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1. I NTRODUCTION

Let a = (a1, a2, · · · , an) andr be a nonnegative integer, whereai for 1 ≤ i ≤ n are nonneg-
ative real numbers. Then

(1.1) E[r]
n = E[r]

n (a) =
∑

i1+i2+···+in=r,
i1,i2,··· ,in≥0 are integers

n∏
k=1

aik
k

with E
[0]
n = E

[0]
n (a) = 1 for n ≥ 1 andE

[r]
n = 0 for r < 0 or n ≤ 0 is called therth generalized

elementary symmetric function ofa.
Therth generalized elementary symmetric mean ofa is defined by

(1.2)
[r]∑
n

=

[r]∑
n

(a) =
E

[r]
n (a)(

n+r−1
r

) .
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In 1934, I. Schur [5, p. 182] obtained the following

(1.3)
[r]∑
n

(a) = (n− 1)!

∫
· · ·
∫ ( n∑

i=1

aixi

)r

dx1 · · · dxn−1,

wherexn = 1−(x1+x2+· · ·+xn−1) and the integral is taken overxk ≥ 0 for k = 1, 2, . . . , n−1.
By using (1.3) and Cauchy integral inequality, he also proved that

(1.4)
[r−1]∑

n

(a)

[r+1]∑
n

(a) ≥

 [r]∑
n

(a)

2

.

In 1968, K.V. Menon [2] proved that forn = 2 or n ≥ 3 andr = 1, 2, 3, inequality (1.4) is
valid.

In [1], the generalized symmetric means of two variables was investigated.
In [3] and [4] a problem was posed: Does inequality (1.4) hold for arbitraryn, r ∈ N?
In 1997, Zh.-H. Zhang generalized (1.3) in [7] and also proved (1.4) by a similar proof as in

[5].
In [6], some inequalities of weighted symmetric mean were established.
In this paper, we shall obtain an identity relating

∑ [r]
n (a) to E

[r]
n (a) and give an elementary

proof of an inequality which generalizes (1.4). Our main result is as follows.

Theorem 1.1. If r, s ∈ N andr > s, then

(1.5)
[s]∑
n

(a)

[r+1]∑
n

(a) ≥
[r]∑
n

(a)

[s+1]∑
n

(a).

The equality in(1.5)holds if and only ifa1 = a2 = · · · = an.

Lettings = r − 1 in inequality (1.5) leads to inequality (1.4).

2. PROOF OF THEOREM 1.1

To prove inequality (1.5), the following properties forE
[r]
n are necessary.

Property 1. If n, r ∈ N, then

(2.1) E[r]
n = E

[r]
n−1 + anE

[r−1]
n

and

(2.2) E[r]
n =

r∑
j=0

aj
nE

[r−j]
n−1 .

Proof. If n = 1 or r = 0, (2.1) holds trivially.
Whenn > 1 andr ≥ 1, we have

(2.3)
i1+i2+···+in=r∑

i1,i2,··· ,in≥0

n∏
k=1

aik
k =

i1+i2+···+in=r∑
i1,i2,··· ,in−1≥0

in=0

n∏
k=1

aik
k + an

i1+i2+···+in=r−1∑
i1,i2,··· ,in≥0

n∏
k=1

aik
k .

Combining the definition ofE[r]
n and (2.3), identity (2.1) follows.

Identity (2.2) can be deduced from the recurrence of (2.1). �
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Property 2. If r is an integer, then

(2.4) (r + 1)E[r+1]
n =

r∑
k=0

(
n∑

i=1

ak+1
i

)
E[r−k]

n .

Proof. It will be verified by induction. It is clear that identity (2.4) holds trivially forn = 1.
Suppose identity (2.4) is true forn− 1 and nonnegative integersr.

By (2.2), for0 ≤ k ≤ r, we have

E[r−k]
n =

r−k∑
j=0

aj
nE

[r−k−j]
n−1 ,

and
r∑

j=0

(j + 1)aj+1
n E

[r−j]
n−1 = anE

[r]
n−1 + a2

nE
[r−1]
n−1 + · · ·+ ar

nE
[1]
n−1 + ar+1

n E
[0]
n−1

+ a2
nE

[r−1]
n−1 + · · ·+ ar

nE
[1]
n−1 + ar+1

n E
[0]
n−1

· · · · · ·

+ ar
nE

[1]
n−1 + ar+1

n E
[0]
n−1

+ ar+1
n E

[0]
n−1

=
r∑

k=0

r−k∑
j=0

aj+k+1
n E

[r−k−j]
n−1 .

According to the inductive hypothesis, for nonnegative integersr and0 ≤ j ≤ r, we have

(2.5) (r − j + 1)E
[r+1−j]
n−1 =

r−j∑
k=0

(
n−1∑
i=1

ak+1
i

)
E

[r−k−j]
n−1 .

From Property 1 and the above formula, we have

(r + 1)E[r+1]
n = (r + 1)

r+1∑
j=0

aj
nE

[r+1−j]
n−1(2.6)

=
r∑

j=0

(r − j + 1)aj
nE

[r−j+1]
n−1 +

r+1∑
j=1

jaj
nE

[r−j+1]
n−1

=
r∑

j=0

aj
n

r−j∑
k=0

(
n−1∑
i=1

ak+1
i

)
E

[r−j−k]
n−1 +

r∑
j=0

(j + 1)aj+1
n E

[r−j]
n−1

=
r∑

k=0

r−k∑
j=0

aj
n

(
n−1∑
i=1

ak+1
i

)
E

[r−j−k]
n−1 +

r∑
k=0

r−k∑
j=0

aj+k+1
n E

[r−k−j]
n−1

=
r∑

k=0

(
n−1∑
i=1

ak+1
i + ak+1

n

)(
r−k∑
j=0

aj
nE

[r−k−j]
n−1

)

=
r∑

k=0

(
n∑

i=1

ak+1
i

)
E[r−k]

n .

This shows that (2.4) holds forn. The proof is complete. �

J. Inequal. Pure and Appl. Math., 5(4) Art. 108, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 ZHI-HUA ZHANG AND ZHEN-GANG X IAO

Property 3. If r, s ∈ N andr > s, then

(2.7) (r + 1)(s + 1)

(
n + r

r + 1

)(
n + s

s + 1

) [s]∑
n

[r+1]∑
n

−
[r]∑
n

[s+1]∑
n


=

r∑
j=0

j∑
k=0

[ ∑
1≤v<u≤n

(
E[s−k]

n E[r−j]
n − E[s−j]

n E[r−k]
n

)(j−k−1∑
t=0

aj−1−t
v ak+t

u

)
(av − au)

2

]
.

Proof. Whenj > k, we have

n∑
i=1

ak
i

n∑
i=1

aj+1
i −

n∑
i=1

aj
i

n∑
i=1

ak+1
i(2.8)

=
1

2

n∑
v=1

n∑
u=1

(
ak

va
j+1
u + aj+1

v ak
u − aj

va
k+1
u − ak+1

v aj
u

)
=

1

2

n∑
v=1

n∑
u=1

[
ak

va
k
u

(
aj−k+1

v + aj−k+1
u − aj−k

v au − ava
j−k
u

)]
=

1

2

n∑
v=1

n∑
u=1

[
ak

va
k
u

(
aj−k

v − aj−k
u

)
(av − au)

]
=

∑
1≤v<u≤n

[
ak

va
k
u

(
aj−k

v − aj−k
u

)
(av − au)

]
and

(2.9)
(
aj−k

v − aj−k
u

)
= (av − au)

j−k−1∑
t=0

aj−k−1−t
v at

u.

Therefore

(2.10)
n∑

i=1

ak
i

n∑
i=1

aj+1
i −

n∑
i=1

aj
i

n∑
i=1

ak+1
i =

∑
1≤v<u≤n

[(
k−j−1∑

t=0

aj−1−t
v ak+t

u

)
(av − au)

2

]
.

Whenk > j, we have

(2.11)
n∑

i=1

ak
i

n∑
i=1

aj+1
i −

n∑
i=1

aj
i

n∑
i=1

ak+1
i = −

∑
1≤v<u≤n

[(
k−j−1∑

t=0

aj+t
v ak−1−t

u

)
(av − au)

2

]
.

From Property 2, it is deduced that

(2.12) (r + 1)E[r+1]
n =

r∑
j=0

(
n∑

i=1

aj+1
i

)
E[r−j]

n

and

(2.13) (n + r)E[r]
n = nE[r]

n + rE[r]
n =

r∑
j=0

(
n∑

i=1

aj
i

)
E[r−j]

n .
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Hence, using the above formulas and notingE
[r−k]
n = 0 for k > r yields

(r + 1)(s + 1)

(
n + r

r + 1

)(
n + s

s + 1

) [s]∑
n

[r+1]∑
n

−
[r]∑
n

[s+1]∑
n

(2.14)

= (n + s)(r + 1)E[s]
n E[r+1]

n − (n + r)(s + 1)E[r]
n E[s+1]

n

=
s∑

k=0

(
n∑

i=1

ak
i

)
E[s−k]

n

r∑
j=0

(
n∑

i=1

aj+1
i

)
E[r−j]

n

−
r∑

j=0

(
n∑

i=1

aj
i

)
E[r−j]

n

s∑
k=0

(
n∑

i=1

ak+1
i

)
E[s−k]

n

=
s∑

k=0

r∑
j=0

(
n∑

i=1

ak
i

n∑
i=1

aj+1
i −

n∑
i=1

aj
i

n∑
i=1

ak+1
i

)
E[s−k]

n · E[r−j]
n

=
r∑

j=0

j∑
k=0

[ ∑
1≤v<u≤n

E[s−k]
n E[r−j]

n

(
j−k−1∑

t=0

aj−1−t
v ak+t

u

)
(av − au)

2

]

−
s∑

k=0

k∑
j=0

[ ∑
1≤v<u≤n

E[s−k]
n E[r−j]

n

(
k−j−1∑

t=0

aj+t
v ak−1−t

u

)
(av − au)

2

]

=
r∑

j=0

j∑
k=0

[ ∑
1≤v<u≤n

E[s−k]
n E[r−j]

n

(
j−k−1∑

t=0

aj−1−t
v ak+t

u

)
(av − au)

2

]

−
r∑

j=0

j∑
k=0

[ ∑
1≤v<u≤n

E[s−j]
n E[r−k]

n

(
j−k−1∑

t=0

aj−1−t
v ak+t

u

)
(av − au)

2

]

=
r∑

j=0

j∑
k=0

[ ∑
1≤v<u≤n

(
E[s−k]

n E[r−j]
n − E[s−j]

n E[r−k]
n

)
×

(
j−k−1∑

t=0

aj−1−t
v ak+t

u

)
(av − au)

2

]
,

which implies the expression (2.7). �

Property 4. If r, s ∈ N andr > s, then

(2.15) E[r−1]
n E[s]

n ≥ E[r]
n E[s−1]

n .

The equality in (2.15) holds if and only if at leastn−1 numbers equal zero among{a1, a2, . . . , an}.

Proof. From Property 1, we have

E[r−1]
n E[s]

n − E[r]
n E[s−1]

n(2.16)

= E[r−1]
n

(
E

[s]
n−1 + anE

[s−1]
n

)
−
(
E

[r]
n−1 + anE

[r−1]
n

)
E[s−1]

n
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= E[r−1]
n E

[s]
n−1 − E

[r]
n−1E

[s−1]
n

=

(
r−1∑
j=0

aj
nE

[r−1−j]
n−1

)
E

[s]
n−1 − E

[r]
n−1

(
s−1∑
j=0

aj
nE

[s−1−j]
n−1

)

=
s−1∑
j=0

aj
n

(
E

[r−1−j]
n−1 E

[s]
n−1 − E

[r]
n−1E

[s−1−j]
n−1

)
+ E

[s]
n−1

(
r−1∑
j=s

aj
nE

[r−1−j]
n−1

)
.

Since (2.15) holds forn = 1, it follows by induction that (2.15) holds forn. �

Property 5. If r, s, j, k ∈ N andr > s > j > k, then

(2.17) E[s−k]
n E[r−j]

n ≥ E[s−j]
n E[r−k]

n .

The equality in (2.17) is valid if and only if at leastn−1 numbers equal zero among{a1, a2, . . . , an}

Proof. From Property 4, ifr−(k+1) > s−(k+1), r−(k+2) > s−(k+2), . . . , r−j > s−j,
then

(2.18)
j∏

m=k+1

(
E[r−m]

n E[s−m+1]
n

)
≥

j∏
m=k+1

(
E[r−m+1]

n E[s−m]
n

)
.

This implies (2.17).
It is easy to see that the equality in (2.17) is valid. The proof is completed. �

Proof of Theorem 1.1.Combination of Property 3 and Property 5 easily leads to Theorem 1.1.
�

Remark 2.1. Finally, we pose an open problem: Give an explicit expression ofE
[r−1]
n E

[s]
n −

E
[r]
n E

[s−1]
n in terms ofa1, a2, . . . , an.
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