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ABSTRACT. Letp (f) andp. (f) denote respectively the order and the hyper order of an entire
function f. In this paper, we obtain some precise estimates of the hyper order of solutions of the
following higher order linear differential equations

k=1
Fo) 4 Z A (2) ehi®) pl) = g
3=0

and s
AT Z (Aj (2) eli(z) o B; (z)) f@9 =0
§=0
wherek > (2) ( =0,...,k—1) are nonconstant polynomials such tdagP; = n

2, P;
(j=0,....,k—1)andA, (z) (#0), B, (2) (#0) (j =0,...,k— 1) are entire functions with
p(4;) < n, p(Bj) < n(j=0,...,k—1). Under some conditions, we prove that every
solution f (z) # 0 of the above equations is of infinite order gnd f) = n.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Throughout this paper, we assume that the reader is familiar with the fundamental results and
the standard notations of Nevanlinna’'s value distribution theory and with basic Wiman-Valiron
theory as well (see [6].[7].[9]/.1210]). Left be a meromorphic function, one defines

m(r, f) = %/0 log™ |f (re™) ‘ dt,

N(r,f):/or (n(t’f>;n(o’f))dt—i—n(o,f)logr,

The author would like to thank the referee for his/her helpful remarks and suggestions to improve the paper.
074-07


mailto:belaidi@univ-mosta.dz
http://www.ams.org/msc/

2 BENHARRAT BELAIDI

andT (r, f) =m(r, f)+ N (r, f) (r > 0) is the Nevanlinna characteristic functionofwhere
log™ 2 = max (0,log x) for z > 0 andn (¢, f) is the number of poles of (z) lying in |z| < ¢,
counted according to their multiplicity. In addition, we will uséf) log T(r, /)

lim &7 =) to denote

- r—-+00
the order of growth of a meromorphic functigh{z) . See[[6/ 9] for notations and definitions.
To express the rate of growth of entire solutions of infinite order, we recall the following

concept.

Definition 1.1 (see[3/ 11]) Let f be an entire function. Then the hyper orgef f) of f (z)
is defined by

(1.1) 2 (f) — Tm log logT (7’; f) — Tm log log log M(r, f)

r—+o00 log r r—+00 10g r

whereM (r, f) = maxp.—, | f (2)].

Several authors have studied the second order linear differential equation
(1.2) 4 A (2) PO+ Ay (2) ™ f =0,
where P, (z), P, (z) are nonconstant polynomialsl; (z), Ay (z) (£ 0) are entire functions
such that p (A;) < deg P, (2), p(Ao) < deg Py (2). Gundersen showed inl[4, p. 419] that
if deg P (2) # deg Py (2), then every nonconstant solution is of infinite order. If
deg Py (z) = deg Py (2) , then(|1.2)) may have nonconstant solutions of finite order. For instance
f(z) = e* + 1 satisfiesf” +e*f —e*f = 0.

In [3], Kwon has investigated the order and the hyper order of solutions of equatrin
the case whedeg P, (z) = deg F, (z) and has obtained the following result.

Theorem A ([3])). Let P, (z) and P (z) be nonconstant polynomials, such that
(1.3) Py(2) = an2" + an 12"+ a1z + a,

(1.4) Py (2) = bp2™ + by 12" 4 -+ bz + by,

wherea;, b; (i =0,1,...,n) are complex numbers,, # 0, b, # 0. Let A; (z) and Ay (2)
(# 0) be entire functions with (A,) < n (7 = 0,1) . Then the following four statements hold:
(i) If either arga,, # argb, or a, = cb, (0 < ¢ < 1), then every nonconstant solutigh
of has infinite order wittp, (f) > n.
(i) Leta, = b, anddeg (P, — P,) = m > 1,and letthe orders ofi; (z) and A, (z) be less
thanm. Then every nonconstant solutignof has infinite order withp, (f) > m.
(iii) Leta, = cb, withc > 1 anddeg (P, — cPy) = m > 1. Suppose thgt (A;) < m and
Ay (z) is an entire function witl) < p (Ay) < 1/2. Then every nonconstant solutign
of has infinite order withp, (f) > p (Ay).
(iv) Leta, = cb, withc > 1 and letP, (z) — cF (z) be a constantSuppose that (A;) <
p(Ap) < 1/2. Then every nonconstant solutigh of has infinite order with
p2 (f) = p(Ao)-

In [1], Chen improved the results of Theorém A(i), Theofem A(iii) for the linear differential
equation(1.2)) as follows:
Theorem B ([1). Let P (2) = Y ,a;z* and P (2) = Y i, b;z* be nonconstant polynomials
wherea;, b; (i =0,1,...,n) are complex numbers,, # 0, b, # 0, and letA; (z), Ag(2)
(£ 0) be entire functions. Suppose that either (i) or (ii) below, holds:
(i) arga, # argb, ora, =cb, (0<c<1),p(4;)<n(j=0,1);
(i) a, =cb, (c>1)anddeg (P, —cPy)) =m >1,p(A;) <m (j=0,1).
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Then every solutiorf (z) # 0 of satisfies, (f) = n.

Recently, Chen and Shon obtained the following result:

Theorem C ([2])). Lethy # 0, hy,. .., hy—1 be entire functions with (h;) < 1 (j = 0,...,
k—1).Letag # 0, aq,. .., ax—1 be complex numbers such that foe= 1,...,k — 1,

(i) a; =0, 0r

(i) arga; = argapanda; = cjap (0 <¢; < 1), 0r

(i) arga; # argao.

Then every solutiorf (z) # 0 of the linear differential equation
(1.5) FO 4 hp g (2) ez f D by (2) e f 4 ho (2) e®%f =0
satisfies (f) = oo andp, (f) = 1.

The main purpose of this paper is to extend and improve the results of Theprem B and The-
orem[C to some higher order linear differential equations. In fact we will prove the following
results.

Theorem 1.1.LetP; (z) = Y ,a; ;2" (j =0,...,k — 1) be nonconstant polynomials where
aoj,---,an; (j=0,1,...,k —1) are complex numbers such that ja,o # 0 (j = 1,...,
k—1),and letA; (z) (#20) (j =0,...,k — 1) be entire functions. Suppose thaga, ; #
arg o Of a,; = cjano (0<c¢; <1)(j=1,...,k—1)andp(4;) <n(j=0,...,k—1).
Then every solutiotf (z) # 0 of the equation

(1.6) [P Ay () e @D o A (2) PO f 4 Ay (2) DB f =0,

wherek > 2, is of infinite order anth, (f) = n.

Theorem 1.2.LetP; (z) = i ya; ;2 (j =0,...,k — 1) be nonconstant polynomials where
aoj,---5an; (7=0,1,...,k —1) are complex numbers such thaf a,o # 0 (j = 1,...,
k—1),and letA,;(z) (#0), B;(2) (#0) (j=0,...,k— 1) be entire functions. Suppose
that arga, ; # arga,o Ofr a,; = cja,0 (0 < ¢; < 1) (j=1,...,k—1)andp(4,) < n,
p(B;) <n(j=0,....,k—1). Then every solutiof (z) # 0 of the differential equation

(1.7) f® + (Akq (2) ele-1:) 4 B, (2)) FO=D 4
+ (A1 (2) e 4+ B, (z)) f/ + (Ao (2) e + B, (z)) f=0,
wherek > 2, is of infinite order ang, (f) = n.

Theorem 1.3.LetP; (z) = > ,a; ;2" (j =0,...,k — 1) be nonconstant polynomials where
aoj,---5an; (7=0,1,...,k —1) are complex numbers such thafa,o # 0 (j = 1,...,
k—1),andletA; (z) (#0) (j =0,...,k— 1) be entire functions. Suppose that; = ca, o
(c>1)anddeg (P —cPy) =m >1({G=1,....k—=1), p(4;) <m (j=0,...,k—1).
Then every solutiorfi (z) # 0 of the equatior{l.€)) is of infinite order ang, (f) = n.

2. LEMMAS REQUIRED TO PROVE THEOREM [1.J]AND THEOREM [1.2

We need the following lemmas in the proofs of Theofenh 1.1 and Theorem 1.2.
Lemma 2.1([5]). Let f (z) be a transcendental meromorphic function, andiet 1 ande > 0
be given constants. Then the following two statements hold:

(i) There exists a constant > 0 and a setF; C [0, co) having finite linear measure such
that for all z satisfying|z| = r ¢ E;, we have

V@@)
f(2)

(2.1) < A[T (ar, f)rflogT (ar, f)] (j €N).
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(i) There exists a consta® > 0 and a set F, C [0,27) that has linear measure zero,
such that ifd € [0, 27)\ E,, then there is a constait;, = R, (/) > 1 such that for all
z satisfyingarg z = 6 and |z| = r > R;, we have

<B {M (log®r)log T (ar, f) ] (j eN).

U (2)
e |
Lemma 2.2 ([2]). Let P(z) = a,z" + --- + ao, (a, = a+i8 # 0) be a polynomial with
degreen > 1 and A (z) (£ 0) be an entire function witlr (A) < n. Setf (z) = A(z) P,
z =re? §(P,0) = acosnh — Bsinnb. Then for any givem > 0, there exists a sekbs; C
[0, 27) that has linear measure zero, such that for ahy [0, 27) \ (F3 U Ey) , where £, =
{0 €10,27) : 0 (P,0) =0} is a finite set, there id?; > 0 such that for|z| = r > R,, the
following statements hold:

() if 6 (P,0) > 0, then

(2.3) exp{(1— )6 (P,6)r"} < |f ()] < exp{(1+2)8(P.0) 1"},
(i) ifd(P,0) <0,then
(2.4) exp{(1+¢e)d(P,O)r"} <|f(2)] <exp{(l—¢)d(P,0)r"}.
Lemma 2.3([2]). Let Ay (z),..., Ax_1 (z) be entire functions of finite order. ffis a solution
of the equation
(2.5) FO 4+ A () fE Y 4 A (2) f + Ao (2) F =0,
then

p2 (f) < max{p (Ao) ... p (A1)}

Lemma 2.4. Let P (2) = b,,2™ + bpp_12™ 1 + -+« + b1z + by With b,,, # 0 be a polynomial.
Then for every > 0, there exists?; > 0 such that for allz| = » > Rj the inequalities

(2.6) (I =) [bm|r™ < |P(2)] < (1+¢) [bm| 1™
hold.
Proof. Clearly,
m am_ll Qo 1
P = |a, 1 z -0 -
1P (2)] = lam| |2 |1+ =222 P
Denote
mo1 1 1
Rp(z) =22 20
Ay 2 Ay 2™

Obviously,|R,, (z)| < ¢, if |z| > R3 for somes > 0. This means that
(1 =) fam[r™ < (1= | B (2)]) |am| r™
<1+ Ry (2)] |am| ™
=[P (2)]
(14 [B (2)]) | 7™

<
< (14 ¢€)|apy|r™.
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3. PROOF OF THEOREM [1.1

Assumef (z) # 0 is a transcendental entire solution(®f6) . By Lemmd 2.1 (ii), there exists
a setFy, C [0,2m) with linear measure zero, such thavife [0,27) \ E,, there is a constant
Ry = Ry () > 1 such that for alk satisfyingarg = = 6 and|z| > R;, we have
19 (2)

(3.1) < B[T (2r, f)]F™ (j=1,....k), (B>0).

Let By (2) = anoz" 4+ +apo (ano=a+if #0), 0 (Fy,0) = acosnbd — [Fsinnf. Suppose
first thatarg a,,; # arga,o (j =1,...,k —1). By Lemmd 2.2, for any given (0 <& < 1),
there is a sef’; that has linear measure, and atay > = 0 € [0,2n)\ (E3 U E,), where
E,={0€[0,2m): 6 (Fp,0) =00ro(FP;,0) =0(j=1,...,k—1)} (E4is afinite se}, such
thatd (F5,6) > 0,0 (P;,0) <0 (j =1,...,k— 1) and for sufficiently largez| = r, we have

(3.2) ‘AO (2) ePO(Z)‘ >exp{(1—¢)d(P,0)r"}
and
(3.3) ‘Aj(z)epj(z)| <exp{(l—¢)d(P;,0)r"} <1 (j=1,...,k—=1).

It follows from ([1.6)) that

2) efo(?) M' ) ePr1(2) ‘f(k_l) (2)
4 ot o] < [T B ay oy enof |

z

aen
f(2)
Now, take a ray) < [0,27)\ (E, U E3 U E,) . Hence by(3.1)) — and (3.4) , we get for
sufficiently largez| = r

+oe A () €M)

(3.5) exp{(l—¢)d (P, 0)r"} < <1+ZGXP{ (1—¢)d(P;,0) 7“"]') B[T (2r, /)"

<kB[T (2r, f)]"".
By 0 < £ < 1 and(B.5)) we get thap (f) = +oc and

(3.6) oo (f) = T 28T ]) 5,

r—-+00 log r
By Lemmd 2.8, we have, (f) =
Suppose now, ; = cja,o (0<c¢; <1) (j=1,...,k—1). Thend (P;,0) = ¢;0 (F,0)
(j=1,...,k—1). Putc = max{c; : j = 1,...,k —1}. Then0 < ¢ < 1. Using the
1

same reasoning as above, for any give() < 2¢ < (=) there exists a rayirgz = 0 €

0,27) \ (E5 U Eg), whereEs and E; are defined as in Lemna 2.2; U E is of linear measure
zero, satisfying (P;,0) = ¢;0 (P,6) >0 (j =1,...,k— 1) and for sufficiently largez| = r,
we have

(3.7) ‘Ao (2) ePO(Z)‘ >exp{(1—¢)d(P,0)r"}
and
(3-8) |45 (2) "] < exp{(1+¢) 6 (F;,0)r"}

<exp{(1+e)cd (P, 0)r™ (j=1,....k—1).
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Now, take aray € [0,27) \ (E2 U E5 U Eg) . By substituting(3.1)) , (3.7)) and(3.8)) into ((3.4)),

we get for sufficiently largez| = r,

(3.9) exp{(1—¢)d(Py,0)r"} < (14 (k—1)exp{(1+¢e)cd (Py,0)r"}) B[T (2r, f)]"*!
< kBexp{(1+¢)cd (Py,0)r"} [T (2r, f)]"H".

By 0 < 2¢ < =< and(3.9) we have

(3.10) exp { (1 ; s (P, 0) r”} < kBT (2r, f)]F™.
Thus, (3.10) impliesp (f) = +oo and

_ o loglogT (r, f)
(3.11) p2(f) = lim log 7 e

By Lemmd 2.8, we have, (f) = n.

Now we prove that equatiofl.6) cannot have a nonzero polynomial solution. Suppose
first thatarga,; # arga,o (j=1,...,k—1). Assumef (z) # 0 is a polynomial solu-
tion of (1.6) . By Lemma[2.2, for any giver (0 < e < 1) there exists a rayrgz = 0 €
0,27) \ (B3 U Ey) satisfyingo (P, 60) > 0, 0(P;,0) < 0(j=1,...,k—1) and for suffi-
ciently large|z| = r, inequalities(3.2) hold. By (I.6) we can write

(812)  Ag(z) P f=— ( FO 4+ Ay (2) P @ pETD g A (2) P f’) .

By using(3.2)) , (3.3)) . (3.12) and Lemma 2]4 we obtain for sufficiently largyé = r
(3.13) (1 —¢) |bp|r™exp{(1 —¢)d(Py,0)r"}
< ‘Ao (2) ePo(Z)f‘
= ‘f W 4 Ay (2) @D o 4 (2) ePl(Z’f/’
<k 4¢e)m|by|r™t,
where f (2) = by,2™ + by_12™ 1 + -+ + bz + by with b,, # 0. From (3.13) we get for
sufficiently large|z| = r
1+e 1
m—.
l—¢ r
This is absurd sinceé < ¢ < 1. By using similar reasoning as above we can prove thaf jf=

cjanpo (0 < ¢; < 1), then equatioril.6) cannot have nonzero polynomial solution. Hence every
solutionf (z) # 0 of (1.6) is of infinite order angh, (f) = n.

(3.14) exp{(1—¢)0(FRy,0)r"} <k

4. PROOF OF THEOREM

Assumef (z) # 0 is a solution of(1.7) . By using similar reasoning as in the proof of
Theorem[ 1.1, it follows thayf (=) must be a transcendental entire solution. Suppose first
thatarga,; # arga,o (j=1,...,k—1). By Lemma[2.R, for any givem (0 < 2 <
min {1,n — a}), whereaw = max{p(B;) : j = 0,...,k — 1}, there exists a rayrgz = 0
such that) € [0, 27) \(E3 UE,), whereE; and E, are defined as in Lemnja 2.2 U E; is
of linear measure zero, and P, 0) > 0,6 (P;,0) < 0(j =1,...,k— 1) and for sufficiently
large|z| = r, we have

(4.2) |A0 (2) e 4 B, (2)} >(1—o(1))exp{(1—¢)d(Fo,0)r"}
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and
(4.2) |A; (2) eh1®) 1 B; (2)| <exp{(1—e¢)

6 (P;
)
(j

,0) 1"} + exp {rpB )+2}

Sexp{ +S} = Lk—=1).
It follows from ((1.7)) that
(4.3) |A0 (2) e 4+ B, (z)|
(k) (k—1)
< | L s @ena s ) |52
+ |A1 (Z) eP1(2) + B (z)| J;/éj)) .

Now, take a ray) € [0,27)\ (E, U E3 U E,) . Hence by(3.1)) and (4.1)) — (4.3)) , we get for
sufficiently large|z| = r

(4.4) (1—o(1))exp{(1—¢)0 (Fo,0)r"}
< (1 + (k — 1) exp {r““}) BT (2r, f)]F
< kBexp {T(HE} [T (2r, f)]F.

Thus,0 < 2¢ < min {1,n — a} impliesp (f) = +oo and

(4.5) oo (f) = T 8leTln /),

r—+400 log r

By Lemmg 2.8, we havg, (f) =n

Suppose now., ; = cjano (0<c¢; <1) (j=1,...,k—1). Thend (P;,0) = c;é (Fo,0)
(j=1,...,k—1). Putc = max{c; : j = 1,...,k — 1}. Then0 < ¢ < 1. Using the same
reasoning as above, for any give(0 < 2 < {7¢) there exists arayrg z = 0 € [0, 27) \ (E5U
Es), E5U Eg is of linear measure zero, satisfyingr;, 0) = c;0 (F,0) >0(j=1,...,k—1)
and for sufficiently largez| = r, we have
(4.6) |40 (2) € + By (2)] > (1 — o (1)) exp {(1 — ) & (P, 6) "}

and
4.7) |4;(2) eli®) 4 B; (2)| < (L +o(1))exp{(1+e)cd (Po,0)r"} (j=1,....k—1).

Now, take aray € [0,27) \ (E2 U E5 U Eg) . By substituting(3.1) , and({£.7) into (4.3)),
we get for sufficiently largéz| = r,

(4.8) (1—o(1))exp{(1 —¢)d(F,0)r"}
<14+ (k=1 1+o01))exp{(1+e)cd(Py,0)r"}) B[T (2r, f)]"
<kB(1+o0(1))exp{(1+e)cd(By,0)r"} [T (2r, f)]F.

By 0 < 2¢ < 17< and((4.8§) we have

(4.9) exp { (1 ; C)é(PO,H) r"} < kBd[T (2r, f)*,
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whered > 0 is some constant. Thu§}.9) impliesp (f) = +oco and
—— log logT
(4.10) po(f) = Tim —22°8 (r, 1)
r—+00 log r
By Lemmg 2.8, we have, (f) = n.

5. LEMMAS REQUIRED TO PROVE THEOREM [1.3

We need the following lemmas in the proof of Theofenj 1.3.

Lemma 5.1([8, pp. 253-255]) Let P, (2) = Y ., b;z", wheren is a positive integer and
by = e o, > 0,0, € [0,2r). For any givere (0 < ¢ < 7/4n), we introduce2n closed
angles

0, , T 0, , m .
1) S (2 —1) e << (2 +1) — — —0,1,...,2n—1).
(5.1) 5, - (25— 1) 5, TES 0 < . (25 +1) 5y "€ (7=0,1,...,2n— 1)

Then there exists a positive numlder = R, (¢) such that forlz| = r > Ry,
(5.2) Re Py (2) > a,r™ (1 — €) sin (ne) ,
if 2 =re € S}, whenj is even; while
(5.3) Re Py (2) < —a,r™ (1 — €) sin (ne)
if 2 =re’ € S}, whenj is odd.
Now for any givend € [0,2n),if 6 # —% + (2 —1) = ( =0,1,...,2n — 1), then we
takee sufficiently small, and there is sonte (j = 0,1,...,2n — 1) such that = re? € S;.

Lemma 5.2([1])). Let f (z) be an entire function of order(f) = o < +oo. Then for any given
e > 0, there exists a sel’; C [1,+o00) that has finite linear measure and finite logarithmic
measure, such that for all satisfying|z| = r ¢ [0, 1] U E;, we have

(5.4) exp {—r*T} < |f (2)] < exp {r*T°}.

Lemma 5.3([1]). Letf (z) = > 7, a, 2" be an entire function of infinite order with the hyper
order py (f) = o, i (r) be the maximum term, i.g,(r) = max{|a,|r";n =0,1,...} and let
vy (r) be the central index of, i.e.,vs (1) = max{m, u(r) = |a,,|r™}. Then

(5.5) T log log v¢ (1)

r—+400 log r

Lemma 5.4(Wiman-Valiron, [7,10]) Let f (z) be a transcendental entire function and let
be a point with|z| = r at which|f (z)| = M (r, f). Then for all|z| outside a se¥s of r of
finite logarithmic measure, we have

j J

(5.6) 19 () = (yf (T)) (1+0(1)) (s isaninteger,r ¢ Eg).
f(2) z

Lemma 5.5([1]). Let f (=) be an entire function with () = +oo andp, (f) = o < +o0, let

a setEy C [1,+oc) have finite logarithmic measure. Then there ex{sts= r,e'’ } such that

|f(zp)| = M (rp, f), 0, €10,27), lim, ., 0, = Oy € [0,27), 1, & Ey, r, — 400, and for

any givere > 0, for sufficiently large-,, we have

(5.7) i AU
p—+oo  log 7,
(5.8) exp {ro™°} < wy(r,) <exp {rp*}.
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Lemma 5.6.Let P (z) = Y. ,a; ;2" (j =0,...,k — 1) be nonconstant polynomials where
aoj,---,an; ( =0,1,..., k — 1) are complex numbers such that;a,o # 0 (j = 1,...,
k—1),letA; (z) (#0)(j =0,...,k — 1) be entire functions. Suppose that; = ca, o (¢ > 1)
anddeg (P —cPy) =m>1(j=1,...,k—1),p(A4;) <m (j=0,...,k—1). Then every
solutionf (z) # 0 of the equatior(L.6)) is of infinite order andp, (f) > m.

Proof. Assume f (z) # 0 is a solution of(1.6|) . By using similar reasoning as in the proof
of Theoren] 111, it follows thaf (=) must be a transcendental entire solution. Firf]) , we
have

7 (2)
f(2)

(5.9) |Ao (2) 6(1—0)1’0(2)} < }e—cpo(z)‘ + ‘Ak—l (2) epk—l(Z)—CP()(z)‘

f(z)

Lot Ay (2) RORE) ’%(;)

47 () |

By Lemma[ 2.1 (i), there exists a constaht> 0 and a setF; C [0, c0) having finite linear
measure such that for allsatisfying|z| = r ¢ E;, we have

19 (2)
f(z)
By and(5.10) , we have for all: satisfying|z| = r ¢ E;
(5.11) |Ag(2) !B < [le M@ 4|44 (z) 1) mePB)
|4y (2) P O-PE|] Ar [T (2, F)F
Sincedeg (P; —cPy) = m < degPy =n (j=1,...,k—1), by Lemmg5.]L (see alsbl[3, p.

385]), there exists a positive real numideaind a curvd’ tending to infinity such that for all
z € I'with |z] = r, we have

(5.12) RePy(2) =0, Re(Pj(z)—ch(z)<-br"™ (j=1,....k—1).

Letmax {p(4;) (j=0,....,k—1)} = § < m. Then by Lemma 5]2, there exists a g&tC
[1,4+00) that has finite linear measure, such that forzadlatisfying|z| = » ¢ [0,1] U E7, we
have

(5.13) exp {—rPT} <|A; (2)] <exp {rPT}  (j=0,....k—1).

Hence by(5.11)) — , we get for allz € T with |z| =r ¢ [0,1] U E; U E;

(5.14) exp {—rt} < (1+ (k— 1) exp {r’*} exp {~br™}) Ar [T (2r, PP
Thusg + ¢ < mimpliesp (f) = +oo and

o (f) = Tm log logT (r, f) _—

r—+00 log r

< Ar[T (2r, /)] (G=1,....k).

(5.10) '

6. PROOF OF THEOREM [1.3

Assumef (z) # 0 is a solution of(1.6) . Then by Lemma 5|6 and Lemna P.3, we have
(f) = ccandm < py(f) < n. We show that, (f) = n. We assume that, (f) = A

(m < X< n), and we prove thap, (f) = A fails. By the Wiman-Valiron theory, there is
aset By C [1,+00) with logarithmic measurém (Es) < +oo and we can choose sat-
isfying |z| = r ¢ [0,1] U Es and|f ()| = M (r, f), such that(5.6) holds. Setmax{p(4;)
(j=0,....,k—1)} = 3 < m.By Lemmd5.2, for any given (0 < 3= < min (m — 3,n — \)),

s
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there exists a séf; C [1, +o0) that has finite logarithmic measure, such that for aatisfying
|z| = ¢ [0, 1] U E, the inequalitie|5.13)) hold and

(6.1)  exp{—r""} <lexp{P;(z) —cPy(2)}| <exp{r"*} (j=1,...,k—1).

By Lemma[5.5, we can choose a point rar{gg = r,e'% } such that|f (z,)| = M (r,, f),
6, €10,27), lim, ., 0, = 6y € [0,27), 7, ¢ [0,1] U E; U Eg, 1, — 400, and for the above
e > 0, for sufficiently larger,, we have

(6.2) exp {r)‘ 6} <wy(ry) <exp {r’\+e}

(6.3) Tm log vy (1)

= +00.
p—+oo  log 7,

Let P (2) = 3., biz* wheren is a positive integer anl, = ., o, > 0. By Lemmg 5.1,
for any givens (0 < 3¢ < min(m — §,n — A, 7/4n)), there ar&n closed angles

) s ) s
St (i) f e~ (2 1)~ — i=0,1,....2n—1).

For the abové, and0 < 3¢ < min (m — ,n — A, =), there are three cases:

(1) ryet® € S; wherej is odd;
(2) ryet® € S; wherej is even;
(3) 6= —% + (25 — 1) & forsomej =0,1,...,2n — 1.

Now we have three cases to prove Theoferm 1.3.
Case (1):ryei® € S; wherej is odd. Sincdim, ... 0, = 6o, there is aN > 0 such that
rpe'% € S; whenp > N. By Lemmd 5.1, we have

(6.4) Re {PO (rpewp)} < —o0ry (0>0), ie, Re {—PO (rpew”)} > 07y
From and(6.4) , we obtain for sufficiently large,
(6.5) Re { P; (rpew”) — Py (rpe w”)}

=Re{(c—1)FPy+ (P —cP)}

< gt —(e=1)dry (j=1,....,k—1).

By (1.6), we have
(k—=1)

RS Per(z)-Pomyd Pi(2)-Po(z)
(6.6) —e TZAk:—l(Z)ek_l 0 7 + -+ Ay (2) et 0 ?—i—Ao(z).

Substituting(5.6)) into , we get forz, = r,e'%

(6.7) —vj(r) (1 +o0(1))exp{—Po(z)}
= Ap-1 (2p) exp {Pi-1(2p) — Po (%)} ZpV];_ (rp) (1 +0(1)) +-
+ A1 () exp{P1 (z) = Po (%)} 2,7 vy (1) (L+0(1)) + ZkAo (%) -

Thus we have, fron6.2)) and((6.4)

(6.8) ‘—VI; (rp) (L+0(1)) exp{—Py (2,)}| = = eXp {6r1} exp {kr) =} > exp {ér'} .
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And by (5.13)), and(6.2) , we have
(6.9)  |Ak_1(zp) exp{Pi1(z) — Po(z)} zpuljf_l (rp) (1 4+0(1))
A )0 ) = o)) 27 ) (06 0 (0) 350 )
<2(k—1)rE " exp {ri™}exp {rI""* — (c— 1) orl'}
X eXp{ -1) ;‘+5} + Tp exp {rgJ“S}
<exp{(k—1) 7“1’)\“5} :

From (6.7) we see thaf6.8) contradicts(6.9)

Case (2) rpet® € S; where] is even. Slncehmpﬂﬁoe = 0y, there is aN > 0 such that
rpet% € S; Whenp > N. By Lemmg5.1, we have

(6.10) Re {PO (rpewp)} > or,, Re {—CPO (Tpew”)} < —cdry,

EI  Rel(1- R (™) < (- 05 Re P (™) - oy (1))
< —cdry (j=2,...,k=1).

By (1.6]), we have

k k-1
(6.12) — A, (z) )P L — echo(Z)ﬂ + A (2) 6Pk71(Z)cho(Z)£

f f f
b Ay (2) PR g () 1m0

f
Substituting(5.6) into we get forz, = r,¢'%
(6.13) — Ay (zp)exp{P1(zp) — cPo(2)} zﬁ’luf (rp) (14+0(1))
= vi (rp) (1 +0(1)) exp{—cPy(2)} +vj " (r,) (1 +0(1))
X zpAg—1 (2p) exp {Peo1 (2p) — cPo (2p)} + -+ + zk QVJQ” (rp) (1 +0(1))
X As (zp) exp { P2 (2p) — cPo ()} + szo (zp)exp{(1 —¢) Py (2)} .
Thus we get, front5.13) and(6.2)
(6.14) |—A1 (zp) exp{P1(zp) — cPo(2)} zfj’lyf (rp) (1 +o0 (1))|

> %7’21 exp {—rﬁ*s} exp {—r""* ) exp {7’2’5} > exp {—r)"*¢}.

And from : and(6.10), we have for sufficiently large
(6.15)  |vf(rp) (1 +o(1))exp{—cR(z)} + v (rp) (1 +0(1))
X zpAp—1(2p) exp{Br-1 (2p) — cBo ()} + -+ + Zk 2’/,% (rp) (L+0(1))
x Az (z) exp{ P2 (2) — cP (%)} + 2,40 () exp {(L — ¢) R ()}
< 2exp {kr)™ }exp {—cori} +2(k—2)rk 2 exp {(k — 1) r)**}
X exp {rﬁ*s} exp {—corl'} + i exp {1”5*5} exp {(1—c)orn}

< exp{(lgc)ér;}}.

Thus(6.13)) — (6.15]) imply a contradiction
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Case (3) 16y = —% + (2j — 1) Z for somej = 0,1,...,2n — 1. SinceRe { P (r,e’®)}
= 0 whenr, is suff|C|entIy large and a straight lineg = = 6, is an asymptotic line of r,¢'% } ,
there is aV > 0 such that whemp > N, we have

(6.16) —1 < Re {Po (rpew”)} <1, —c<Re {P] (rpew”)} <c (=1,...,k—1).
By consideringRe { P; (r,¢'%) — cPy (r,¢'%) } , we again split this into three cases.
Case (i):

(6.17) Re {PJ (rpewp) —chy (rpew”)} <—dr) (j=1,...,k—1)

(d > 0is a constant) when is sufficiently large. We have a slightly modified form

(6.18) — V’J? (rp) (L4+0(1))exp{—cPy(2p)}
= Ap1 (2p) exp { Pect (2) — cPo (2)} 2pvf " (1) (L+0(1)) + -+
+ A1 (2) exp { P (2p) — Py (2p) } Zg];_lyf (rp) (1 +0(1))
b 254 () exp {1~ €) Py ()}

Thus we get, fron{5.13) and(6.16) — (6.18)

L () exp {—c) < |~k () (14 0 (1) exp {~cPy ()]
< |Ak—1 (zp) exp{Pr—1(2p) — cPo (2p)} Zp”?_l (rp) (140 (1))}
+o 4 ‘Al (2p) exp { P (2p) — cFo (%)} nglyf (rp) (L+o0 (1))}
+ |25 A0 (z5) exp {(1 = ¢) Py (2,)}]
<2(k—1)rh k— 11/]; Y(r,) exp {7"*3+5 dr;"}
+rhexp {r)*}exp{(c— 1)}
5+2E}

< V]]f_ (rp) exp {7}

1
éyf (rp) < exp{c}exp {rﬁ+2€}

This is in contradiction withy; (r,) > exp {r)~¢} .

Case (ii):

Re {P; (rpe'%) — cPy (rpe'®) } > drl? (G=1,....k—1),
ie.,
(6.19) Re {Po (rpe’?) — %Pj (rpe'® )} < —%lr;" (j=1,....,k—1)

(d > 0is a constant) whep is sufficiently large. Fron{6.16) , we obtain for sufficiently large
b,

(6200 Re{ P (5e™) = 17 (™) b = Re (R (™)} = TR {1 (1))

<c+1l (s=1,...,5—-1,54+1,...;k—1).
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We have a slightly modified form af-7)
6:21) ~vf () (1 o)exp {27 ()}
= it () exp { Pt () = Ty ) ™ () (L4 0 (1) 4+
+ Aj (2,) exp { (1 — %) P; (zp)} IV () (L4 0 (1) + -+
o () exp { Py () = 273 () o0 () (14 0 1)

+ o (e { Py () = 1y )}

Thus we get, frongs.13)), (6.16]) and(6.19) — (6.21))

Sk () exp {1}

<o) oy {-1r )

|
<[ e { Ao 5) = 2B G b ek 0 (140 )
Aj (zp) exp { (1 — 1)

bt e (P = 21 ) 7t ) 00 1)

+

st () e { Fo(s) - 173 G ]|

<2(k=1)v5 (rp)ry~ exp {177}

d
x exp{c+1}+ r’; exp {rﬁ“} exp {—Er;”}

< V’;_l (rp) exp {7"5”5}
ie.,
v (ry)exp{—1} < 2exp {T5+26} )
This is in contradiction withy; (r,) > exp {r)~¢} .
Case (iii): Whenp is sufficiently large,

—1 < Re{P; (r,e’”) — cPy (rpe'’)} < 1 (j=1,...,k—1).
By using the same reasoning as in Case (ii) we get a contradiction. The proof of Theorem 1.3
is completed.
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