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Abstract

In this note the concept of lower and upper solutions combined with the non-
linear alternative of Leray-Schauder type is used to investigate the existence of
solutions for first order discrete inclusions with nonlinear boundary conditions.
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1. Introduction
This note is concerned with the existence of solutions for the discrete boundary
multivalued problem

(1.1) ∆y(i− 1) ∈ F (i, y(i)), i ∈ [1, T ] = {1, 2, . . . , T},

(1.2) L(y(0), y(T + 1)) = 0,

whereF : N × R −→ P(R) is a compact convex valued multivalued map and
L : N2 → R is a nonlinear single-valued map.

Very recently Agarwalet al [3] applied the concept of upper and lower so-
lutions combined with the Leray-Schauder nonlinear alternative to a class of
second order discrete inclusions subjected to Dirichlet conditions. For more de-
tails on recent results and applications of difference equations we recommend
for instance the monographs by Agarwalet al [1], [2], Pachpatte [9] and the
references cited therein.

In this note we shall apply the same tool as in [3] to first order discrete in-
clusions with nonlinear boundary conditions which include the initial, terminal
and periodic conditions. The corresponding problem for differential inclusions
was studied by Benchohra and Ntouyas in [4].
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2. Preliminaries
In this section, we introduce notation, definitions, and preliminary facts which
are used throughout the note.C([0, T ], R) is the Banach space of all contin-
uous functions from[0, T ] (discrete topology) intoR with the norm‖y‖ =
supk∈[0,T ] |y(k)|. Let (X, |·|) be a Banach space. A multivalued mapG : X −→
P(X) has convex (closed) values ifG(x) is convex (closed) for allx ∈ X. G is
bounded on bounded sets ifG(B) is bounded inX for each bounded setB of
X (i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞).

G is called upper semicontinuous (u.s.c.) onX if for each x0 ∈ X the
setG(x0) is a nonempty, closed subset ofX, and if for each open setN of
X containingG(x0), there exists an open neighbourhoodM of x0 such that
G(M) ⊆ N. G is said to be completely continuous ifG(B) is relatively com-
pact for every bounded subsetB ⊆ X.

If the multivaluedG is completely continuous with nonempty compact val-
ues, thenG is u.s.c. if and only ifG has a closed graph (i.e.xn −→ x∗, yn −→
y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there isx ∈ X such
thatx ∈ G(x).

For more details on multivalued maps see the books of Deimling [5] and Hu
and Papageorgiou [7].

Let us start by defining what we mean by a solution of problem (1.1) – (1.2).

Definition 2.1. A functiony ∈ C([0, T ], R), is said to be a solution of (1.1) –
(1.2) if y satisfies the inclusion∆y(i − 1) ∈ F (i, y(i)) on {1, . . . , T} and the
conditionL(y(0), y(T + 1)) = 0.
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For anyy ∈ C([0, T ], R) we define the set

SF,y = {v ∈ C([0, T ], R) : v(i) ∈ F (i, y(i)) for i ∈ {1, . . . , T}}.

Definition 2.2. A functionα ∈ C([0, T + 1], R) is said to be a lower solution
of (1.1) – (1.2) if for each i ∈ [0, T + 1] there existsv1(i) ∈ F (i, α(i)) with
∆α(i− 1) ≤ v1(i) andL(α(0), α(T + 1)) ≤ 0.

Similarly a functionβ ∈ C([0, T + 1], R) is said to be an upper solution
of (1.1) – (1.2) if for each i ∈ [0, T + 1] there existsv2(i) ∈ F (i, β(i)) with
∆β(i− 1) ≥ v2(i) andL(β(0), β(T + 1)) ≥ 0.

Our existence result in the next section relies on the following fixed point
principle.

Lemma 2.1 (Nonlinear Alternative [6]). Let X be a Banach space withC ⊂
X convex. AssumeU is an open subset ofC with 0 ∈ U andG : U → P(C) is
a compact multivalued map, u.s.c. with convex closed values. Then either,

(i) G has a fixed point inU ; or

(ii) there is a pointu ∈ ∂U andλ ∈ (0, 1) with u ∈ λG(u).
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3. Main Result
We are now in a position to state and prove our existence result for the problem
(1.1) – (1.2). We first list the following hypotheses:

(H1) y 7−→ F (i, y) is upper semicontinuous for alli ∈ [1, T ];

(H2) for eachq > 0, there existsφq ∈ C([1, T ], R+) such that

‖F (i, y)‖ = sup{|v| : v ∈ F (i, y)} ≤ φq(i) for all |y| ≤ q and i ∈ [1, T ];

(H3) there existα andβ ∈ C([0, T + 1], R), lower and upper solutions for the
problem (1.1) – (1.2) such thatα ≤ β;

(H4) L is a continuous single-valued map in(x, y) ∈ [α(0), β(0)] × [α(T +
1), β(T + 1)] and nonincreasing iny ∈ [α(T + 1), β(T + 1)].

Theorem 3.1. Assume that hypotheses (H1) – (H4) hold. Then the problem
(1.1) – (1.2) has at least one solutiony such that

α(i) ≤ y(i) ≤ β(i) for all i ∈ [1, T ].

Proof. Transform the problem (1.1) – (1.2) into a fixed point problem. Consider
the following modified problem

(3.1) ∆y(i− 1) + y(i) ∈ F1(i, y(i)), on [1, T ]

(3.2) y(0) = τ(0, y(0)− L(y(0), y(T + 1)),
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where
F1(i, y) = F (i, τ(i, y)) + τ(i, y),

τ(i, y) = max(α(i), min(y, β(i))

and
y(i) = τ(i, y).

A solution to (3.1) – (3.2) is a fixed point of the operatorN : C([1, T ], R) −→
P(C([1, T ], R)) defined by:

N(y) =

{
h ∈ C([1, T ]) : h(k) = y(0) +

∑
0<l<k

[g(l) + y(l)]

−
∑

0<l<k

y(l), g ∈ S̃1
F,y

}
,

where

S̃1
F,y = {v ∈ S1

F,y : v(i) ≥ v1(i) a.e. onA1 and v(i) ≤ v2(i) on A2},

S1
F,y = {v ∈ C([1, T ]) : v(i) ∈ F (i, (y)(i)) for i ∈ [1, T ]},

A1 = {i ∈ [1, T ] : y(i) < α(i) ≤ β(i)}, A2 = {i ∈ [1, T ] : α(i) ≤ β(i) < y(i)}.
Remark 1. Notice thatF1 is an upper semicontinuous multivalued map with
compact convex values, and there existsφ ∈ C([1, T ], R+) such that

‖F1(i, y)‖ ≤ φ(i) + max

(
sup

i∈[1,T ]

|α(i)|, sup
i∈[1,T ]

|β(i)|

)
.
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We shall show thatN satisfies the assumptions of Lemma2.1. The proof
will be given in several steps.

Step 1: N(y) is convex for eachy ∈ C([1, T ], R).
Indeed, ifh1, h2 belong toN(y), then there existg1, g2 ∈ S̃1

F,y such that for
eachk ∈ [1, T ] we have

hi(k) = y(0) +
∑

0<l<k

[gi(l) + y(l)]−
∑

0<l<k

y(l), i = 1, 2.

Let 0 ≤ d ≤ 1. Then for eachk ∈ [1, T ] we have

(dh1 + (1− d)h2)(k) = y(0) +
∑

0<l<k

[dg1(l) + (1− d)g2(l) + y(l)]−
∑

0<l<k

y(l).

SinceS̃1
F1,y is convex (becauseF1 has convex values) then

dh1 + (1− d)h2 ∈ N(y).

Step 2: N maps bounded sets into bounded sets inC([1, T ], R).
Indeed, it is enough to show that for eachq > 0 there exists a positive

constant̀ ∗ such that for eachy ∈ Bq = {y ∈ C([1, T ], R) : ‖y‖∞ ≤ q} one
has‖N(y)‖∞ ≤ `∗.

Let y ∈ Bq andh ∈ N(y) then there existsg ∈ S̃1
F,y such that for each

k ∈ [1, T ] we have

h(k) = y(0) +
∑

0<l<k

[g(l) + y(l)]−
∑

0<l<k

y(l).
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By (H2) we have for eachi ∈ [1, T ]

|h(k)| ≤ |y(0)|+
k∑

l=1

|g(l)|+
k∑

l=1

|ȳ(l)|+
k∑

l=1

|y(l)|

≤ max(|α(0)|, |β(0)|) + k‖φq‖∞

+ k max

(
q, sup

i∈[1,T ]

|α(i)|, sup
i∈[1,T ]

|β(i)|

)
+ kq := `∗.

Step 3: N maps bounded set into equicontinuous sets ofC([1, T ], R).

Let k1, k2 ∈ [1, T ], k1 < k2 andBq be a bounded set ofC([1, T ]) as in Step
2. Let y ∈ Bq andh ∈ N(y) then there existsg ∈ S̃1

F,y such that for each
k ∈ [1, T ] we have

h(k) = y(0) +
∑

0<l<k

[g(l) + y(l)]−
∑

0<l<k

y(l).

Then
|h(k2)− h(k1)| ≤

∑
k1<l<k2

[|g(l)|+ |y(l)|] +
∑

k1<l<k2

|y(l)|.

As k2 −→ k1 the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem

we can conclude thatN : C([1, T ], R) −→ P(C([1, T ], R)) is a completely
continuous multivalued map.

Step 4: A priori bounds on solutions exist.
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Let y ∈ C([1, T ], R) andy ∈ λN(y) for someλ ∈ (0, 1). Then

y(k) = λ

(
y(0)−

∑
0<l<k

y(l) +
∑

0<l<k

[g(l) + y(l)]

)
.

Hence

|y(k)| ≤ |y(0)|+
k∑

l=1

|g(l)|+
k∑

l=1

|ȳ(l)|+
k∑

l=1

|y(l)|

≤ max(|α(0)|, |β(0)|) + T‖φ‖∞

+ T max

(
sup

i∈[1,T ]

|α(i)|, sup
i∈[1,T ]

|β(i)|

)
+ 2

k∑
l=1

|y(l)|.

Using the Pachpatte inequality (see [9, Theorem 2.5]) we get for eachk ∈ [1, T ]

|y(k)| ≤ c∗

[
1 + 2

T∑
l=1

l−1∏
s=1

2

]
,

where

c∗ = max(|α(0)|, |β(0)|) + T‖φ‖∞ + T max

(
sup

i∈[1,T ]

|α(i)|, sup
i∈[1,T ]

|β(i)|

)
.

Thus
‖y‖∞ ≤ c∗(1 + T2T+1) := M.
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Set
U = {y ∈ C([1, T ], R) : ‖y‖∞ < M + 1}.

As in Step 3 the operatorN : U −→ P(C([1, T ], R)) is continuous and com-
pletely continuous.

Step 5: N has a closed graph.
Let yn ∈ U −→ y∗, hn ∈ N(yn), and hn −→ h∗. We shall prove that

h∗ ∈ N(y∗).

hn ∈ N(yn) means that there existsgn ∈ S̃1
F,yn

such that for eacht ∈ J

hn(i) = yn(0) +
∑

0<l<i

[gn(l) + yn(l)]−
∑

0<l<i

yn(l).

We must prove that there existsg∗ ∈ S̃1
F,y∗

such that for eachk ∈ [1, T ]

h∗(i) = y∗(0) +
∑

0<l<i

g∗(l) + y∗(l)]−
∑

0<l<i

y∗(l).

Sinceyn ∈ U, k ∈ N, then (H2) guarantees (see [2, p. 262]) that there exists a
compact setΩ of C([1, T ], R) with {gn} ∈ Ω. Thus there exists a subsequence
{ynm} with ynm → y∗ as k → ∞ andynm(i) ∈ F (i, ym(i)) together with
the mapy → F (i, y) upper semicontinuous for eachi ∈ N. Sinceτ andy are
continuous, we have∥∥∥∥∥
(

hn − yn(0)−
∑

0<l<i

[yn(l)− yn(l)]

)
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−

(
h∗ − y∗(0)

∑
0<l<i

[y∗(l)− y∗(l)]

)∥∥∥∥∥
∞

−→ 0, as n →∞.

Consider the linear continuous operator (topology onN is the discrete topology)

Γ : C([1, T ], R) −→ C([1, T ], R)

g 7−→ (Γg)(i) =
∑

0<l<i

g(l).

Moreover, we have that(
hn(i)− yn(0)−

∑
0<l<i

[yn(l)− yn(l)]

)
= Γ(gn)(i) ∈ F1(i, yn(i)).

Sinceyn −→ y∗, it that(
h∗(i)− y∗(0)−

∑
0<l<i

[y∗(l)− y∗(l)

)
=
∑

0<l<i

g∗(l)

for someg∗ ∈ S̃1
F,y∗.

Lemma2.1guarantees thatN has a fixed point which is a solution to problem
(3.1) – (3.2).

Step 6: The solutiony of (3.1) – (3.2) satisfies

α(i) ≤ y(i) ≤ β(i) for all i ∈ J.
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Let y be a solution to (3.1) – (3.2). We prove that

y(i) ≤ β(i) for all i ∈ [1, T ].

Assume thaty − β attains a positive maximum on[1, T ] atk − 1 ∈ [1, T ] that
is,

(y − β)(k) = max{y(k)− β(k) : k ∈ [1, T ]} > 0.

By the definition ofτ one has

∆y(k) + y(k) ∈ F (t, β(k)) + β(k).

Thus there existsv(i) ∈ F (k, β(k)), with v(k) ≤ v2(k) such that

∆y(k − 1) = v(k) + β(k − 1)− y(k),

∆y(k − 1) = v(k)− y(k̄) + β(k)

≤ v2(k)− (y(k)− β(k̄)) < v2(k).

Using the fact thatβ is an upper solution to (1.1) – (1.2) the above inequality
yields

β(k)− β(k − 1) ≥ v2(k)

> y(k)− y(k − 1).

Thus we obtain the contradiction

y(k − 1)− β(k − 1) > y(k)− β(k).
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Thus
y(i) ≤ β(i) forall i ∈ [1, T ].

Analogously, we can prove that

y(i) ≥ α(i) for all i ∈ [1, T ].

This shows that the problem (3.1) – (3.2) has a solution in the interval[α, β].

Finally, we prove that every solution of (3.1) – (3.2) is also a solution to (1.1)
– (1.2). We only need to show that

α(0) ≤ y(0)− L(y(0), y(T + 1)) ≤ β(0).

Notice first that we can prove

α(T + 1) ≤ y(T + 1) ≤ β(T + 1).

Suppose now thaty(0)− L(y(0), y(T + 1)) < α(0). Theny(0) = α(0) and

y(0)− L(α(0), y(T )) ≤ α(0).

SinceL is nonincreasing iny, we have

α(0) ≤ α(0)− L(α(0), α(T + 1)) ≤ α(0)− L(α(0), y(T + 1)) < α(0),

which is a contradiction. Analogously, we can prove that

y(0)− L(y(0), y(T + 1)) ≤ β(0).

Theny is a solution to (1.1) – (1.2).
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Remark 2. Observe that ifL(x, y) = ax − by − c, then Theorem3.1gives an
existence result for the problem

∆y(i) ∈ F (i, y(i)), i ∈ [1, T ] = {1, 2, . . . , T},

ay(0)− by(T ) = c,

with a, b ≥ 0, a + b > 0, which includes the periodic case(a = b = 1, c = 0)
and the initial and the terminal problem.

http://jipam.vu.edu.au/
mailto:
mailto:benchohra@yahoo.com
mailto:
mailto:sntouyas@cc.uoi.gr
mailto:
mailto:agh_ouahab@yahoo.fr
http://jipam.vu.edu.au/


Upper and Lower Solutions
Method for Discrete Inclusions

with Nonlinear Boundary
Conditions

M. Benchohra, S.K. Ntouyas and
A. Ouahab

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 17

J. Ineq. Pure and Appl. Math. 7(3) Art. 105, 2006

http://jipam.vu.edu.au

References
[1] R.P. AGARWAL, Difference Equations and Inequalities, Marcel Dekker,

New York, 1992.

[2] R.P. AGARWAL, D. O’REGANAND P.J.Y. WONG,Positive Solutions of
Differential, Difference and Integral Equations, Kluwer Academic Publish-
ers, Dordrecht, 1999.

[3] R.P. AGARWAL, D. O’REGANAND V. LAKSHMIKANTHAM, Discrete
second order inclusions,J. Difference. Equ. Appl.,9 (2003), 879–885.

[4] M. BENCHOHRA AND S.K. NTOUYAS, The lower and upper solutions
method for first order differential inclusions with nonlinear boundary con-
ditions,J. Inequal. Pure Appl. Math.,3(1) (2002), Art. 14, 8 pp. [ONLINE
http://jipam.vu.edu.au/article.php?sid=166 ].

[5] K. DEIMLING, Multivalued Differential Equations, De Gruyter, Berlin,
1992.

[6] J. DUGUNDJI AND A. GRANAS, Fixed Point Theory, Mongrafie Mat.
PWN, Warsaw, 1982.

[7] Sh. HU AND N. PAPAGEORGIOU,Handbook of Multivalued Analysis,
Volume I: Theory, Kluwer Academic Publishers, Dordrecht, 1997.

[8] B.G. PACHPATTE, Bounds on certain integralinequalities,J. Inequal. Pure
Appl. Math.,3(3) (2002), Art. 47. [ONLINE:http://jipam.vu.edu.
au/article.php?sid=199 ]

http://jipam.vu.edu.au/
mailto:
mailto:benchohra@yahoo.com
mailto:
mailto:sntouyas@cc.uoi.gr
mailto:
mailto:agh_ouahab@yahoo.fr
http://jipam.vu.edu.au/
http://jipam.vu.edu.au/article.php?sid=166
http://jipam.vu.edu.au/article.php?sid=199
http://jipam.vu.edu.au/article.php?sid=199


Upper and Lower Solutions
Method for Discrete Inclusions

with Nonlinear Boundary
Conditions

M. Benchohra, S.K. Ntouyas and
A. Ouahab

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 17

J. Ineq. Pure and Appl. Math. 7(3) Art. 105, 2006

http://jipam.vu.edu.au

[9] B.G. PACHPATTE,Inequalities for Finite Difference Equations, Marcel
Dekker, New York, 2002.

http://jipam.vu.edu.au/
mailto:
mailto:benchohra@yahoo.com
mailto:
mailto:sntouyas@cc.uoi.gr
mailto:
mailto:agh_ouahab@yahoo.fr
http://jipam.vu.edu.au/

	Introduction
	Preliminaries
	Main Result

