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ABSTRACT. In this note the concept of lower and upper solutions combined with the nonlinear
alternative of Leray-Schauder type is used to investigate the existence of solutions for first order
discrete inclusions with nonlinear boundary conditions.
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1. INTRODUCTION

This note is concerned with the existence of solutions for the discrete boundary multivalued
problem

(1.1) Ay(i—1) € F(i,y(i)), ie[l,T]={1,2,...,T},

(1.2) L(y(0),y(T + 1)) =0,
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2 M. BENCHOHRA, S.K. NTOUYAS, AND A. OUAHAB

whereF : N x R — P(R) is a compact convex valued multivalued map @ndN? — R is a
nonlinear single-valued map.

Very recently Agarwakt al [3] applied the concept of upper and lower solutions combined
with the Leray-Schauder nonlinear alternative to a class of second order discrete inclusions sub-
jected to Dirichlet conditions. For more details on recent results and applications of difference
equations we recommend for instance the monographs by Agatwé]l], [2], Pachpatte [9]
and the references cited therein.

In this note we shall apply the same tool aslin [3] to first order discrete inclusions with
nonlinear boundary conditions which include the initial, terminal and periodic conditions. The
corresponding problem for differential inclusions was studied by Benchohra and Ntouyas in [4].

2. PRELIMINARIES

In this section, we introduce notation, definitions, and preliminary facts which are used
throughout the noteC'([0, 7], R) is the Banach space of all continuous functions friony’|
(discrete topology) int&® with the norm|y|| = sup;¢(o 1y [y(k)|. Let(X, |-|) be a Banach space.

A multivalued map : X — P(X) has convex (closed) valuesGf(x) is convex (closed) for
all z € X. G is bounded on bounded setgif B) is bounded inX for each bounded sé} of
X (i.e.sup,ep{sup{ly| : y € G(2)}} < 00).

G is called upper semicontinuous (u.s.c.) &nif for eachz, € X the setG(z) is a
nonempty, closed subset &f, and if for each open séf of X containingG(x,), there exists
an open neighbourhoat! of z, such thatG(M) C N. G is said to be completely continuous
if G(B) is relatively compact for every bounded subBeC X.

If the multivaluedG is completely continuous with nonempty compact values, thenu.s.c.
if and only if G has a closed graph (i.e,, — ., ¥n — Y«, yn € G(x,,) imply v, € G(z..)).

G has a fixed point if there i8 € X such thatr € G(x).

For more details on multivalued maps see the books of Deimniling [5] and Hu and Papageor-
giou [7].

Let us start by defining what we mean by a solution of problenj (1.[[) { (1.2).

Definition 2.1. A functiony € C([0,T],R), is said to be a solution df (1.1) - (1.2)jfsatisfies
the inclusionAy(i — 1) € F(i,y(2)) on{1,...,T} and the conditiorL(y(0),y(T + 1)) = 0.

For anyy € C([0, 7], R) we define the set
Spy ={v e C([0,T],R) : v(i) € F(i,y(z)) for t € {1,...,T}}.

Definition 2.2. A functiona € C([0,T + 1], R) is said to be a lower solution df (1.1) - (IL.2) if
for eachi € [0, 7+ 1] there exist®, (i) € F (i, a(i)) with Aa(i—1) < vy (i) andL(a(0), (T +
1)) < 0.

Similarly a functiong € C([0,7 + 1], R) is said to be an upper solution ¢f (I..1J— (1.2) if for
eachi € [0,T + 1] there existsn (i) € F(i,6(i)) with AB(i — 1) > (i) and L(5(0), (T +
1)) > 0.

Our existence result in the next section relies on the following fixed point principle.

Lemma 2.1(Nonlinear Alternativel[6]) Let X be a Banach space withi C X convex. Assume
U is an open subset ¢f with0 € U andG : U — P(C) is a compact multivalued map, u.s.c.
with convex closed values. Then either,

(i) G has a fixed point ifi/; or

(i) thereis a pointu € OU and X € (0,1) withu € AG(u).
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3. MAIN RESULT
We are now in a position to state and prove our existence result for the prgblem (1.7) — (1.2).
We first list the following hypotheses:
(H1) y — F(i,y) is upper semicontinuous for alke [1, T7;
(H2) for eachy > 0, there exists, € C'([1, 7], R, ) such that
I1F(@,y)|| = sup{|v| : v € F(i,y)} < ¢,(i) forall |y| <g and i€ [1,T];

(H3) there existv and? € C'([0,T + 1], R), lower and upper solutions for the probleim (1.1)
—(1.2) such thaty < f3;

(H4) L is a continuous single-valued map(in y) € [«(0), 3(0)] x [a(T' 4+ 1), 3(T' +1)] and
nonincreasing iy € [a(T + 1), 3(T + 1)].

Theorem 3.1. Assume that hypotheses (H1) — (H4) hold. Then the profplein (1.I)]- (1.2) has at
least one solutiory such that

a(t) <y(i) < pi) forall i e[1,T].

Proof. Transform the problem (J.1) £ (1.2) into a fixed point problem. Consider the following
modified problem

(3.1) Ay(i — 1) +y(i) € Fi(i,y(i)), on[1,T]
(3.2) y(0) =7(0,y(0) — L(y(0), y(T'+ 1)),
where

Fl(iv y) = F(% T(iv y)) + T(ia y),
7(i,y) = max(c(z), min(y, 5(z))
and
y(i) = 7(i,y).

A solution to [3.1) —[(3:) is a fixed point of the operafér: C([1,T],R) — P(C([1,T],R))
defined by:

N(y) = {h e C([1,T)) : (k) = y(0) + > lg) +3D) = D> w(l), g€ S”}w,y},

o<i<k 0<i<k

where
Shy={v € Shy 1 v(i) > vi(i) a.e. onA; and v(i) < va(i) on A},

Sky={v e C([L,T]) :v(i) € F(i,(y)(3)) for i € [1,T]},
Ay ={i e [1,T]:y(i) < a(i) < Bi)}, Ay={i € [1,T]:a(i) < p(i) <y(i)}.

Remark 3.2. Notice thatF7 is an upper semicontinuous multivalued map with compact convex
values, and there existse C([1,T],R") such that

[F1 (2, y)|| < 6(i) + max ( sup |a(i)], sup |ﬁ(i)l) :

1€[1,T) 1€[1,T)
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We shall show thatV satisfies the assumptions of Lemma] 2.1. The proof will be given in
several steps.

Step I N(y) is convex for eacly € C([1,7],R). )
Indeed, ifh,, h, belong toN(y), then there exisy,, g € S such that for eack € [1,T]
we have

hi(k) = y(0)+ D s+ = > wl), i=1.2.

0<i<k 0<i<k
Let0 < d < 1. Then for eaclt € [1,T] we have

(dhy + (1 = d)h) (k) = y(0) + Y [dgr (1) + (1 = d)go(D) + 7D = > (D).

O<i<k o<i<k
SinceS*};,1 7 Is convex (becausk; has convex values) then

dhy + (1 — d)hs € N(y).

Step 2 N maps bounded sets into bounded setS{fi, 7], R).

Indeed, it is enough to show that for eagh- 0 there exists a positive constatitsuch that
foreachy € B, = {y € C([1,T],R) : ||y|]|sc < ¢} One hag|N(y)||oc < ¢*.

Lety € B, andh € N(y) then there existg € S}W such that for each € [1,7] we have

hk) = y(0) + Y [g0) +50] = Y y(D)-

o<i<k 0<i<k

By (H2) we have for eache [1,T]

(k)] < [y(O) + > lgOI+ 1]+ 1y
< max(|a(0)],[8(0)]) + klldglloo

+ hmax (q, sup la(i)], sup Iﬁ(i)l) kg0

i€[1,T) 1€[1,T)
Step 3 N maps bounded set into equicontinuous sets(@f, 7], R).

Let ki, ko € [1,T], k1 < ky and B, be a bounded set &f([1,77) as in Step 2. Ley € B,
andh € N(y) then there existg € S}, such that for each € [1, 7] we have

h(k) =y(0) + Y lg@) +50] = > y().

Then
h(ks) = h(k)l < ) (lgD+ 0N+ D lw@)l.

k1<l<ka k1 <l<ko

As k, — kq the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem we can conclude
that N : C([1,7],R) — P(C([1,T],R)) is a completely continuous multivalued map.

Step 4: A priori bounds on solutions exist.
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Lety € C([1,T],R) andy € AN (y) for some\ € (0,1). Then

y(k) = A <y<0> - >+ > [g<l>+y<m>.

o<i<k o<i<k
Hence

k k k
(k)] < [y(O)] + > lgMI+ > g+ ly)]
=1 =1 =1
< max(|a(0)],[8(0)]) + T'l|¢]lo
+ T max ( sup [a(7)], sup |ﬁ(’i)|) +2) Jy(1)].

i€[1,7) 1€[1,T)

Using the Pachpatte inequality (seé [9, Theorem 2.5]) we get forieach , T']

T -1
()l <. 1+22H2],
=1 s=1
where
¢, = max(|a(0)[,[8(0)]) + T'l|¢|| + T max ( sup |a(i)|, sup |ﬁ(z)]> .
1€[1,T] i€1,T]
Thus
[y]loo < cu(1+T27HY) = M.
Set

U={yeC(LTLR) : [lyllc < M +1}.
As in Step 3 the operatdy : U — P(C([1,T],R)) is continuous and completely continuous.

Step 5 N has a closed graph.
Lety, € U — y., hy € N(y,), and h,, — h... We shall prove thak.. € N(y.).
hn € N(y,) means that there exisgs € S}, such that for eache J

I (1) = 40 (0) + >[92 () +T,(D] = ) wll).
0<li<s 0<i<e
We must prove that there exisjs € 5’;@* such that for each € [1, T
ha(i) = 9.(0) + Y 9.() +3.00] = > w0
0<i<e 0<li<e

Sincey, € U, k € N, then (H2) guarantees (séé [2, p. 262]) that there exists a compact set
Qof C([1,T],R) with {g,,} € Q. Thus there exists a subsequergg  } with v, — y. as

k — oo andy,, (i) € F(i,y.(i)) together with the map — F(i, y) upper semicontinuous for
eachi € N. Sincer andy are continuous, we have

H (hn ~5a(0) = 3" (1) - ynm])
- (m —5.0) Y [ - mm)

0<i<i

— 0, asn — oo.

[e.e]
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Consider the linear continuous operator (topologyNois the discrete topology)
g— (Tg)(@) = > g(l).

o<l
Moreover, we have that

(hn(i) —n(0) = D [alD) — yn(l)]) = D(gn) (1) € F1(i,yn(4)).

o<i<i
Sincey,, — ., it that

@mr%m—EHMWwMQZZhw>

o<i<i o<i<i

for someg, € St .
Lemmg 2.1 guarantees th&thas a fixed point which is a solution to problegm {3.1) —(3.2).

Step 6: The solutiorny of (3.1) —[3.2) satisfies
a(i) <y(i) < p(i) forall i e J.

Lety be a solution tg (3]1) § (3.2). We prove that

y(i) < (i) forall i e [1,T].
Assume thay — (3 attains a positive maximum di, 7] atk — 1 € [1,T] thatis,

(y — B)(k) = max{y(k) — B(k) : k € [1,T]} > 0.

By the definition ofr one has

Ay(k) + < F(t. 3(k)) + 5(k).
Thus there exists(i) € F(k, 3(k)), with v(k) < vs(k) such that

Ay(k — ) v(k) + B(k — 1) — y(k),

Ay(k —1) = v(k) — y(k) + (k)
< va(k) = (y(k) — B(k)) < v(k).
Using the fact that is an upper solution t¢ (1.1) £ (1.2) the above inequality yields
Bk) — Bk = 1) = vy(k)
> y(k) —y(k = 1).
Thus we obtain the contradiction
y(k —1) = Bk — 1) > y(k) — B(k).
Thus
y(i) < B(q) forall i € [1,T].
Analogously, we can prove that
y(i) > «a(i) forall i € [1,T].

This shows that the problern (B.1)[— (3.2) has a solution in the intéxval.
Finally, we prove that every solution df (3.1) - (8.2) is also a solutiof td (1.L) + (1.2). We
only need to show that

a(0) < y(0) — L(g(0),y(T + 1)) < 5(0).
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Notice first that we can prove
a(T+1) <y(T+1) < /(T +1).
Suppose now that(0) — L(5(0),5(T' + 1)) < «(0). Theny(0) = «(0) and
y(0) = L((0),5(T)) < (0).
SincelL is nonincreasing iy, we have
a(0) < a(0) = L(a(0), (T + 1)) < a(0) — L((0), (T + 1)) < (0),
which is a contradiction. Analogously, we can prove that
y(0) = L(y(0), y(T + 1)) < 5(0).
Theny is a solution to[(1]1) 4 (1]2). O

Remark 3.3. Observe thatifL(z,y) = az — by — ¢, then Theorerp 3]1 gives an existence result
for the problem
Ay(i) € F(iy(i)),  i€[l,T]={1,2,...,T},
ay(0) — by(T) = c
with a, b > 0, a + b > 0, which includes the periodic case = b = 1, ¢ = 0) and the initial
and the terminal problem.
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