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ABSTRACT. A generalization of an inequality involving the generalized elementary symmetric
mean and its elementary proof are given.
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1. INTRODUCTION

Leta = (ai,as,- -+ ,a,) andr be a nonnegative integer, whergfor 1 < i < n are nonneg-
ative real numbers. Then
n
(1.1) EY =Ea) = Y e
iptigteotin=r, k=1
11,19, ,in >0 are integers

with EY = E%(a) = 1 forn > 1andEL’ = 0 for r < 0 orn < 0 s called the'th generalized
elementary symmetric function of
Therth generalized elementary symmetric mean o defined by

[r] [r]

l/
1.2) =Y = Gy

T
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In 1934, I. Schurl]b, p. 182] obtained the following
[r]

(1.3) Z(a):(n—l)!/---/ (Z::aixi)rdml---dmn_l,

n

wherer,, = 1—(x1+x2+- - -+x,_1) and the integral is taken over > 0fork =1,2,... ,n—1.
By using [1.B) and Cauchy integral inequality, he also proved that

2

P ] 5
(1.4) Y@ (@)= ()

In 1968, K.V. Menon([2] proved that fat = 2 orn > 3 andr = 1,2, 3, inequality (1.4) is
valid.

In [1], the generalized symmetric means of two variables was investigated.

In [3] and [4] a problem was posed: Does inequality|(1.4) hold for arbitharyc N?

In 1997, Zh.-H. Zhang generalized ([L.3) in [7] and also projred (1.4) by a similar proof as in
[5].

In [6], some inequalities of weighted symmetric mean were established.

In this paper, we shall obtain an identity relatiﬁgﬁf}(a) to E,[f](a) and give an elementary
proof of an inequality which generalizés ([L.4). Our main result is as follows.

Theorem 1.1.1f r,s € Nandr > s, then

[s] [r+1] [r] [s+1]
(1.5) D @)Y (@)= (a) Y (a).
The equality in(1.5) holds if and only ifu; = a; = - - - = a,,.

Letting s =  — 1 in inequality [1.5) leads to inequality (1.4).

2. PROOF OF THEOREM [1.]
To prove inequality[(1]5), the following properties tar! are necessary.

Property 1. If n,r € N, then

(2.1) EN =g 4 q,EY

and

(2.2) BN =>"a B
=0

Proof. If n =1 orr = 0, (2.3) holds trivially.
Whenn > 1 andr > 1, we have

i1t+ig+Fin=r n i1+ig+Fin=r n i1+ig+Fin=r—1 n
(2.3) E Hak’“ = E I_Ia,i,’c +ay E Halj.
i1yin, e in>0 k=1 i1 ig, 120 k=1 i1yin, e in>0 k=1
in=0

Combining the definition ofzl[! and [2.3), identity[(Z]1) follows.
Identity (2.2) can be deduced from the recurrencé of (2.1). O
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Property 2. If r is an integer, then

(2.4) (r+1)ELY = Z (Z ak+1> ErH.

Proof. It will be verified by induction. It is clear that identity (2.4) holds trivially for= 1.
Suppose identity (24) is true far— 1 and nonnegative integers
By (2.9), for0 < k < r, we have

Er[f_k] = 5 a/‘;LET[LT:Ik_j]J
=0
and ]
T G+ DB = a0, BN 2BV BN+ P EY
T~ 2B gy B gt B0

:ii g+k+1Er -l

k=0 7=0
According to the inductive hypothesis, for nonnegative integensd0 < j < r, we have

r—j n—1
25) (e DE S (z ) i)

k=0 \i=1
From Property [l and the above formula, we have
r+1
26)  (r+DES = (1)) alE
j=0
r r+1
(r—j+1)al BI 7t +Z]a3Er A
j=0
r r—j n—1 r
=> a <Z ‘“) EvT 43 G+ e B
j=0 k=0 \i=1 j=0

1
.
)
|
ol
Q
SQ
3
M2
Q
ST
+
=
\_/
=
Ll
=
_I_
]~
)
]!
=
Sg“
+
ol
+
[
2
Ll
<

k=0 j=0 i=1 k=0 j=0
r n—1 r—k
_ Z afﬂ + aﬁﬂ) < @%ET[:—{CJ})
k=0 \i=1 j=0
_ - ( - a§+1> ET[erk].
k=0 =1
This shows tha{ (2]4) holds fer. The proof is complete. O
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Property 3. If r,s € Nandr > s, then

[s] [r+1] r] [s+1]

2.7) <r+1><s+1>(fjf)(7§jf) 2 ZZ]

n

r j i k—1
= ZXJ: [ Z (ELs—k]ET[erj] _ ET[lsfj}ET[ffk]) <J ailtaﬁ+t> (ay — a“)2] .
j 0 t=

=0 k=0 [L1<v<u<n

Proof. Whenj > k, we have

n n n n
k J+l1 J k41
(2.8) E a; E a;’ — E a; E a;
i=1 =1 ; ;

== E E akal™ + @it ak — alaftt — ak“a])

v=1 u=1
n n
LSS et (@4 + a4 — af s — a0l )
1 v:l uzl
=523 [akal ()™ = ai7) (@, — a,)]
v=1 u=1
= > [ebal (@) —al ™) (0, —au)]
1<v<u<n
and
j—k—1
(29) (a7 —al™) = (@ —a) Y a7l
t=0
Therefore
n n ' n ' n k—j—1
@10) Yabd et oD addt = ) [( ) <>]
=1 i=1 i=1 i=1 1<v<u<n t=0

Whenk > j, we have

n n n n k—j—1
o .
(2.11) g a¥ E al™ — E aly aft=— a”t ) (ay — ay)?]
1=1 i=1 i=1 1=1 1<v<u<n

From Property 2, it is deduced that

(2.12) (r4+ 1EM = Z (Z agﬂ) Elr=)

and

(2.13) (n+r) By =nE] +rE] = (Z af‘) By,
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Hence, using the above formulas and notE!,[b_k] = 0for k > ryields

[s] [r+1] [r] [s+1]
+ +
(214) <r+1><s+1>(7j+f) (Zj) 2272

= (n+45)(r+ 1)EFEMY — (n 4 ) (s + 1)Er Elst

S

EE)me)e

k= i
r n s n
E J [r—4] k+1 [s—k]
@ En i En
7=0 i=1 =0
s T n n n n

_ k J+1 _ J k+1 [s—k] [r—j]
= E a; a; a; a; E E)

k=0 j=0 i=1 =1 =1 i=

I
<
<
1
—
g
2
|
=
=
4
<
|
ol
|
Q
S
L
L
Q
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+
~
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~—~
Q
e
|
Q
S
N~—
[\
—_

7j=0 k=0 L1<v<u<n t=0
r 7 j—k—1
S| 3 (T - o]
7=0 k=0 L[1<v<u<n t=0
o J
— Z (E[S—k]E[T il _ gls—=ilglr })

k-1
j—1—t k+t 2
X E a{) Q,, (au - au) )
t=0

which implies the expressiop (2.7).

Property 4. If r,s € Nandr > s, then

(2.15) Er-1EE > glripls-1],

The equality in[(2.15) holds if and only if at least 1 numbers equal zero amoki@; , as, . . .

Proof. From Property[1, we have

(2.16) Er-Ugll _ giigls=1]
= B (B, + ) - (L, + o,Ef ) B

J. Inequal. Pure and Appl. Mathb(4) Art. 108, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 ZHI-HUA ZHANG AND ZHEN-GANG XI1AO

n n—1""n
r—1 ‘ s—1
(St ) e, (L)
j=0 j=0
s—1 4 4
=S (B B ) 4 g (z GE).
7=0
Since [2.1p) holds for = 1, it follows by induction that[(2.15) holds for. O
Property 5. If r, 5,5,k € Nandr > s > j > k, then
(2.17) EB-MElr—l > pls-ilgir=k

The equality in[(2.1]7) is valid if and only if at least-1 numbers equal zero amoka;, as, . . ., a, }

Proof. From Property |4, if — (k+1) > s—(k+1),r— (k+2) > s— (k+2),...,r—j > s—J,
then

J J

(218) H (ET[Lr—m]ET[Ls—m—&-l] H E[r m+1 [s— m}) '
m=k+1 m=k+
This implies [2.1]).
It is easy to see that the equality [n (2.17) is valid. The proof is completed. O
Proof of Theorer T}1Combination of Property|3 and Propefty 5 easily leads to Theprem 1.1.

0
Remark 2.1. Finally, we pose an open problem: Give an explicit expressioEr[bT”ELs} —
EDEEYin terms ofay, as, . . . , a,.
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