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Abstract

We improve a bounds relating to Euler's formula for the case of a function with
higher-order convexity properties. These are used to improve estimates of the
error involved in the use of the trapezoidal formula for integrating such a func-

tion.
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Let f : I € R — R be a convex mapping defined on the interyaif real
numbers and, b € I with a < b. The following inequality:

a+b 1 b f(a)+ f(b)
1.1 < de < 2222 - L7
ay () =t [ o< 1
is known in the literature as Hadamard’s inequality for convex mappings. Note
that some of the classical inequalities for means can be derived frdjnf¢r Improvements of
. . . . . Euler-Trapezoidal Type
appropriate particular selections of the mappiigOver the last decade this Inequalities with Higher-Order
pair of inequalities {.1) have been improved and extended in a number of ways,  Convexity and Applications
including the derivation of estimates of the differences between the two sides of Dah-Yan Hwang

each inequality.
In [4], Dragomir and Agarwal have made use of the latter to derive bounds

for the error term in the trapezoidal formula for the numerical integration of an Title Page
integrable functionf such that f'|? is convex for someg > 1. Some improve- Contents
ments of their result have been derivedihdnd [/]. « b

Recently, Lj Dedic et al.§, Theorem 2 for- = 1] establish the following
basic result which was obtained for the difference between the two side of the < 4
right-hand Hadamard inequality. Go Back

Suppose¢ : [a,b] — R is areal-valued twice differentiable function.| ff'|4 p—
is convex for some > 1, then

) Quit
b o _ )3 " q " q7 39

(12) / f(t)dt o b 5 a[f(a) + f(b)]‘ S (b 12&) |:‘f (a)‘ ;— |f (b)‘ ] PageSof 16
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If | f”|? is concave, then

b b—a (b—a)?
[ st - 230 + s < ET

b
(1.3) % (“ )‘
2
In this paper, using Euler-trapezoidal formula, we shall generalize and im-
prove the inequalitiesl(2) and (L.3). Also, we apply the result to obtain a better
estimates of the error in the trapezoidal formula.
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In what follows, letB,(t), n > 0 be the Bernoulli polynomials an#, =
B,(0),n > 0, the Bernoulli numbers. The first few Bernoulli polynomials are

1 1 3 1
Bo(t) =1, Bl(ﬂ:f—ga Bz(t)=t2—t+g7 B3(f)=t3—§t2+§t,

. 1
— 44 _ 943 2 - Improvements of
B4(t) t 2ttt 30 Euler-Trapezoidal Type

Inequalities with Higher-Order
Convexity and Applications

and the first few Bernoulli numbers are

1 1 1 Dah-Yan Hwang
By=1, By=—--, By=-, B3=0, By=-——, B;=0.
0 ’ 1 27 2 67 3 9 4 307 5
For some details on the Bernoulli polynomials and the Bernoulli numbers, see Title Page
for example [, 5]. Contents
The relevant key properties of the Bernoulli polynomials are pp >
B! (t) =nB,_1(t), (n>1) < >
Bu(1+1t) = B,(t) =nt"™", (n>0) Go Back
(See for example,l| Chapter 23]). Lef,,(t) = [B,(t) — B,]/n!. We note that Close
Py, (t), Pay (%) and Py, (1 — £) do not change sign off).1). Quit
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By [2, p. 274], we have the following Euler-trapezoidal formula:

and by P, p. 275], we have

a+nh
@2 [ fla)ds=T(ri)

r—1

BQkh% (2k—1) (2k—1)
- Z (Qk’)‘ [f (a + nh) - f (CI,)]
k=1 ’

n—1 1
DD / Por()f® (a + h(t + k))dt,
k=0 "0

where

n—1

T(f;h)=nh [%f(a)—ka(a-l—nh)—I—%f(a—i—nh)

k=1

is estimates of integral’ o (2)da
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In this article, we adopt the terminology thétis (j + 2)-convex if f(0)
iS convex, so ordinary convexity is two-convexity. A corresponding definition
applies for(j + 2)-concavity.

For our results, we need the following identities. By, (%) = 0 for
j > 0; B; = B;(1) for j > 0 and integrating by parts, we have that the
following identities hold:

- ! t _ 2Byy1 By
() ‘““)_/0 For (5) h=—Grr @

B ! t 4 (BQr-i-Q (%) — B2r+2)
a  an(r) = /0 iP, (5) a= -t ~

i) am(r) = /01(1 Py (%) dt

_ 4(Bui2(3) — Borsa) B
(2r 4+ 2)! (2r+1)!

B27‘
2(2r)V

2(2r)

T

O R e

2 +2)!
avi(r) = /01(1 0P, (1 _ %) it

4 (Bar12 (3) — Barso)
(2r +2)!

BQT
2(2r)V

(V1)

2327’4—1 . BQT

2r+ 1)1 2(2r)"
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In the remainder of the paper we shall use the notation

b —a
L=ur{ [ s - OS5 i@ + o)

<= Boi(b — a)*

ar o) - f@k—”(a)]} :

As above, the empty sum for= 1 is interpreted as zero.

Theorem 3.1. Suppos¢ : [a,b] — R is a real-valued 2r)-times differentiable
function.

(@) If | 377 is convex fory > 1, then

@ 1< 0-a (1) (12 {|am<r>| AP @)

1
q

+ law(r)] |f(2’")(b)|q} .

+ (Jan(r)| + ay(r)]) - \f@” (#)

(b) If | 3|7 is concave for; > 1, then

(b— a)27"+1

(3.2) |I,| < 5
VIR PCH) lar(r)] - a + |an(r)] - (452)
X {l ()| |f ( poET
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Flav ()l larv (7)|

Proof. From (2.1) and the definition of,., we have

L] < (b— )+ / Par(t)£47) (0 + t(b — a))|dt

b r—a
_ (b—a)Z’"/ P, <b_ a)‘ ) ()| da

It follows from Holder’s inequality that

b R
(3.3) |1 < (/ P, (ﬁ_;)

1

)
([

Now,
(3.4) /b Py (%) dz = (b — a) /1 Pzr(t)dt’
_ (b—a)|By
2r)!

£ <|av1(7’)| bt Jay(r)] <“T+b>) ‘} |

Py, (Z:Z)‘ : |f(2r)(x)|qu>q
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and, by the convexity off(>")|?, we have

b J—
(3.5) /PQT (i_a)‘-|f(2r)(x)|qu

a+b
2

a

r —a
P (322)| 1
T

P, (b :;L)‘ ) (@) d

o (e (52)
) (2)

< b;“ [ /01(1 )Py (%) dt' ) (a)|?

| f e (3) - (55)

4 /01(1 — 0P, (1 - %) dt‘ F ()]0

! t @n ((at0\ [
e e (1= 5) e (50)]]

Thus, by 8.3), (3.4) and @.5) and the identities (II), (lll), (V) and (VI), we have
the inequality 8.1).
On the other hand, sindg(*")|? is concave implies thatf(*")| is concave

q

dt

-5

q
dt}

q
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and by Jensen’s integral inequality, we have

a+b

] < (b—a) [/

1
t a+b
_ 2r+1 S ] een . eTv
- (b a) {/ PQT (2) ‘ 'f ((1 t>a +i ( 2 )) ‘ dt Improvements of
1 0 b Euler-Trapezoidal Type
t + [ lities with Higher-Ord
b [ e (= D) e (o (S50) froversepecinivin
0
(b _ a)2r+1 [ /1 (t) ‘ Dah-Yan Hwang
<A Py (= |dt
2 0 2 .
‘fol P27"< ) ((1 _ t)a+t dt‘ Title Page
x | f2r) ; Contents
' p, (t dt‘
o (3) «“ b

1
+ / Pg,«(l——)dt‘ < 4
0

)fa P (1= 1) (1 = t)b + ¢ (252 dt‘ Go Back
x | fr) t Close
Jo Por (1= %) dt‘ Quit
Thus, by identities I, II, Ill, IV, V and VI, we have the inequalit$.0). O Page 11 of 16
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Corollary 3.2. Under the assumptions of Theor@. If f is a4-convex func-
tion, we have

b —a
@9 |[ s~ S 1@ + 1)
_ b—a [3IF @+ 10157 (45)] +3f”<>]i
- 12 16

and if f is a4-concave function, we have

(3.7)

[tz - 20 p@) + )
- (b . a)g [‘f” (11a+5b)} + ‘f” (5a+11b) }]
- 12 2 ’

Remark 3.1. Using the convexity dff”|?, we have

" (GTH?) L @l )

2 Y
Hence inequality %.6) is an improvement of inequality ().
Since| f”|? is concave implies thdff”| is concave, we have

1 1% 11a + 5b g Sa + 110 < | a+b
2 16 16 - 2 '

Thus inequality §.7) is an improvement of inequality ().
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To obtain estimates of the error in the trapezoidal formula, we apply the results

of the previous section on each interval from the subdivision
la,a+0b], [a+h,a+2h],....[a+ (n—1)h,a+ nh].

We define

a+nh
b= [ faxds =50 +
Theorem 4.1.1f f : [a,a + nh] — R is a (2r)-time differentiable function
(r>1).

(@) If | 7|7 is convex for some > 1, then

1\ (|Bo|\'"
< p2rtt [ 2
<1 (5)" ()

n

: {'%n(r)l [ f® (@ + (m — 1)h)|?

m=1

q

+<mnvﬂ+—mvvﬂ>wf@”(a+(;y_g)h)

+mwvnwﬂ”m+wmw}‘
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(b) If | £7)]2 is concave for some > 1, then

h2r+1 n
il < 5 3 flano)

x| @0 (C;I?I(IT’)(G +(m—1- fil:gr\)cin(r)](a +(m—1)- h)) ‘
Hary (r)] - ‘f@r) <|GVI(7“)|(a +mh) Ta‘lilégil (a+ (m— §)h)) ‘} |
Proof. Since

n a+mh
NASE:{/ F@)dz — Y [f(at (m— D)+ fla+mh))

m=1 +(m—1)h 2

r—1 B h2k
+ 2 oy O at mh) — £ (@ (m - 1>h>]} :
k=1 )
we have
- 2r+1 1 i | Bor | = L F@r) _ q
=Xt (5) (@) a1 @+ Gn = 1m)
m=1 :

q

+UMKWW+WWWD'k@0CVFGn—%)h)

1

+ |an(r)] - |f(2r)(a+mh)|q}q’
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by Theoren8.1(a) applied to each intervat + (m — 1)h, a + mh|. Obviously,
the proof (a) is complete.
The proof (b) is similar. O]

Remark 4.1. As the same discussion in the Sectipimheoremid.1forr = 1is
an improvement of Theorem 4 foe= 1 in [3].
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