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ABSTRACT. In this paper we derive the Hyers-Ulam stability of the quadratic functional equa-
tion

f(zy) + f(zo(y) = 2f(2) +2f(y), =,y €G,
respectively the functional equation
flzy) + g(za(y)) = f(x) +9(y), =,y €G,

whereG is an amenable semigroup,is a morphism ofG such thato o ¢ = I, respectively
whereG is an amenable semigroup amds an homomorphism af such thatr o o = 1.

Key words and phrasedtyers-Ulam stability, Quadratic functional equation, Amenable semigroup, Morphism of semigroup.

2000Mathematics Subject Classificat 089B82, 39B52.

1. INTRODUCTION

In 1940, Ulam [21] raised a question concerning the stability problem of group homomor-
phisms:

Given a groupG,, a metric group (>, d), a numbers > 0 and a mapping
f : Gi — G5 which satisfies the inequaliy(f(zy), f(x)f(y)) < e for all
x,y € G, does there exist a homomorphism G; — G, and a constant
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k > 0, depending only oii/; andG, such thati(f(x), h(x)) < ke for all z in
Gl?

The case of approximately additive mappings was solved by D. H. Hyers [8] under the as-
sumption that7; andG, are Banach spaces.

In 1978, Th. M. Rassias [16] gave a remarkable generalization of the Hyers’s result which
allows the Cauchy difference to be unbounded. Since then, several mathematicians have been
attracted to the results of Hyers and Rassias and investigated a number of stability problems
of different functional equations. See for example the monographs of the following references
56,910/ 11, 16].

The quadratic functional equation

(1.1) fle+y)+ flz—y)=2f(x) +2f(y), 2,y €G
has been much studied. It was generalized by Steikeer [19] to the more general equation
(1.2) fle+y)+ f(@+o(y) =2f(z) +2f(y), v,y€q,

whereo is an automorphism of the abelian grotisuch that:? = I, (I denotes the identity).

A stability result for the quadratic functional equatipn {1.1) was derived by Skof [18], Cholewa
[3] and by Czerwik([4].

Recently, Bouikhalene, Elgorachi and Rassias stated the stability theorem of equation (1.2),
see([1] and[2].

Székelyhidi[20] extended the Hyers's result to amenable semigroups. He replaced the origi-
nal proof given by Hyers by a new one based on the use of invariant means.

In [22] Yang obtained the stability of the quadratic functional equation

(1.3) flay) + flay™) = 2f(2) +2f(y), =,y €G,

in amenable groups.
The purpose of the present paper is a joint treatment of the functional equatigns (1.1) and
(1.3) and their generalization, where the unifying object is a morphism like the one introduced

in (1.2).

New features of the paper:

(1) In comparison with([20] and [22], we work with a general morphism
(2) In contrast tol[1] and [2] we here allow the (semi)grasifio be non-abelian.

In Sectiorf 2, we obtain the stability of the quadratic functional equation

(1.4) flzy) + f(xo(y)) =2f(x) +2f(y), =,y €q,

wherecs is a morphism of~ such thatr o o = I. The result of this section can be compared
with the ones of Yangd [22] because we formulate them in the same way by using some ideas
from [22].

In Sectior] B, we obtain the stability of the generalized quadratic functional equation

(1.5) f(zy) +g(za(y)) = f(x) + 9(y), =,y €G,
wheres is an automorphism aff such thab oo = 1.
2. STABILITY OF EQUATION (1.4)IN AMENABLE SEMIGROUPS

In this section we investigate the Hyers-Ulam stability of the quadratic functional equation

(2.1) flzy) + f(zo(y)) = 2f(x) +2f(y), =,y €QG,

whereG is an amenable semigroup with unit elemerindo : G — G is a morphism of7,
i.e. o is an antiautomorphismz(xy) = o(y)o(x) for all x,y € G or o is an automorphism:
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o(zy) = o(x)o(y) for all x,y € G. Furthermore, we assume thasatisfies(c o 0)(z) = z,
forall z € G.

We recall that a semigrou@ is said to be amenable if there exists an invariant mean on the
space of the bounded complex functions defined-onWe refer to [[7] for the definition and
properties of invariant means.

Throughout this paper, as inl[5], we use the following definition.

Definition 2.1. Let G be a semigroup ang a Banach space. We say that the equation

(2.2) flxy) + fxo(y)) = 2f(x) +2f(y), =yeC
is stable for the paifG, B) if for every functionf : G — B such that

1
@3 |31 + o] - 1) - 1) <0 5.9 G forsomes =0,
there exists a solutiopof equation|(2.2) and a constant> 0 dependent only on such that
(2.4) |f(z) —q(x)|]| <~ forallz € G.

Proposition 2.1. Lets be an antiautomorphism of the semigratsuch thatr oo = I. Let B
a Banach space. Suppose tifatG — B satisfies the inequality (2.3). Then for everg G,
the limit

(2.5) g(x) = lim 272"

n—-+0o

)+ 2’“‘1f((w2"k0(36)2"k)2“)]

exists. Moreovey : G — C is a unique function satisfying
(2.6) I f(z) — g(x)|]| <5, and g(z®) + g(zo(x)) = 4g(x) forall » € G.

Proof. Assume thatf : G — C satisfies the inequality (2.3) and define by induction the
sequence functioffiy(z) = f(z) and f,(z) = 3[fu-1(2?) + fao1(zo(z))] for n > 1. By direct
computation, we obtain

falw)=27" [f(x?") +>° 2k-1f<<z2”’“a<x>2"’“>2’“>]

foralln > 1.

By lettingz = v, in (2.3) we get
@7 5176 + fleoto)] - 2700 <
SO
(2.8) I fi(x) —2fo(x)|| <6 forall z € G.
In the following, we prove by induction the inequalities
(2.10) [fn(z) = 2" f2)]| < (2" — 1)d
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foralln € Nandz € G. Itis clear that[(2.8) i (2]9) for = 1. The inductive step must now
be demonstrated to hold true for the integer 1, that is

@210) a0 - 200 = | 3067 + oo (a))] = 24 + ralao()]
< 51 = 2h0msa)) + | 5LA0(00(0) = 2o )]
1
5[5+<5]_5

This proves tha{ (2]9) is true for any natural number
Now, by using the inequality

(2.12) 1 fu(@) = 2" f(@)]| < [ ful2) = 2fuma(@)]| + 2] fuoa(z) — 2" f(2))]

we check that (2.10) holds true for any= N.
Let us define

)

(213)  galo) = 2

=27 | f(@) 4+ )2 (@ (@) ))
k=1

for any positive integen andzx € G.
Now, by using[(2.11) and (2.1.3), we get
)

(2.14) 901 (2) = gn(2)]| < o

It easily follows that{g,(z)} is a Cauchy sequence for alle G. SinceB is complete, we
can defingy(z) = lim,_ | g,(2) for anyz € G. From [2.10), one can verify thatsatisfies
the first assertion of (2.6). Now, we will show thasatisfies the second assertion[of [2.6). By
induction one proves that the sequerfgér) satisfies

2.15) 51022 + a0 )] - 1) - )

forall n € N.
Forn = 1, we have

@16) |56 + o)) - fil) - £

s ) s sty o
_%[f( )+ flzo(z))] %[f(:f ]H
<[ 21 () sttt - >H
+_§{§[f«xa<>>>+—f«xa<>>%-—2f@”<>”}H
g%[5+5]—5
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So (2.15) is true fon = 1. We assume then that (2]15) holds foand we prove thaf (2.15) is
true forn + 1.

@17) |Gl 4 S0 = o)~ fona(o)

=[5 5[5 (=) + feotar + ot + nuteoton)
=3 Ua?) + flaa@))] = 5 [ + o )]

HH AR

5 |31 ((ar(@)) + o)) ~ 2huteot)]|
<ol +d =0
Consequently, the sequengg x) satisfies
2.18) 1)+ 0] = 0u(0) = o) < o

for all n € N and then by lettingp — +o0o we get the desired result.

Assume now that there exists another mapping= — B which satisfied| f (z) — h(x)|| <
§ andh(z?) + h(zo(z)) = 4h(z) for all z € G.

First, we will prove by mathematical induction that

(2.19) | fn(x) —2"h(x)|| < forall z € G.

Forn =1, we have

@20) (o) = 20l = |5L1) + Saota))] = 5lnte) + hteo(e)]
< S1FG) = A + 1o () — hao ()]
1
<5l0+d]=4,
Suppose€[(2.19) is true ferand we will prove it forn + 1. Hence, we have
@21)  [funle) = 250 = |3 + ulao )] - 25 H(a) + hao (o))
< A (e) = 2B + |l () — 2 h(ao ()|
_1w+ﬂ_5

This proves that (2.19) is true for all € N. From (2.19), we obtaiﬂﬁ;—ﬁf) — h(x)H < 21 o)

by lettingn — +o00 and by using the definition af we getg = h. This completes the proof of
the theorem. 0J

By using the precedent proof we easily obtain the following result.
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Proposition 2.2. Let o be an automorphism of the semigrotipsuch thato o 0 = . Let B a
Banach space. Suppose thfat G — B satisfies the inequality (3.3). Then for everg G,
the limit

gle) = lim 27"f,(x)

n—-400
exists, andy is a unique function satisfying
If (@) — g(@)ll <6, and g(a®) + g(zo(x)) = 4g(z) forall z € G,

where the sequence of functiofysis defined orG by the formulasfy(z) = f(z) and f,,(z) =
Hfaor(2?) + faor(zo(2))] forn > 1.

The following result shows that in this context the only propertyBo{Definition[2.1) in-
volved is the completeness. For the proof, we refer to the one used by Yang in [22].

Theorem 2.3. Let 0 be a morphism of the semigroudp such thato o 0 = I. Suppose that
equation[(2.R) is stable for the pajt7, C) (resp. (G, R)) Then for every complex (resp. real)
Banach space, (2.2) is stable for the paifG, B).

The main result of the present section is the following

Theorem 2.4.Leto be an antiautomorphism of the amenable semigiGguch tha oo = 1.
Then equatior (2]2) is stable for the pai, C).

First, we prove the following useful lemma

Lemma 2.5. Leto be an antiautomorphism of the semigratsuch thatr o 0 = I. Let B be
a Banach space. Suppose thfatG — B satisfies the inequality

@22) |57 + fao) - ) - 105)] < b, for somes > .
Then for every: € G, the limit
(2.23) alw) = lm 27 { [ + (2" = 1S o) T}

exists. Moreover, the mappingsatisfies the inequality
(2.24) | f(z) —q(z) |< 70 forallz € G.
Proof. Assume thaf : G — B satisfies the inequality (2.22). We will prove by induction that

@25 1)~ i) + 2 D5+ 2 o))

7 3 19
<2 (5 + 92n—1 2n+1) 0

for some positive integer. By lettingy = z, in (2.22) we get

(2.26) 1f (%) + (2 = 1) f(zo(x)) — 2 f ()] < 26,
SO
(2.27) Hf(x) — %{f(a@) +(2— 1)f(:ca(x))}” <0 (1 — %) forall z € G.
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This proves[(2.25) fon = 1. The inductive step must now be demonstrated to hold true for the
integern + 1, that is

|70) = g {707+ @ = D00 |

< e Hf @)+ 1 (@ o (@)") — 4f(a”)
(2 —1) f( 2 10—(55)2"‘1;52"‘10—(:(;)2”‘1) 42" —1)f (ﬁ"‘la(g;)?””)
‘4f )+ 42" = Df (2 o)) - 22y H

+

22(n+1)

+

22(n+1)

A s 7o) - £ (o e )
25 (2" —1)20 (7 3 19)25

= 92(n+1) 92(n+1) 9 " 92n—1 9n+l
2(2" - 1)

A o)) £ (o) o).

To complete the proof of the induction assumption (R.25), we need the following inequalities.
Letx =y = ein (2.22) to get|2f(e)|| < 24. Puttingz = e in (2.22), gives

I f(y) + flo(y)) —2f(e) = 2f (y)l| < 26.

Consequently,

(2.28) 1/ (y) = flo()l < 40.

By interchanginge by y in (2.22), we obtain

(2.29) 1/ () + f(yo(x)) = 2f(z) = 2f(y)l| < 26.

By using [2.22),[(2.28)[ (2.29) and the triangle inequality, we deduce that
(2.30) 1/ (zy) = fyx)|| < 86.

Now, from (2.22), we obtain

(2.31) H2f< 27 o (x )2"332”‘1) _of (:c?”‘la(x)”‘l) _of (a(x)z"‘lﬁ"‘l)

Since

(2.32) If (e 0(@)") - f (o(2)*"2?")|| < 8

and

(2.33) H f (;ﬂ"‘lo—(x)%?"‘l) ~ f@ o)) < 86
then

(2.34) HQf( 2 o(x )%2”‘1) _af (xZn_lo(x )2 ) ‘ <185
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and
@35) | fa¥o@®)—2f (+* o))
<[ (== o@ e ) - pa¥ @)
(oot ) (ot

186

<85+T:17(5.

|

Finally, we deduce that
(2.36) Hf(xzna(x)2n) —f (x2n_1a(x)2n_1x2n_la(x)2n_l) ‘
< [r@¥ @) 2 (+* 0@ )|

ot (o et ot o)
<176 +6 =186
and consequently,

f(x)_%{f@zm) +(2n+1_1)f(xzng(g;)zn)}H

25 2(2 —1)5+(7 3 19)25+2(2 1)185

< 92(n+1) + 92(n+1) 92 + 92n—1  9n+l 92(n+

7 3 19
=2 (§ + 92n+1 2n+2> 0.

This proves the validity of the inequality (2]25).
Let us define

(237 0(@) = o {F6™) + @~ D o))

for any positive integen andz € G.
Then{g,(z)} is a Cauchy sequence for everyc G. In fact by using[(2.22)(2.36) and

(2.37), we get

[401(2) — 4]
< s || (27) + £ o) — 45

]_ n n n n n—1 n—1
+ 55 ‘2(2 —)f (2 o(@)?) — 42" — 1)f (:1:2 o(x)? )‘
5 ]- n n—1 n—1 n—1 n—1
< 2(nt 1) + 22 T) 22" —1)f (xz o(x)* 2*" o(x)? )
—4@2"=-1)f (xTHcr(x)TH) H
2” - 1 on n—1 n—1 n—1 n—1
A e | o @) £ (# aw e ow )|
< 20 2(2" — 1)5 365( —-1)
— 922(n+1) 22(n+1) 22(n+1)
400
< —.
S on
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It easily follows that{q,(z)} is a Cauchy sequence for all€ G. SinceB is complete, we
can defingy(z) = lim,,_.,  ¢,(z) foranyz € G and, in view of [(2.2b) one can verify that
satisfies the inequality (2.R4). This completes the proof of Lefnmja 2.5. O

Proof of Theorem 2]4We follow the ideas and the computations used in [22]. By using}(2.30)
one derives the functional inequality

(2.38) |f((zy)") — F((yx)")| < 86.
In addition, from[(2.B),[(2.38) and the triangle inequality we deduce that

(2.39)  [f((zy)* (o(xy))*") = f((y2)* (o (yx))*")]
< [f((zy)* (o (xy))®) + F((zy)* (2y)*") — 4f ((2y)*")|
+ = F(ya)* (yz)*) — f((yz)* (o(yx))?) + 4f ((yz)*"))
+ | f((@y)* (2y)*) = f((y2)™ (y2)*")| + 4| f((2y)*") = f((yx)*")]
< 26 + 26 + 85 + 320 = 444,

From Lemma 25, for every € G, the limit

(2.40) a@) = tim 272 { @)+ 2 = 1) (a7 @) )}
exists and

(2.41) |f(x) = gq(z)] < 76.

Furthermore, in view of (2.38)  (2.B9)satisfies the relation

(2.42) q(zy) = q(yz), =,y€G

and by [2.4]1) {(2.22) satisfies the inequality equation

(2.43) |a(zy) + q(zo(y)) — 2q(x) — 2q(y)| < 446

forall x,y € G.
Consequently, for any fixeg € G the function
x +— q(zy) + q(zo(y)) — 2q(z)
is bounded. Sincé' is amenable, there exists an invariant meanon the space of bounded,
complex-functions oid-. With the help ofm, we define the following function o

(2.44) V() = me{qy + dory) — 24}

forall y € G, whereg,(z) = ¢(zy), z € G.
Furthermore, by using (2.29) arid (2.44), we get

(2.45)  ¥(zy) + ¥(0(2)y) = ma{@zy + Gooz) — 20} + Maf{to(ayy + o) — 243
= Ma{2yq + Go()o(z) — 20} + Moy + do)- — 24}
Ma{2y0 +o(2)y 4 — 249} + Ma{do@ioz) + dow)z — 200y}
+ ma{2q, + 240(y) — 44}
= 2¢(z) + 2¢(y).
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S0,Q(y) = Y satisfies equatiof (3.2) and the following inequality
1
(2.46) Q) = 4] = 5lmaday + dow) — 24 = 24(y)}

< sup %I{q(my) +q(zo(y)) — 2q(x) — 2q(y)}|

44

Consequently, there exists a mappigvhich satisfies the functional equatign (2.2) and the
inequality| f(y) — Q(y)| < 294. This completes the proof of the theorem. O

Theorem 2.6. Let o be an automorphism of the amenable semigr6uguch thato o 0 = 1.
Then equatior] (2]2) is stable for the p&i, C).

Proof. From inequality[(2.8), we deduce that for any fixed G the functionz — f(zy) +
f(zo(y)) — 2f(x) is bounded. Sinc&' is amenable, then we can define

(2.47) o(y) = m{fy + fo) — 2/}
forally € G.
We have

(2.48) P(yz)+o(yo(z))
= mw{fyz + fa(y)ff(z) —2f} + mx{fya(?«') + fa(y)z —2f}
= Ma{fyz + fyo(x) = 205} + Mu{foioe) + fowys — 2fo}

+2m,{ fy + fory) — 2f}

= P(2) + ¢(0(2)) + 26(y) = 26(2) + 26(y),

so¢ is a solution of equation (2.2). Moreover, we have

(249) 'f(y) - @‘ = %‘mx{fy + fo(y) - 2f - 2f(y>}’
< 5wl (ey) + fao(y) — 20(e) - 26()| < &
This completes the proof of theorem. O

By using Theorer 2]4 and the proof of Proposifior] 2.1 we get the following corollaries.
In the first corollary, the estimate improves the ones obtained in the proof of Thgorem 2.4.

Corollary 2.7. Leto be an antiautomorphism of the amenable semig@wguch thavoo = 1.
Let B a Banach space. Suppose tifat G — B satisfies the inequality (2.3). Then for every
x € G, the limit

n—-+o0o

(250)  Q(z)= lim 27" [f<x2">+22k—1f ((ﬁ"’“a(ﬁ"’“f’”)]
k=1

exists. Moreovex) is the unique solution of equation (IL.4) satisfying
(2.51) | f(xz) = Qx)|| <6 forall z € G.

Corollary 2.8. Leto be a morphism of the amenable semigr@uguch thatr o o = I. Then
for every Banach spacB, equation|(2.R) is stable for the pai€:, B).
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Corollary 2.9 ([20]). Letoc = I. LetG be an amenable semigroup. Then for every Banach
spaceB, equation

(2.52) flay) = fl@)+ fly), z,yeC

is stable for the paifG, B).

Corollary 2.10 ([22]). Leto(x) = x~!. LetG be an amenable group. Then for every Banach
spaceB, equation

(2.53) flxy) + flay™") = 2f(x) +2f(y), 2,y € G

is stable for the paifG, B).

Corollary 2.11 ([2]). Let o be an automorphism of the vector spagesuch thato o 0 = 1.
Then for every Banach spaég the equation

(2.54) fa+y)+ fx+oy) =2f(x) +2f(y), »yeq
is stable for the paifG, B).

3. STABILITY OF EQUATION (1.5)IN AMENABLE SEMIGROUPS

In this section we investigate the Hyers-Ulam stability of the functional equation

(3.1) flzy) +g(zo(y)) = f(x) +g(y), =,y €q,

whereG is an amenable semigroup with element urigndo : G — G is an automorphism
of G suchthat oo = 1.

The stability of equationj (3] 1) was studied by several authors in the case @/leam abelian
group andr = —I. For more information, see for example [12].

First we establish some results which will be instrumental in proving our main results.

In the following lemma, we will present a Hyers-Ulam stability result for Jensen’s functional
equation:

(3.2) f(zy) + f(zo(y)) =2f(z), 2,y €C.

Lemma 3.1. Let G be an amenable semigroup. Letbe an homomorphism @f such that
coo=1Tandletf : G — C be a function. Assume that there exists 0 such that

(33) F(ay) + flaoly) — 2f(x)] < 6

forall z,y € G. Then, there exists a solutioh: G — C of Jensen’s functional equatidn (B.2)
such that

(3.4) [f(x) = J(x) = fle)] <6

forall z € G.

Proof. Let us denote by*(x) = w the even part of and byf°(z) = w the
odd part off.
By replacingz by o(x) andy by o(y) in (3.3), we get
(3.5) [f(o(x)a(y)) + flo(x)y) — 2f(o(x))] < 6.
Now, if we add (subtract) the argument of the inequality](3.3) to (from) inequality (3.5), we
deduce that the function® and f° satisfy the following inequalities

(3.6) [f(xy) + f(zo(y) — 2/ (x)] <6

(3.7) |f(zy) + f(xa(y)) — 2f°(x)]| < 6
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forall z,y € G.
By puttingz = e in (3.6), we obtain

(39 7w) ~ Fe)l < 3.
The inequality[(3.]7) can be written as follows
(3.9) |[F*(yz) = folo(y)z) = 2f(y)] < 0.

This implies that for fixed, € G, the functione — f°(yz) — f°(o(y)z) is bounded. Sincé&
is amenable, letr,, be an invariant mean on the space of complex bounded functio@sao
define the mapping:

(3.10) V(y) = ma{y f® —oq [°} forally e G.
Consequently fronf (3.10), we obtain thasatisfies the Jensen’s functional equation
(3.11) P(yz)+i(yo(2))

= Mafy=f° —o(oz) [} + Malyo) [ =02 [}
= Ma{y=f" =0z [} + Ma{yo)f* —oo=) [}
= my{:[y f* —o() 1} + Moy f —ow) 1}
= 20(y).

The functionJ(y) = @ satisfies the Jensen’s functional equati(3.2) and the following
inequality

(3.12) 96) = W) £ 35 |F(we) - o) —27°)] < 5.
Finally, we obtain
(3.13) [f(y) = J(y) = fle)l = |f(y) + f°(y) — J(y) — f(e)|
<[/ ) = flel+ 1) = Jy)l <o
This completes the proof of Lemrpa B.1. O

By using the proof of the preceding lemma, we get the stability of the Jensen function equa-
tion

(3.14) flyz) + flo(y)z) = 2f(x), x,y€C.

Lemma 3.2. Let G be an amenable semigroup. Letbe a homomorphism a such that
coo=1Tandletf : G — C be a function. Assume that there exists 0 such that

(3.15) [f(yz) + flo(y)r) —2f(x)] <0

for all z,y € G. Then, there exists a solutioh: G — C of Jensen’s functional equation

(3.14) such that

(3.16) f(z) = J(x) = f(e)| <0
for all z € GG. More precisely,J is given by the formula
(3.17) J(y) =mAf) =[5} forallyeG.
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In the following lemma, we obtain a partial stability theorem for the Pexider’s functional
equation

(3.18) fi(zy) + faxo(y)) = fas(x) + fuly), 2,y €G
that includes the functional equatign (|1.5) and the Drygas’s functional equation:
(3.19) flay) + f(xo(y) = 2f(x) + f(y) + f(o(y)), z,yeC

as special cases.

Lemma 3.3. Let G be an amenable semigroup. Letbe an automorphism af such that
o oo = I. If the functionsf, fs, f3, f+ : G — C satisfy the inequality

(3.20) |fi(zy) + folxo(y)) — fs(z) — fa(y)] <0

for all z,y € G, then there exists a unique functign G — C, a solution of equatior] (1.4).
Also, there exists a solutiosy, (resp. .J;): G — C of Jensen’s functional equatiop (3]14),

(resp. (3.2)) such that,

(3.21) |[f3(x) = Ja(x) — q(z) — fs(e)| < 165,
(3.22) | fa(z) = Ji(2) — q(x) — fa(e)| < 16,
(3:23) (o) + () = a(e) = S ule) = 3e)| < 66
(3.24) (T = f) (y) = (ff = f2)(zo(y))] <126,

Uz) — %Jl(x) - %JQ(ZE) < 106
and

1 1
g(fb) — §JQ($) + §J1(.l’> S 105

forall z,y € G.

Proof. In the present proof, we follow the computations used in the papers [1], [12], and [23].
For any functionf : G — C, we definel'(z) = f(x) — f(e).
By puttingz = y = e in (3.20), we get

(3.25) |[fi(e) + fa(e) — fs(e) — fule)| < 0.
Consequently, if we subtract the inequallty (3.20) from the new inequglity]|(3.25), we obtain
(3.26) [Fi(zy) + Fa(zo(y)) — Fs(x) — Fu(y)| < 26.

Now, by replacingz by o(z) andy by o(y) in (3.26) and if we add (subtract) the inequality
obtained t0[(3.26), we deduce that

(3.27) |FY (zy) + F3 (zo(y)) — F5(z) — Fi(y)] < 26,

and

(3.28) |FY (zy) + £ (zo(y)) — F5(x) — F{(y)| < 26

for all z,y € G. Hence, if we replacg by e, andz by e respectively in[(3.97), we get
(3.29) |FY(z) + F5(x) — F5(x)] <26
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and

(3.30) |Fi(y) + F5(y) - F(y)| < 25.

So, in view of [3.2]7),[(3.29) and (3.30), we obtain

(3.31) |FY (zy) + F5(zo(y)) — (FT + F3)(z) — (FT + F3)(y)]

< |F(zy) + F3(zo(y)) — F5(2) — Fi(y)]
+ [F(z) + F5 (2) — Fy(z)| + [FY(y) + F3 (y) — Fi(y)]
< 69.
By replacingy by o(y) in (3.31), we get the following
(3.32) IFf<M( ) + Fy(xy) — (Fy + F5)(x) — (F] + F3)(y)| < 6.
If we add (subtract) the inequality (3]31) fo (3.32), we get
(3.33) [(FY + F3)(zy) + (FT + F5)(wo(y)) — 2(F7 + F5)(x) — 2(FT + F5)(y)| <120,

(3.34) (Ff = F§)(ay) — (Ff — F§)(ao(y))| < 12

forall z,y € E;. Hence, in view of Theorein 2.6, there exists a unique funetj@solution of
equation[(1.4) such that

(3.35) |(FY + F5)(z) — q(z)| <65 forallxz € G.
Consequently, fronj (3.29], (3.30) and (3.35), we deduce that
(3.36) IF§(2) — g(x)] < 85
and
(3.37) |Fi () — q(x)] < 86
forallz € G.

On the other hand, from (3.p8) we get
(3.38) |F3 (@) — F{(x) — F3(x)] < 26
and
(3.39) |FY () = FY(2) + F5 (2)] < 26,
for all x € G. Hence, we obtain
(3.40) 2P (x) — F(x) — F{(z)] < 46
and
(3.41) 2F3 (x) — F§ () + F{(2)] < 46
for all x € G and consequently, we have
(3.42) |F5 (zy) + Fy (xo(y)) — 2F5 (x)|

< |F3(wy) — FY(xy) — F3 (2y)]

+|F (o (y)) — Y (xa(y)) — F5(zo(y))]
+ Y (2y) + B3 (zo(y)) — F3(2) — FY ()]
+ Y (wo(y)) + F3 (zy) — F3(x) — F{(o(y))]
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and
(3.43) |y (yx) + FY(o(y)x) — 2F) ()]
< [FY(yz) — FY (yz) + F5 (yz)
+ |F{ (o (y)x) — FY(o(y)x) + F5(o(y)x)|
+ |FY (yz) + F5 (yo () — F3(y) — Fy(z)
+ |[FY (o (y)x) + F5(o(y)o(z)) — F5(o(y)

|

) — F{(2)]
<8

forall z,y € G.

Now, from Lemma 3.1 and Lemnja 3.2 there exist two solutions of Jensen’s functional equa-
tion (3.14) and[(3]2) /1, J> : G — C such that

(3.44) |Fy(x) — Ji(x)] < 80.

and

(3.45) |F§(x) — Jo(x)] < 86

for all x € G. Now, by small computations, we obtain the rest of the proof. O

By using the previous lemmas, we may deduce our main result.

Theorem 3.4. Let G be an amenable semigroup. Letbe an automorphism af such that
o oo = I. If the functionsf, g : G — C satisfy the inequality

(3.46) |f(zy) + g(zo(y)) — f(z) —g(y)| <9,

for all z,y € G, then there exists a unique functign G — C, a solution of equatior] (1.4).
Also, there exist two solutiong, (resp..J;): G — C of Jensen’s functional equation (3]14),

(resp. [3.2)) such that

(3.47) |f(z) = Jo(x) — q(x) — f(e)] < 166
and

(3.48) 9(z) — Ji(z) — q(x) — g(e)| < 160,
forall z € G.

The stability of the Drygas’s functional equatign (3.19) is a consequence of the preceding
theorem.

Theorem 3.5. Let G be an amenable semigroup. Letbe an automorphism a& such that
o oo = I. Let the functiornf : G — C satisfy the inequality

(3.49) [f(zy) + fzo(y)) —2f () = fy) — flo(y))] <6,

for all z,y € G. Then there exists a unique functipn G — C, a solution of equatiorj (1.4),
and a solutionJ : G — C of Jensen’s functional equation (B.2) such that

(3.50) (x) = J(2) - qlz) — fe)] < 165

forall z € G.

Corollary 3.6. Let G be an amenable semigroup with a unity element. d_be an automor-
phism ofG such thato o 0 = . If the functionsfi, fs, f3, f1 : G — C satisfy the functional
equation

(3.51) filzy) + fa(zo(y)) = fs(x) + faly)
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forall x,y € G, then there exists a quadratic functipn G — C. There also exists a function
v : G — C, a solution of

(3.52) v(zy) = v(zo(y)), =,y€G.

In addition, there existy, 3,v,6 € C and two solutions/;, (resp. J;) of Jensen’s equation
(3.14) (resp.[(3.2)) such that

(353) fi@) = 5 (@) + 5a(e) + () + a(e) + o

3.54 _ ! J 1J L L

(3.54) fa() =3 1($)+§ 2($)—§V($)+§Q(x)+ﬁ,

(3.55) fa(x) = Jo(x) + q(x) + v

and

(3.56) fa(x) = Ji(x) +q(z) +0

forall z € G.

From Lemma 3.3, we can deduce the results obtained In [12].

Corollary 3.7. Let G be a vector space. If the functiorfs, fs, f3, f1 : G — C satisfy the
inequality
(3.57) |filz +y) + fa(z —y) — f3(x) — faly)| <0

for all z,y € G, then there exists a unique functign G — C, a solution of equatior] (1.2).
Also,a € C exists, and there are exactly two additive functiansa, : G — C such that

(3.58) fie) = 5ar(x) — sas(x) — sa(x) — 7(0) —af <195
1 1 1

(3.59) fo(z) + 501(90) - §a2(x) - 5@1@) — f2(0) + o < 199,

(3.60) |f3(x) — az(x) — q(x) — f3(0)] < 165

and

(3.61) [fa(z) — a1 () — q(z) — fa(0)] < 166

forall x € G.

The following corollary follows from Lemmf 3.3. This result is well known in the commu-
tative case, see for example [15].

Corollary 3.8. Let G be an amenable semigroup. If the functighsfs, f; : G — C satisfy
the inequality

(3.62) |filzy) — folz) — f3(y)| <6
forall =,y € G, then there exists a unique additive functionG — C such that
(3.63) fi(x) — a(z) — fale)] < 386,
(3.64) | fo(x) — a(z) — fa(e)| < 160
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and

(3.65) |f3(@) — a(z) — fa(e)| < 165

forall z € G.
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