z+y)?
‘,L‘y S 4 Y x? y e R’ 4 }
we have Go Back
b—a)? Close
(35) M2 S ( a) )
4 Quit
and thus, Page 8 of 24
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From .2) and 3.1), we get

(-
11l
1

@—uXu—@—A@gHﬂuw—@“HB@+Lq+nLp>1,%+5:L

(b—p)(p—a)— M <

Other estimations foi/, from (2.2) and @3.1) are
(b—a)’

m

(b—a)’
<b—p)(p—a)— M, <M G ,m< f<M,
resulting in

3.7) Mzs(b—u)(u—a)—m@%)g,msfSM.

From 2.3) and 3.2), the upper bound fok/3
My < (b—p)(p— a)* +[(b— ) = 2(pu — a)| M.
Further we obtain fromZ.3) and (3.4),
(3.8) Mz < (b—p)(p—a)(a+b—2p),
from (2.3) and @.5),

(3.9) Mz < —[(b— )+ (b— ) (1 — a)* = 2(u — a)’],

N
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and from @.3) and @.7),

310) My < (b (- a)a+ b 2p) - PO 20)

The upper bounds fav/, from (2.4) and (3.2)
My < (b= p)(p — a)®
+3(p—a)|[(b—p) — (n— a)]| Mz + [(b— p) — 3(u — a)] Ms.
Using 2.4), (3.4) and 3.8), we have
(3.11) My < (b= p)(u—a)[(b—a)* = 3(b— p)(n — a)),
from (2.4), (3.5 and 3.9,

(3.12) Mi < ¢ [(b— ) + 40— w)2(u — a)?
—4(b— @) (1 — a)’ +3(n —a)*]
and from @.4), (3.7) and @.10,
(3.13) My < (b—p)(p —a)[(n — a)®
+(a+b—2u)(a+b—4u)+3(b—p)(a+b—2u)]

~m(b—a)*(a+bd—2u)(b—2a — p)
: :
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We prove the following theorem based on the pre-Griss inequality:

Theorem 4.1.For the random variableéX with distribution function?” : [a, b] —
0, 1],

b
(4.1) / (b—1)"(t—a)f(t)dt — (b—a)" -

(M = m)(b— o)+

F(r—l—l)F(s—i—l)'
L(r+s+2)

l\')l»—t

P@2r+1)I@2s+1) (F(r—i— 1)D(s + 1))2 :
I'(2r+2s+2) I'(r+s+2) ’

wherem < f < M a.e. on[a,b] andr, s > 0.

Proof. We apply the following pre-Griss inequality]{

[ ntatoa a2 [ o

%(gb ) - [bi /b 2(t)dzf(ﬁ/abg(t)olt)gr,

provided the mappinghk, g : [a,b] — R are measurable, all integrals involved
exist and are finite and < h < ¢ a.e. on[a, b].

(4.2)
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Leth(t) = f(t), g(t) = (b—t)"(t —a)®in (4.2). Then

(4.3)

[ o-tre-arraa
b b
_bia/ f(t)dt. bia/ (b—t)T(t—a)sdt‘
1 1 b r s12
= §<M a m) ' {b —a /a {<b a t) <t B a) } at Moments Inequalities of A

9 Random Variable Defined Over
1 b b d A Finite Interval
— — )" (t —a)’dt
(52 [0 0re-ara)

=

Y

Pranesh Kumar
wherem < f < M a.e. onfa.b].

On substituting from3.2) into (4.3), we prove the theorem.

Title Page
O
Contents
Corollary 4.2. Forr = s =11in (4.2,
<44 >»
b 2 3
b— M — b—
[ e=o-asa- E50 < BLEmIEZ <«
“ Go Back
aresult (2.7) in Theorem 1 by Barnett and Dragomif. [ Close
We have the following lemma based on the pre-Griss inequality Quit
Lemma 4.3. For the random variableX with distribution function/" : [a, b] —

Page 12 of 24
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0, 1],

(4.4)

/(h%vu—@wumrwb—@”s

L(r+1)C(s+ 1)’
L(r+s+2)

-

<

ar=m [6-a) [ a1,

N |

wherem < f < M a.e. on[a,b] andr, s > 0.

Proof. We chooséi(t) = (b —t)"(t — a)®, g(t) = f(t) in the pre-Gruss in-
equality @.2) to prove this lemma. O

We now prove the following theorems based on Lemhia
Theorem 4.4.For the random variableéX with distribution function?” : [a, b] —
[0, 1],

LFir+1)I'(s+1)
L(r+s+2)

(4.5) / (b—t)(t —a)f(t)dt — (b—a)""*

< 1o = a)(M — m)?,

wherem < f < M a.e. on[a,b] andr, s > 0.

Proof. Barnett and Dragomirs] established the following identity:

@.6) géE[fﬂwmwﬁ=p+<gé;)3[fﬂwﬁ3LZawm
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where .
pl< 7T =7)(®-¢), and < f<y®<g<d
By takingg = f in (4.6), we get

(.7) —/f

1\’ 1
:p+(m> ,where|p|§Z(M—m), M < f<m.
Thus, @.4) and @.7) prove the theorem. O

Another inequality based on a result from Barnett and Dragcthfo[lows:

Theorem 4.5.For the random variableX with distribution function?” : [a, b] —

[0, 1],

F(r+1)I'(s+1)
L(r+s+2)

<Xy —myp - a),

b
(4.8) / (b—t)"(t — a)* f(t)dt — (b— a)™** -

W

wherem < f < M a.e. on[a,b] andr, s > 0.

Proof. Barnett and Dragomirs have established the following inequality:

ity ron (L)
F2 [Fn—l . (b _ a)n—l -1

<
= 46— a)n?
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wherey < f <T.
From @.9), we get

[ﬁ/@bﬁ(wdt— (b%)]

and substituting in4.4) proves the theorem.

S

A
|

IN

IN
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We consider the Holder’s integral inequality] fand fort € [a, b], }D + % =
L p>1,
t
(5.1) / (t —u)" fOH) (u)du
t % t % Moments Inequalities of A
n+1 n Random Variable Defined O
< ([reeae) " ([ o) o e pened O
_ 5\ng+1 % Pranesh Kumar
< Hf(nH)Hp. [w]
ng+1
Title Page
On applying 6.1),we have the theorem:
Contents
Theorem 5.1.For the random variableX with distribution function?” : [a, b] — > o
[0, 1], suppose that the density functign [a, b] is n— times differentiable and
f™ (n > 0) is absolutely continuous dan, b]. Then, < »
b Go Back
62) | [ (= ay b=t sit Close
n it
_ Z(b _ )Ttk s+ DI'(r+k+1) Qu
prrd Cir+s+k+2) Page 16 of 24
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(£l

(b — a)rttnR. L(r+n+2)(s+1)

n+l T(r+s+n+3)
if f Y € L la,b],
1 || D, (- )r+s+n+;+1‘F(T+n+%+1)l’(s+1)
Sy (et 1y Pr+s+n+i42)

if Y e L[a,b], p>1,

I'(r+n+1I'(s+1)
I(r+s+n+2)
\ it 70D € Ly[ab),

where||.||, (1 < p < oo) are the Lebesgue norms ¢n b}, i.e.,

||f(n+1)||1 X (b o a)r+s+n+1 X

Y

b v
[l9lloc == ess sup [g(t), and ||g]|, = (/ \g(t)lpdt> , (p=1).

t€la,b]

Proof. Using the Taylor’s expansion gfabouta :

10 =3 )+ [ = w1 b,

k!
k=0

we have

n

(5.3) /ab(t —a)"(b—t)°f(t)dt = Z {/ab(t —a)R (b — t)dt - @]

k!
k=0

+ [% /ab(t Ay (b—t) (/:(t ) f<n+1>(u)du) dt} .
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Applying the transformation = (1 — x)a + xb, we have

Cis+D)I(r+k+1)
IF(r+s+k+2)

b
64 [ -yt = - ay

Fort € [a, b],it may be seen that

t t
65 | [ -0 < [ (-0l 1)
a a . Moments Inequalities of A
(n+1) n Random Va_rie_able Defined Over
< sup |f (u)] - (t —u)"du A Finite Interval
u€la,b] a
n Pranesh Kumar
< IfeD) - (t—a)
- n+1
Title Page
Further, fort € [a, b],
Contents
t t
68 | [ -] < [ (-l ) “« . »
@ a ; 4 >
< (- [ 17w e
< ||f(n+1)|| (t—a)" Close
it
Let £l

Page 18 of 24
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Then 6.1) and 6.5) to (5.7) result in

(5.8) M(a,b)
' % Ut —a) (b — tysdt, if fOD € Lofa, b,
1 (n+1) b rndl B . n
< M e —ar i —tede, i f0 € Lfab] p> 1,
\ Hf(m_l) | |1 ) fab(t o a>r+n(b - t)sdt, if f(m_l) € Ll[a, b]- Moments Inequalities of A
Random Va_rie_able Defined Over
Using 6.3), (5.4) and 6.8), we prove the theorem. O A S T

Pranesh Kumar

Corollary 5.2. Consideringr = s = 1, the inequality $.8) leads to

M(a’ b) Title Page
) ) A Contents
17" o (=)™ if fD € Lagla, b,
(1) t3)n+d) <>
1 4 }
<l | Hf- 1( ) , , if ftY e Lyfa,b], p>1, Go Back
Pl (ng+ 1)« <n+5—|—2> (n+5—|—3>
Close
bh— n+3 . it
||f(n+1)||1 . ( G,) , if f(n+1) - Ll[aa b], Qui
\ (n+2)(n+3) Page 19 of 24

which is Theorem 3 of Barnett and Dragomir |

J. Ineq. Pure and Appl. Math. 3(3) Art. 41, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:kumarp@unbc.ca
http://jipam.vu.edu.au/

The truncated exponential distribution arises frequently in applications partic-
ularly in insurance contracts with caps and deductible and in the field of life-

testing. A random variabl& with distribution function

l—e? for0<z<c,
F(x) =
1 for = > ¢,

is a truncated exponential distribution with paramefeasdc.
The density function foX :

e ™™ for0<z<c
f(z) = +e - 0e(x),
0 forz > ¢
whered. is the delta function at = ¢. This distribution is therefore mixed with
a continuous distributionf (z) = Ae~** on the interval0 < z < ¢ and a point
mass of size ¢ atz = c.

The moment generating function for the random variable
Mx(t) = / e Ne Mdx el e
0

) — te—c()\—t)

fort #£ \
)\—t b # )

Ac+1, fort = A
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For further calculations in what follows, we assumg X. From the moment

generating functiod/x (t), we have:

B(X) = %
B(X?) = 2[1 — (1;—2/\0)6—&]’
B(X?) = 32— (2+ QA;;L ,\2cz)e_xc]’
E(XY) = 416 — (6 + GAc + 3X°c? 4 Noch)e ]

)\4
The higher order central moments are:

k
k . .
Mkzz (.)E(XZ)-M’H, fork=23,4,...,

]

=0
in particular,
1 —2\ce ¢ — g 2¢
M, = = ,
16 — 3e72¢(10 4 4Ac + A2c?) + 6e722(3 + Ae) — e3¢
M3 = /\3 5
65 — 4e (32 + 15Ac + 6A2c2 + \3c3)
M, = X
+3e*2“(30 + 16Ac + 422c?) — 4e32¢(8 + 3\¢) + He4A¢
A '
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Using the moment-estimation inequali}.€), the upper bound fak/,, in terms
of the parameters andc of the distribution:

~ (1—e?)Ac—1+e)
M, < 5 .

The upper bounds fat/; using @3.8)

~(2=3Xc+ A2c?) — e7(6 — 6Ac + M) + 3e7¢(2 — A¢) — 273N
and using 8.9
~ (=3 4 4Ac — 3N2% + \3¢3)
Mz <
°= AN
N e (9 — 8Ac + 3N2?) — e7 (9 — 4)\e) + 3e 3N

4)\3
The upper bounds fa¥/, using @.11)

AL < (=3 4+ 6Ac — 422 + N3¢?) + e72¢(12 — 18Ac + 8A2c? — \3¢?)
1 <
¥

2e722¢(9 + 9Ae + 2X02c?) — 6e73M(2 — Ae) + 3e e
A4 ’

and from 3.12,

12 — 16Xc + 103222 — 4X3¢3 + A1)
4N

~

M4§(
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4e7(12 — 12X¢ + 5N — N3¢P)

4N

N 2e722¢(36 + 24\c + HA%?) — 16e732¢(3 — Ac) + 124X

4N

Moments Inequalities of A
Random Variable Defined Over
A Finite Interval

Pranesh Kumar

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 23 of 24

J. Ineq. Pure and Appl. Math. 3(3) Art. 41, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:kumarp@unbc.ca
http://jipam.vu.edu.au/

[1] N.S.BARNETTAND S.S.DRAGOMIR, Some elementary inequalities for
the expectation and variance of a random variable whose pdf is defined
on a finite interval, RGMIA Res. Rep. Coll.2(7) (1999). [ONLINE]
http://rgmia.vu.edu.au/vin2.html

[2] N.S.BARNETT AND S.S.DRAGOMIR, Some further inequal-
ities for univariate moments and some new ones for the co-
variance, RGMIA Res. Rep. Coll. 3(4) (2000). [ONLINE] Moments Inequalities of A

. Random Variable Defined Over
http://rgmia.vu.edu.au/v3n4.html A Finite Interval

[3] N.S. BARNETT, P. CERONE, S.S. DRAGOMIRND J. ROUMELIOTIS, Pranesh Kumar
Some inequalities for the dispersion of a random variable whose pdf is de-
fined on a finite interval). Ineq. Pure & Appl. Math.2(1) (2001), 1-18.

- Title Page
[ONLINE] http://jipam.vu.edu.au/v2nl.html
. ; Contents
[4] J.E. PEARIC, F. PROSCHANAND Y.L. TONG, Convex Functions, Par-
tial Orderings and Statistical Applicationdcademic Press, 1992. «
<
Go Back
Close
Quit

Page 24 of 24

J. Ineq. Pure and Appl. Math. 3(3) Art. 41, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:kumarp@unbc.ca
http://jipam.vu.edu.au/
http://rgmia.vu.edu.au/v1n2.html
http://rgmia.vu.edu.au/v3n4.html
http://rgmia.vu.edu.au/v3n4.html
http://jipam.vu.edu.au/v2n1.html

	Introduction
	Results Involving Higher Moments
	Some Estimations for the Central Moments
	Bounds for the Second Central Moment M2 (Variance)
	Bounds for the Third Central Moment M3
	Bounds for the Fourth Central Moment M4

	Results Based on the Grüss Type Inequality
	Results Based on the Hölder's Integral Inequality
	Application to the Truncated Exponential Distribution

