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Abstract

In this note the concept of lower and upper solutions combined with the non-
linear alternative of Leray-Schauder type is used to investigate the existence of
solutions for first order discrete inclusions with nonlinear boundary conditions.
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This note is concerned with the existence of solutions for the discrete boundary
multivalued problem

(1.1) Ay(i—1) € F(i,y(i)), ie[l,T]={1,2,...,T},

(1.2) L(y(0),y(T + 1)) =0,

whereF' : N x R — P(R) is a compact convex valued multivalued map and
L : N? — R is a nonlinear single-valued map.

Very recently Agarwakt al [3] applied the concept of upper and lower so-
lutions combined with the Leray-Schauder nonlinear alternative to a class of
second order discrete inclusions subjected to Dirichlet conditions. For more de-
tails on recent results and applications of difference equations we recommend
for instance the monographs by Agarvedlal [1], [Z], Pachpatte ] and the
references cited therein.

In this note we shall apply the same tool as:ihtp first order discrete in-
clusions with nonlinear boundary conditions which include the initial, terminal
and periodic conditions. The corresponding problem for differential inclusions
was studied by Benchohra and Ntouyash [
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In this section, we introduce notation, definitions, and preliminary facts which
are used throughout the not€i([0, 7], R) is the Banach space of all contin-
uous functions from0, 7' (discrete topology) intdR with the norm|y| =
SUpepo, 7y |¥(K)|. Let(X, |-]) be a Banach space. A multivalued nGp X —
P(X) has convex (closed) valuesGf(z) is convex (closed) for alt € X. G is
bounded on bounded setsif B) is bounded inX for each bounded s&? of
X (i.e.sup,cp{sup{ly| : y € G(z)}} < o0).

G is called upper semicontinuous (u.s.c.) &nif for eachz, € X the
setG(xg) is a nonempty, closed subset &f, and if for each open seV of
X containingG(zy), there exists an open neighbourhodbfl of x, such that
G(M) C N. G is said to be completely continuousGf( B) is relatively com-
pact for every bounded subsBtC X.

If the multivaluedG is completely continuous with nonempty compact val-
ues, therz is u.s.c. if and only itz has a closed graph (i.e,, — z., y, —
Ys, Yn € G(x,) imply y. € G(z,)). G has a fixed point if there i8 € X such
thatz € G(x).

For more details on multivalued maps see the books of Deimiihgrid Hu
and PapageorgiouT.

Let us start by defining what we mean by a solution of problér) ¢ (1.2).
Definition 2.1. A functiony € C([0,7],R), is said to be a solution ofi(1) —

(1.2) if y satisfies the inclusiohy(i — 1) € F(i,y(¢)) on{1,...,T} and the
conditionL(y(0),y(T + 1)) = 0.
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For anyy € C([0,7],R) we define the set
Spy ={v e C([0,T],R) : v(i) € F(i,y(i)) for i € {1,...,T}}.

Definition 2.2. A functionae € C([0,T + 1], R) is said to be a lower solution
of (1.1) — (1.2) if for eachi € [0,T + 1] there exists, (i) € F(i, a(i)) with
Aali —1) < vy(i) and L(a(0), (T + 1)) < 0.

Similarly a functiong € C([0,T + 1],R) is said to be an upper solution
of (1.1) — (1.2) if for eachi € [0,T + 1] there exists, (i) € F(i,3()) with
AB(i — 1) > wy(i) and L(B(0), (T + 1)) > 0.

Our existence result in the next section relies on the following fixed point
principle.

Lemma 2.1 (Nonlinear Alternative [6]). Let X be a Banach space with C
X convex. Assumi is an open subset @f with0 € U andG : U — P(C) is
a compact multivalued map, u.s.c. with convex closed values. Then either,

(i) G has a fixed point ii/; or
(i) thereis a pointu € U and\ € (0, 1) withu € AG(u).
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We are now in a position to state and prove our existence result for the problem
(1.1 — (1.2). We first list the following hypotheses:

(H1) y — F'(i,y) is upper semicontinuous for alkc 1, 77;

(H2) for eachg > 0, there exists, € C([1,T],R.) such that

|F'(7,y)|| = sup{|v]| : v € F(i,y)} < ¢,(i) forall |y| <q andie[1,T]; .
Upper and Lower Solutions
Method for Discrete Inclusions

(H3) there existv and3 € C([0,T + 1],R), lower and upper solutions for the with Noglinede_\r_ Boundary
problem (L.1) — (1.2) such thaix < §3; onditions

. . . M. Benchohra, S.K. Ntouyas and
(H4) L is a continuous single-valued map (in,y) € [«(0),5(0)] x [a(T + A. Ouahab

1), 8(T + 1)] and nonincreasing in € [«(T + 1), 5(T + 1)].

Theorem 3.1. Assume that hypotheses (H1) — (H4) hold. Then the problem Title Page
(1.72) — (1.2) has at least one solutiopsuch that Contents
a(t) <y(i) < p(i) forall i e [1,T]. 44 >
Proof. Transform the problenil(1) — (1.2) into a fixed point problem. Consider 4 d
the following modified problem Go Back
(3.1) Ay(i —1) +y(i) € Fa(i,y(i)), on[1,T] Close
Quit
Page 6 of 17

(3.2) y(0) = 7(0,4(0) — L(y(0),y(T + 1)),
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where
(i, y) = F(i,7(i,y) + 7(i,y),
7(7,y) = max(a(7), min(y, 5(i))
and
yi) = (i, y).
A solution to 3.1) — (3.2) is a fixed point of the operata¥ : C([1,T],R) —
P(C([1,T],R)) defined by:

Upper and Lower Solutions

Meth_od for D_iscrete Inclusions
N(y) = {h € C(LT) (k) = y(0) + Y [a(1) +7(0) R T
o<i<k
M. Benchohra, S.K. Ntouyas and
_ Z y(l), g€ g}vy} A. Ouahab
o<i<k
where Title Page
1 1 ) ) ) ) Contents
Spy = {v € Spy 1 v(i) > vi(i) a.e. onA; and v(i) < vy(i) on Ay},
<44 >»
Shy = {v e CLT)) < v(i) € F(i, 7)) for i € [1,T]), « |
Ay ={ie[1,T]):y(i) < a(i) <p)}, Ao={i € [1,T]:a(i) < p(i) <y(i)}. o Back
Remark 1. Notice thatF; is an upper semicontinuous multivalued map with
compact convex values, and there exists C'([1, 7], R*) such that Close
Quit
1F1 (i, 9) || < 6(i) + max ( sup |a(i)], sup |ﬁ(i)|> : Page 7 of 17
1€[1,T) 1€[1,T)

J. Ineq. Pure and Appl. Math. 7(3) Art. 105, 2006

httrn//itinarm vit odir ann


http://jipam.vu.edu.au/
mailto:
mailto:benchohra@yahoo.com
mailto:
mailto:sntouyas@cc.uoi.gr
mailto:
mailto:agh_ouahab@yahoo.fr
http://jipam.vu.edu.au/

We shall show thatV satisfies the assumptions of Lemmd. The proof
will be given in several steps.

Step I N(y) is convex for eaclhy € C([1,T],R). i
Indeed, ifhy, hy belong toN (y), then there exisgy, g» € S}% such that for
eachk € [1,T] we have

hi(k) = y(0) + Y [0:() + 3] = > y(), i=1.2.
0<i<k 0<i<k
Let0 < d < 1. Then for eaclt € [1,T] we have

(dhy + (1= d)ho) (k) = y(0) + Y [dgr (1) + (1 = d)go () + 7D = > y(D)-

0<i<k 0<i<k
SinceS}T1 5 Is convex (becausg) has convex values) then

dhy + (1 — d)hg € N(y)

Step 2 N maps bounded sets into bounded setS'(fi, 7], R).

Indeed, it is enough to show that for eagh> 0 there exists a positive
constant’* such that for each € B, = {y € C([1,T],R) : |ly|«~ < ¢} one
has|N ()| < €. )

Lety € B, andh € N(y) then there existg € Sp; such that for each
k € [1,T] we have

h(k) =y(0)+ > [g)+70] = > w().

0<i<k 0<i<k
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By (H2) we have for eache [1,T]

k

(k)] < [y(O)] + D lgOI+ > 1l + D ly(D)

=1

< max(|a(0)[, |3(0)]) + k|| ¢q|| 0o

+ kmax (q, sup |a(i)], sup |ﬁ(z)|> + kq = ("

i€[1,T] i€[1,T]
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Step 3 N maps bounded set into equicontinuous sets(©0f, 7], R). with Nonlinear Boundary
Conditions
Letky, ky € [1,T], k1 < ky and B, be a bounded set 6f([1, 77) as in Step 1 Benchahra. KA .
2. Lety € B, andh € N(y) then there existg € Sk such that for each e oty e
k € [1,T] we have
_ Title Page
h(k) = y(0)+ > la(D)+ 7] = Y y(l). .
0<i<k 0<i<k Contents
Then 44 44
[h(ks) = h(kDI < D (@ +FON+ D vl < >
k1<l<ko k1 <l<ka
. . . . Go Back
As ko — k; the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem Close
we can conclude thatV : C([1,7],R) — P(C([1,T],R)) is a completely Quit

continuous multivalued map. ES——
age 9 0

Step 4: A priori bounds on solutions exist.
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Lety € C([1,T],R) andy € AN(y) for some\ € (0,1). Then

y(k) = A (y(O) = > D+ Y ) +W)]) :

0<i<k 0<i<k

Hence

k k k
ly(R)] < 1O+ D 191+ > 15D+ D 1y (D)
=1 =1 =1
< max([a(0)], [3(0)]) + T[#]] o

+ T max ( sup |a(i)], sup |ﬁ(i)|> 23 [y,

1€[1,7) i€[1,7)
Using the Pachpatte inequality (s€e Theorem 2.5]) we get for eaéhe [1, T

1+2§T:ﬁ2],

=1 s=1

ly(k)| < c.

where

¢, = max(|a(0)[,[6(0)]) + T[]l + T max (’Sup |u(2)], sup !ﬁ(@?\) :

1€[1,T 1€[1,T]

Thus
[lloo < (1 4+ T27+) 1= M.
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Set
U={yeC(L,T,R) : ||lyllc <M +1}.

As in Step 3 the operata¥ : U — P(C([1,T],R)) is continuous and com-
pletely continuous.

Step 5 N has a closed graph.
Lety, € U — v., h, € N(y,), and h, — h,. We shall prove that
he € N(y.).

hn € N(y,) means that there exisgs € S}Wﬂ such that for eache J

(D) = 4n(0) + D ga (D) + 7, (D] = D wa(D).

o<i<i o<i<i

We must prove that there exisfs € S‘}% such that for each € [1, 7]

o<i<i o<iI<i

Sincey,, € U, k € N, then (H2) guarantees (se& p. 262]) that there exists a
compact sef? of C([1,T],R) with {g,} € Q. Thus there exists a subsequence
{Yn, } Withy,  — y. as k — oo andy,, (i) € F(i,y,()) together with
the mapy — F(i,y) upper semicontinuous for ea¢ke N. Sincer andy are
continuous, we have

H (hn —y(0) = Y [Fal0) - yn(l)]>

O<i<i
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— 0, asn — oo.
0<i<i

- <h* —5.(0) Y () - y*<l>]>

oo

Consider the linear continuous operator (topologyda the discrete topology)

r:Cc(L,T,R) — C([1,T],R)

g— Tg)(i) = g(l).

o<i<i

Moreover, we have that

(hn(i) —y(0) = Y [Fa(1) - yn(l)]> = D(gn)(2) € F1(i, yn(9)).

o<iI<i

Sincey,, — ., it that

(h*(z') —5.000= > [w.) - y*(l)) = > 9.0

0<li< o<l

for someg, € 5%,
Lemma2.1guarantees that has a fixed point which is a solution to problem
(3.) - (3.2.

Step 6: The solutiony of (3.1) — (3.2) satisfies

a(i) <y(i) < p() forall i € J.
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Lety be a solution to%.1) — (3.2). We prove that
y(i) < B(i) forall i € [1,T)].

Assume thay — 3 attains a positive maximum dm, 7] atk — 1 € [1,T] that
is,
(y — B)(k) = max{y(k) — B(k) : k € [1,T]} > 0.

By the definition ofr one has
Ay(k) +y(k) € F(t, (k) + B(k).

Thus there exists(i) € F(k, 3(k)), with v(k) < v,(k) such that

Using the fact thats is an upper solution tol(1) — (1.2) the above inequality
yields

B(k) — Bk — 1) > va(k)
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Thus
y(i) < B(q) forall i € [1,T).

Analogously, we can prove that
y(i) > (i) forall i e [1,T].

This shows that the problem.(l) — (3.2) has a solution in the intervéd, 53].
Finally, we prove that every solution a3 (1) — (3.2) is also a solution tol(. 1)
—(1.2). We only need to show that

a(0) < y(0) — L(g(0),y(T + 1)) < 5(0).
Notice first that we can prove
a(T+1)<y(T+1) <p(T+1).
Suppose now that(0) — L(g(0),7(T + 1)) < «(0). Theny(0) = «(0) and
y(0) = L(a(0),5(T)) < (0).
SincelL is nonincreasing iy, we have
a(0) < a(0) = L(a(0),a(T + 1)) < a(0) — L(a(0),y(T + 1)) < (0),
which is a contradiction. Analogously, we can prove that
y(0) = L(y(0), (T + 1)) < 5(0).
Theny is a solution to {.1) — (1.2). O]
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Remark 2. Observe that if.(z,y) = ax — by — ¢, then Theoren3.1 gives an
existence result for the problem

Ay(i) € F(i,y(i)), ie[1,T)={1,2,...,T},

ay(0) — by(T) = c,

witha, b > 0, a 4+ b > 0, which includes the periodic case = b =1, ¢ = 0)
and the initial and the terminal problem.
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