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Abstract

We establish a direct proof of the well known equivalence between the Crandall-
Lions viscosity solution of the Hamilton-Jacobi equation w;+ H (w, ) = 0 and the
Kruzkov-Vol'pert entropy solution of conservation law u; + H(u), = 0. To reach
at the purpose we work directly with defining entropy and viscosity inequalities,
and using the front tracking method, and do not, as is usually done, exploit the
convergence of the viscosity method.
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In this paper we present a direct proof of the equivalence between the unique
viscosity solution{, 2, 3] of the Hamilton-Jacobi equation of the form

(1.1) wy + H(w,) =0, w(x,0)=wy(x),

and the unique entropy solution,[1 ] of the conservation law of the form

(1.2) w + H(u)e =0, u(z,0) = up(x),
A_Direct Proof of the
whereH : R — R is a given function of clas§”? andw, € BUC(R), the space Eqéx?;r;cgo?jttl\gﬁsgfthe
of all bounded uniformly continuous functions, amgle L'(R) N BV (R), the Conservation Laws and
space of all integrable functions of bounded total variation. It is well known Ham‘l’l'tf;"jg{j)‘:'gfjgzgzs o
that if uy = %wo € L'(R) N BV (R), the solutionsu(-,t) € BV (R),w(-,t) € One-Space Variable

BUC(R) of both problems are related by the transformationt) = w,(-, ).

. i . . X . M. Aaibid and A. Sayah
The usual proof in the one dimensional case of this relation exploits the known

results about existence, uniqueness, and convergence of the viscosity method.

As is usually done, the proof of this relation exploits the convergence of the Title Page
viscosity method; it is known that the solutionS w* of Contents
ul + H(u), = eus,, u(z,0)=uo(z) € L*(R)N BV (R), <« 33
and < >
wy + H(wS) = ew,, w(x,0)=uwy(x) € BUC(R), o Back
O bac
converge to the entropy and viscosity solutiens of (1.1) and (L.2) respec-
tively. If wo, € L*(R)NBV (R) anduy = -Lwy, the regularity ofs* permits the Close
relationu® = wg which, after letting: tend to0 gives the desired resuit= w,,. Quit

In this paper we are going to prove that the unique viscosity solutioh(1.1) Page 3 of 25
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is related to the unique entropy solutionf (1.2) by the identityu = w, - when

up = Lw, € L'(R) N BV(R)- by a direct analysis without using the conver-
gence of the viscosity method but instead using the defining viscosity and en-
tropy inequalities directly. We recall that a functione BUC(Rx]0,77) is a
viscosity solution of the initial problemi(1) if w(x,0) = wy(x) andw is simul-
taneously a (viscosity) sub-solution and a (viscosity) super-soluti®r jo, T'[:
Sub-solution For eachy € C'(Rx]0,TY),

if w — ¢ has alocal maximum point at a poifty, t,) € Rx]0,77,
thentpt<l’0, t()) + H(gOm(ZE(), to)) < 0.
Super-solution For eachp € C'(Rx]0,T),
if w — ¢ has a local minimum point at a poifity, to) € Rx|0, 77,
then QDt([Eg? to) —+ H(g@x<l‘0, to)) 2 0.
The existence, uniqueness and stability properties of the viscosity solutions
were systematically studied by Kikov, Crandall, Evans, Lions, Souganidis,
and Ishii, [7, 10, 4, 2, 12, 3].

We recall that: € L>(Rx]0, T[) is an entropy solution of the initial problem
(1.2 if: [lu(-,t) — uo(")||y @) — 0 ast — 0 and, for all convex entropy-
entropy flux pairdU, F) : R — R? with U"H’ = F’, we have:

o0:U(p) + 0.F(p) < oin the distributional sense.

In view that a continuous convex functidn can be a uniform limit of a se-
guence of convex piece-affine functions of the form

Uc(z) = ap + a1 + X;a;|z — k4|, k; constantse R,
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then the convex paif/, F') can be replaced by the Kikov-pair [/]
(I- =kl sgn(-, k)(H(-) — H(k)),

which is simple to manipulate. Therefore, using Ekav-pair, the definition of
the entropy solution can be presented as

/0 /R(’u — klpy +sgn(u — k) (H(u) — H(k))p,)dzdt > 0,

A Direct Proof of the
Equivalence Between the

for all positivep € C}(Rx]0,T][), and constants € R.

For the existence, uniqueness, and stability results of the entropy solution we Entropy Solutions of
, .. Conservation Laws and
refer to Lax [ J ]1 Vol pert [ ]1 and Krizkov [ ] Viscosity Solutions of

The main purpose of the present paper is to give a direct proof of the the Ham”g’n”e‘:’g;ggéﬂff‘;i)‘l’gs n
equivalence between viscosity solutions of the Hamilton-Jacobi equatin (

and entropy solutions of conservation laivd). There exist very few references RRGa LAl
which prove this relation without using the convergence of the viscosity method.
The main result of the paper is contained in the following theorem: Title Page
Theorem 1.1. Let w be the unique viscosity solution of the Hamilton-Jacobi Contents
equation (..1) and letu be the unique entropy solution to the conservation law « b
Uy + H(U)x = O, <4 >
with initial data d Go Back
0) =— .

u(,0) dxwo(x) Close

If wg € BUC(R), or u(z,0) € L*(R)N BV (R), thenw, (z, t) = u(zx,t) almost Quit

everywhere.
Page 5 of 25
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To show Theorem..1, we use the front tracking method, proposed firstly by
Dafermos §]. This is a numerical method for scalar conservation lawg)(
which yield exact entropy solutions in the initial datg is piecewise constant,
and the flux function piecewise linear. We then note that this method trans-
lates into a method that gives the exact viscosity solutions to the Hamilton-
Jacobi equationl(1) if wy, and H are piecewise linear and Lipschitz contin-
uous. This gives Theorem.1 in the case of piecewise linear/constant initial
data, and piecewise linear Hamiltonians/flux functions. To extend the result to
more general problems, we take the&’/L! closure of the set of the piecewise
linear/constant initial data, and the Sup/Lip norm closure of the set of the piece-
wise linear Hamiltonians/flux functions, utilizing stability estimates fror [
and [o] for conservation laws and Hamilton-Jacobi equations respectively. Note
that the front tracking method was translated to the system of conservation laws
(see, e.g.. 1], [11]).

The paper is organized as follows. In Sectibwe start by describing the
front tracking for scalar conservation lad.p), we treat firstly the linear case
in Subsectior?.1, and in Subsectiof.2 we extend the method to more general
problems. SectioB focuses on the Hamilton-Jacobi equatidnly, for which
we translate the front tracking construction. Also we start by translating for the
linear case in Subsectidhl, SubsectiorB.2 extends the construction to more
general Hamiltonians. The end of Subsectiohis devoted to the main result
of the paper (Theorerh.1).
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We start by describing front tracking for scalar conservation laws in the linear
case, i.e., we assume thdtis a piecewise linear continuous function ands
a piecewise constant function with bounded support taking a finite number of

values. To solve the initial value probler.{), A Direct Proof of the

Equivalence Between the

(2.1) U + H(u)x =0, U(ZE, 0) = UO(ZE), Entropy Solutions of
Co_nser\_/ation Ls_iws and
we start by solving the Riemann problem, i.e., wheyés given by Ham‘ﬂf)ﬁ?jgiﬁ";‘(‘;gig;g n
One-Space Variable
w, for =<0,
up(z) = M. Aaibid and A. Sayah
u,, for = >0.
By breakpoints ofH we mean the points wher®’ is discontinuous. Let Title Page
now H~ be the lower convex envelope af betweeny; andu,., i.e.,
Contents
H~ (u,u,u,) = sup{h(u)|h” (u) > 0, h(u) < H(u) betweeny, andu, }. « by
Let alsoH~ be the upper concave envelopefdtetween:,; andu,., < >
H™ (u,uy, uy) = inf{h(u)|h”(u) <0, h(u) > H(u) betweeny, andu, }. Go Back
Now set Close
H= U, Ugy Uy ), if U SUT7 :
H* (u, uy,u,) = ( ) _ Quit
H™ (u,ug,uy), if wy > .

Page 7 of 25
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SinceH is assumed to be piecewise linear and continuaiisyill also be linear
and continuous. We suppose tii&#t hasN — 1 breakpoints betweemn andu,.,
call theseus, ...,uy_; and setu; = v; anduy = wu,, such that; < w;,q if
w < w, andu; > u;yq if w; > u,.. We assume that;, € [—M, M], for all

1=0,1,..., N, whereM is constant. Now set
—00, if =0,
oi=q TSR =1, N1,
Ui41—Uq
+00, if i=N,

whereH; = H*(us; uy, u,) = H(uy;).
Let
Qi = {($,t>|0 <t< T7 andtO'i_l <x< tO'Z}

Then the following proposition holds:
Proposition 2.1. Set

u(x,t) =wu; for(x,t) € Q,
thenu is the entropy solution of the Riemann probleiri).

Proof. We show the proposition in the case whege< u,, the other case is

similar. First note that the definition of the lower convex envelope implies that

fork € [ui7ui+1]:

> Hip1 + (k= uip1)o;
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>

N | —

1
(H,L'+1 -+ Hz) —+ (k — §(Ui+1 —+ U1)> ;.

To show thatu is the entropy solution desired, we have to prove that for each
non-negative test functiop,

22) - / / (Iu— klgr + sen(u — K)(H(u) — H(k))ps)dodt

+/ |u(I,T) — k;|g0(x, T) — ‘uo(x) _ k‘g;(x, O)dx <0, A Direct Proof of the
R

Equivalence Between the
Entropy Solutions of
. . Conservation Laws and
whereQ)r = Rx [0, 7], andsgn(u—k) = 1 if u—k > 0,and = —1if u—k < 0. Viscosity Solutions of

The first term in £.2) is given by Hami"c;’n”e‘j’g;giﬂff‘;:ﬁgs L

M. Aaibid and A. Sayah

- / [t = Kor + sntu = K)(H () = H()o,)dsdt

N Title Page
-y / / s — Klon + san(us — B)(H(u;) — H(k))pndadt
i—1 Q; Contents
- / u(z, T) — lo(e, T) — Juolx) — klo(,0) « | »
K < >
N-1 .7
=3 [ ol — = fus = #) G0 Back
i=1 Y0
Cl
— (sgn(uip1 — k) (H (uip1) — H(k)) ose

—sgn(u; — k)(H(w;) — H(k)))p(oit, t)}dt, Quit
Page 9 of 25
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by Green’s formula applied to eaély. Considering the integrand in the last
term, we find that, it > w; ., Ork < u;

oi(|uirs — k| = |lu; — k) — (sgn(uirr — k) (H (uir1) — H(k))
—sgn(u; — k)(H(u;)) — H(k))) = 0.

Otherwise, we find that

oi(|ui1 — k| — |u; — k|) — (sgn(wipr — k) (H (wig1) A Direct Proof of the
Equivalence Between the
— H(/{:)) — sgn(ui — k) (H(u,) — H(k‘))) Entropy Solutions of
1 1 Conservation Laws and
— Viscosity Solutions of
o §<Hi+1 + H’) + (k o §(ui+1 + u’))al = 0’ Hamillton—.]la)(l:obi Ec;uations In
One-Space Variable
since fork € [u;, uit1], M. Aaibid and A. Sayah
H(k) > L H H k L
(k) > 5( i1+ Hy) + (k= Q(um + ) | oi. Title Page
This implies thatu, defined in Propositior2.1, is an entropy solution of the Contents
Riemann problem. O <« >»
For a more general initial problem, i.e., whenhas more than one discon- < 4
tinuous point, one defines a series of Riemann problems. Note that the initial Go Back
value function is piecewise constant, and the construction of the solutions of
this problem leads to defining the speeds = 1, ..., N — 1, for each Riemann Close
problem. Quit

Page 10 of 25
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The solutionu(z, t) will be piecewise constant, with discontinuities on lines em-
anating from the discontinuities af. These discontinuities are called fronts. In

fact, the solution consists of constant states separated by these discontinuities:

u(z,t) = uq, forz < z1(t),
w(z,t) =w;, fore, 1 <zx<ax;, i=2,..,N-—1,
u(z,t) = uy, forz > xzn_1(t),

where each front (path of discontinuity) is given by:
.Z‘Z(t) =g+ O'Z'(t - to).
The next proposition sums up the properties of the front tracking method.

Proposition 2.2. Let H be a continuous and piecewise linear continuous func-
tion with a finite number of breakpoints in the interyalM, M|, where M is
some constant. Assume th@gtis piecewise constant function with a finite num-
ber of discontinuities taking values in the intervalM, M]. Then the initial
value problem

w4+ H(u), =0, u(z,0)=uo(x)

has an entropy solution which can be constructed by front tracking. The con-
struction solutionu(z, t) is a piecewise constant function .offor eacht, and
u(z,t) takes values in finite set

{uo(x)} U {breakpoints of{ }.

Furthermore, there are only a finite number of collisions between fronts in
If H is another piecewise linear continuous function with a finite number of
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breakpoints in the interval-M, M| and %, is a piecewise constant function
with a finite number of discontinuities taking values in the intefval/, M],
setw to be the entropy solution to

U+ H(w), =0, u(x,0)="ag(x).
If ug andu, are in L'R N BV (R), then
(-, T) = (-, T)|| L1 w)
< lug — 0o|| 21wy + T (inf{ |uo| By w), [To|Bv @) }) I H — HI|| Lip(—n,01))-

The proof of Propositio2.2 can be found inf, 6].

To deal with the general case, i.e, when the data of the problem is given by
H € C? function andy, € L'(R) N BV (R),
we construct a piecewise linear continuous flii% as:

H((i+1)0) — H(id)
; ;
for 0 <wu < (i+1)d.

(2.3)  H’(u) = H(i6) + (u — id)
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Thenifn > § > 0,
|H" — H5’\Lip([—M,M]) < sup ’(Hn)/(“) - <H6)/(“)‘

u€[—M,M]

< sup [H'(u) — H'(v)]

lu—v|<n

< sup ]H”(r)|dr

lu—v|<n Ju
< H || zoe(—ar.amn-

Thus(H"), ey is a Cauchy sequence (by theép-norm).
If furthermore,uy(z) € BV (R) N L'(R), set

1 (i+1)h
(2.4) up(z) = E/ up(k)dr, for ih <z < (i+1)h,
ih
we have that,

. (i+1)h | lrnn
g — ol 1) = Z/h fuo(@) = E/ wp(=)dz|da

ih

1 fUHDR PG+
< zz: 5 /ih /ih |up(x) — up(2)|dzdz

1 [UHDR DR pa
il s

(i+1)h
<Zh | el < hluolaws
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Therefore ifh > [ > 0,

[|uf — ol |1 ) + |Juh — ol |1 )
(h =+ Duo|pvr) < 2h|ug| v (r)

llug — ugllzrmy <
<
Proposition 2.3. Letu”" be the entropy solution to
(2.5) ul + H'(u"), =0,  u™(z,0) = ul(x).
The sequence/”"), , is a Cauchy sequence inf (R) since

(2.8) |[u™" (- T) = u(, T)llprgy < (2h + TIH"|| o (- a1,3mym) luol 5y )

The proof of Propositior2.3 can be easily deduced from Propositiar?.
Now, using Propositio.3, we can define thé! limit

w= lim u™".
(n,h)—0

To prove thatu is the entropy solution of the problerth.f), we have to prove
thatu satisfies the entropy condition, i.e., for each test funcigron-negative
in C}(Qr), we have:

@7) ~ [ [(u= b+ senlu = R)(H @) — HE)p)dud

n /R fu(e, T) — (2, T) — Juo(x) - klg(z, 0)dz < 0.
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For the linear case we have:
(2.8) — / /(\u”’h — k|, + sgn(u™ — k) (H"(u™) — H"(k))p, )dxdt
Qr
—i—/ " (z, T) — k|p(x, T) — |uf(z) — k|p(z,0)dr < 0.
R

Since|u"" — k| — |u — k| and H" — H, then it easily follows that the limit
functionu is an entropy solution to

u + H(u), =0, u(z,0) = ug(x).

In the next section we will describe how the front tracking construction trans-
lates to the Hamilton-Jacobi equatidn ).
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We deal now with the Hamilton-Jacobi equation when the data of the problem

(1.2) is linear. Now set
(3.1) we+ H(w,) =0, w(x,0) = wo().

We assume thatl is piecewise linear and continuous, anglis also piecewise
linear and continuous, i.ea%wo is bounded and piecewise constant.

First we study the Riemann problem f&. {) which is the initial value prob-
lem
wer, for x <0,

wo(x) = wo(0) +
olz) o(0) { u,x, for x>0.

wherew; andu, are constants, c.f.2(3). Now letu(z,t) denote the entropy
solution of the corresponding Riemann problem for the conservation2ayv (
In the linear case, using the Hopf-Lax formui&]], the viscosity solution of
(3.2) is given by

(3.2) w(x,t) = wo(0) + zu(x,t) — tH(u(x,1)).

Note that in the case whelé is convex, this formula can be derived from the
Hopf-Lax formula for the solution3.1). Also note that H*)'(u) is monotone
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between:; andu,, hence we can define its inverse and set
u; for z < tmln((Hﬁ)( 1), (H )’( ),
((HY)) M z/t), for tmin((H*) (u), (H*) (u,)) < =,

u(z,t) =

((H?))"H(z/t), for a<tmax((H*) (w), (H?) (u)),

Uy for x> tmax((H" (w), (H*) (u,)).
Althoughw is discontinuous, a closer look at the formutadj reveals thatv
is uniformly continuous. Indeed, for fixeld w(x,t) is piecewise linear im, A Direct Proof of the
with breakpoints located at the frontsinHence, when computing, one only qu::’tf;';cgoﬁ‘j;‘g’ﬁsegfthe
needs to keep a record of hawchanges at the fronts. Along a front with speed Conservation Laws and
o w is given by \(iscosity Sqlutions. of

Hamilton-Jacobi Equations In

One-Space Variable
(3.3) w(oit,t) =wo(0) + t(osu; — H(u;)) = wo(0) + t(o5uip1 — H(uis1)).
M. Aaibid and A. Sayah

Now we can use the front tracking construction for conservation laws to define
a solution to the general initial value problef1). We track the fronts as for

the conservation law, but updatealong each front by3.3). Note that if for 1iE [PEEE
some(x t), w(zx,t) is determined by the solution of the Riemann problem at Contents
; th
(i,1;), then 4« 3
(34) w('xvt> :UJ(l’j,t]')—i-(iC—l'j>U(l’,t) - (t_tj)H<u($7t>>7 4 >
wherew is the solution of the initial value problem fo2.() with the initial Go Back
values given by
0) = d () Close
u(z,0) = 7 Wo(2). —_

Anal ly to Pr itioA.3we have:
alogously to Propositio e have Page 17 of 25
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Proposition 3.1. The piecewise linear function(z, t) is the viscosity solution
of (3.1). Furthermorew(z,t) is piecewise linear on a finite number of poly-
gons inR x R{. If wy is bounded and uniformly continuod&UC), then

w € BUC(R x [0,7T)) foranyT < oo. If H is another Lipschitz continu-
ous piecewise linear function with a finite number of breakpoints,amlthe
viscosity solution of

wy + H(w,) =0, w(x,0)=wy(z),

A Direct Proof of the

andw, andw, are bounded and uniformly continuo(BU ('), then Equivalence Between the
o Entropy $0Iuti0ns of
(3.5) [[w(, T) =w(-, T)|[pee(r) < |[wo —Wol[poew) +T" sup |H(u)— H(u)|, i

ul<M Hamilton-Jacobi Equations In

One-Space Variable

whereM = min({jwoa |, o). M. Aaibid and A. Sayah

Proof. We first show thatv is a viscosity solution. We have thatis deter-

mined by the solution of a finite number of Riemann problems at the points

- : . ) : : Title P
(T;, ;). Given a point(x, t) in wheret > 0, we can find g such thatuv(z, t) is 1 FeeE
determined by the Riemann problem solvedmti;). Contents
Setu = w,. Lety be aC'-function, assume thdtr, ¢y) is the maximum <« b
point of w — . Sincew is piecewise linear, we can define the following limits )
>
xliglg W, (z,t0) — (w0, t0) > 0, xlililo we (2, t0) — ¢a(To, o) < 0. Go Back
Or Close
Quit
(3.6) w < (o, to) < uy,
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whereu,, = limx%gt u(z,ty ). Set

Hu)—H(ur)
o if  w #u,,

Hﬁ,(ul), if  w =u,.
Sincew; < . (zo,t) < u,, the construction of7* implies that
(3.7) H(pz(z0,t0)) = H(w) + o(pz(x0,to) — w).

Now choos€gz, t) sufficiently close tqx, ty) such that

To— X
ty —t

g =

andw(z, t) is also determined by the solution of the Riemann problefaat,;),
andt < t.
If 5 > 0, we have:

(3.8) (w(wo, to) — w(w,t)) >

to—t Tt —t
Using (3.4) we have that
w(zo, to) = w(x,t) + (xo — 2)ur — (to — £) H (wy).
Hence, by letting — t,_, we find that

ou; — H(up) > @i(20,to) + 020, to)
> (o, to) + H(pz(x0,t0)) + ouy — H(w),

A Direct Proof of the
Equivalence Between the
Entropy Solutions of
Conservation Laws and
Viscosity Solutions of
Hamilton-Jacobi Equations In

One-Space Variable
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which implies thatw is a sub-solution. A similar argument is applied to show
thatw is super-solution.

If t, = 0, assume thatz,,0) is a maximum point ofv — . Setw;, =
lim, ;. u(z,0+). Then

w(z,t) = w(xe,0) + (z — xo)uy, — tH (wy),

whereo = (z — )/t and(z, t) is sufficiently close tdz,, 0). Now, using 8.7)

as before gives the conclusion. Note that this also demonstrates the solution of 5.t Proof of the

the Riemann problerrB(l). Equivalence Between the
- . . . Entropy Solutions of

Next we show the stability estimat@.f). This is a consequence of Proposi- Conservation Laws and
tion 1.4 in [LZ], which in our context says that Viscosity Solutions of

Hamilton-Jacobi Equations In
One-Space Variable

sup {|w(z,t) —w(y, t)| + 3RG(r — y)}

(x,y)€De M. Aaibid and A. Sayah
< sup {|wo(z) = Wo(y)| + 3RB(x — y)} +t sup |H(u) — H(u)|,

(z,y)€De |u|<M Title Page
whereg.(x — y) = [(x/e) for someC function 5(z) with 5(0) = 1 and Contents
B(x) = 0for |z| > 1. FurthermoreR = max(||w||, ||w]||). Consequently, « o

T,y)EDe
< lwo — wg || =) + 3R+t sup |H(u) — H(u)|. Go Back
lul<M Close
The inequality of the lemma now follows by noting thatis in BUC(R x Quit
[0,77), and taking the limit as — 0 on the left side. O
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Now we are able to explicitly construct a viscosity solution to all problems
of the type 8.1) whereH andu, are piecewise linear and Lipschitz continuous
with a finite number of breakpoints. In the next subsection we extend the result

to the more general case.

Now we pass to the general case. We assume that
H € C* andw, € BUC(R).

First, we construct a piecewise linear continuous Hamiltodigndefined as
follows:

H((i+1)0) — H(i9)
5 ;
for 0 <wu < (i+1)d.

(3.9)  H’(u) = H(i6) + (u — id)

and let
h, )
for ih<x<(i+1)h.

(3.10)  wh = wo(ih) + (v —ih)

Setw?®" to be the viscosity solution of

wi” + B (wl") = 0, wbh(z,0) = wl(x).
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Then forn > § > 0andh > [ > 0,
[0 (-, T) = w™ (-, T)|| ooy < |lwg — wpllzoe ey + T|s|t§]3w | H°(u) — H"(u)]
< hflwol|Lip + 0l HI| Lip-

Thus, the sequence®” is a Cauchy sequence ib*°. Since H° converges
uniformly to H on[— M, M], we can use the stability result of the Hamiltonians
in [3] to conclude that

t)=1li Ol t
w(z,t) o, (2,t)
is a viscosity solution of
(3.11) wy + H(w,) =0, w(z,0) =w(zx).

Now we can state the main result.

Theorem 3.2. Let w be the unique viscosity solution of the Hamilton-Jacobi
equation 8.11), wherew, is in BUC(R), and letu be the unique entropy solu-
tion to the conservation law

(312) up + H(u)m =0, U(SL’, 0) = UO(x)a
with initial data
(2) = Lu(a)
Ug\T ) = d 0 .

Then fort > 0, w,(x,t) = u(z,t) almost everywhere.
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Proof. Fix z, by construction we have that

W) = w0 + [y

as(d,h) — 0, we have

wo(z,t) — w(z, 1),
w(z,t) — w(z,t),
u?(y,t) — uly, ),

by the Lebesgue convergence theorem. Hence the theorem holds.

]
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