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ABSTRACT. In this paper we derive the Hyers-Ulam stability of the quadratic functional equa-
tion

f(xy) + f(xσ(y)) = 2f(x) + 2f(y), x, y ∈ G,

respectively the functional equation

f(xy) + g(xσ(y)) = f(x) + g(y), x, y ∈ G,

whereG is an amenable semigroup,σ is a morphism ofG such thatσ ◦ σ = I, respectively
whereG is an amenable semigroup andσ is an homomorphism ofG such thatσ ◦ σ = I.
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1. I NTRODUCTION

In 1940, Ulam [21] raised a question concerning the stability problem of group homomor-
phisms:

Given a groupG1, a metric group (G2, d), a numberε > 0 and a mapping
f : G1 −→ G2 which satisfies the inequalityd(f(xy), f(x)f(y)) < ε for all
x, y ∈ G1, does there exist a homomorphismh : G1 −→ G2 and a constant
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2 BOUIKHALENE , ELQORACHI, AND REDOUANI

k > 0, depending only onG1 andG2 such thatd(f(x), h(x)) ≤ kε for all x in
G1?

The case of approximately additive mappings was solved by D. H. Hyers [8] under the as-
sumption thatG1 andG2 are Banach spaces.

In 1978, Th. M. Rassias [16] gave a remarkable generalization of the Hyers’s result which
allows the Cauchy difference to be unbounded. Since then, several mathematicians have been
attracted to the results of Hyers and Rassias and investigated a number of stability problems
of different functional equations. See for example the monographs of the following references
[5, 6, 9, 10, 11, 16].

The quadratic functional equation

(1.1) f(x+ y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ G
has been much studied. It was generalized by Stetkær [19] to the more general equation

(1.2) f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y), x, y ∈ G,
whereσ is an automorphism of the abelian groupG such thatσ2 = I, (I denotes the identity).

A stability result for the quadratic functional equation (1.1) was derived by Skof [18], Cholewa
[3] and by Czerwik [4].

Recently, Bouikhalene, Elqorachi and Rassias stated the stability theorem of equation (1.2),
see [1] and [2].

Székelyhidi [20] extended the Hyers’s result to amenable semigroups. He replaced the origi-
nal proof given by Hyers by a new one based on the use of invariant means.

In [22] Yang obtained the stability of the quadratic functional equation

(1.3) f(xy) + f(xy−1) = 2f(x) + 2f(y), x, y ∈ G,
in amenable groups.

The purpose of the present paper is a joint treatment of the functional equations (1.1) and
(1.3) and their generalization, where the unifying object is a morphism like the one introduced
in (1.2).

New features of the paper:

(1) In comparison with [20] and [22], we work with a general morphismσ.
(2) In contrast to [1] and [2] we here allow the (semi)groupG to be non-abelian.

In Section 2, we obtain the stability of the quadratic functional equation

(1.4) f(xy) + f(xσ(y)) = 2f(x) + 2f(y), x, y ∈ G,
whereσ is a morphism ofG such thatσ ◦ σ = I. The result of this section can be compared
with the ones of Yang [22] because we formulate them in the same way by using some ideas
from [22].

In Section 3, we obtain the stability of the generalized quadratic functional equation

(1.5) f(xy) + g(xσ(y)) = f(x) + g(y), x, y ∈ G,
whereσ is an automorphism ofG such thatσ ◦ σ = I.

2. STABILITY OF EQUATION (1.4) IN AMENABLE SEMIGROUPS

In this section we investigate the Hyers-Ulam stability of the quadratic functional equation

(2.1) f(xy) + f(xσ(y)) = 2f(x) + 2f(y), x, y ∈ G,
whereG is an amenable semigroup with unit elemente andσ : G −→ G is a morphism ofG,
i.e. σ is an antiautomorphism:σ(xy) = σ(y)σ(x) for all x, y ∈ G or σ is an automorphism:
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HYERS-ULAM STABILITY 3

σ(xy) = σ(x)σ(y) for all x, y ∈ G. Furthermore, we assume thatσ satisfies(σ ◦ σ)(x) = x,
for all x ∈ G.

We recall that a semigroupG is said to be amenable if there exists an invariant mean on the
space of the bounded complex functions defined onG. We refer to [7] for the definition and
properties of invariant means.

Throughout this paper, as in [5], we use the following definition.

Definition 2.1. LetG be a semigroup andB a Banach space. We say that the equation

(2.2) f(xy) + f(xσ(y)) = 2f(x) + 2f(y), x, y ∈ G

is stable for the pair(G,B) if for every functionf : G −→ B such that

(2.3)

∥∥∥∥1

2
[f(xy) + f(xσ(y))]− f(x)− f(y)

∥∥∥∥ ≤ δ, x, y ∈ G for some δ ≥ 0,

there exists a solutionq of equation (2.2) and a constantγ ≥ 0 dependent only onδ such that

(2.4) ‖f(x)− q(x)‖ ≤ γ for all x ∈ G.

Proposition 2.1. Letσ be an antiautomorphism of the semigroupG such thatσ ◦ σ = I. LetB
a Banach space. Suppose thatf : G −→ B satisfies the inequality (2.3). Then for everyx ∈ G,
the limit

(2.5) g(x) = lim
n→+∞

2−2n

[
f(x2n

) +
n∑
k=1

2k−1f((x2n−k

σ(x)2n−k

)2k−1

)

]
exists. Moreover,g : G −→ C is a unique function satisfying

(2.6) ‖f(x)− g(x)‖ ≤ δ, and g(x2) + g(xσ(x)) = 4g(x) for all x ∈ G.

Proof. Assume thatf : G −→ C satisfies the inequality (2.3) and define by induction the
sequence functionf0(x) = f(x) andfn(x) = 1

2
[fn−1(x

2) + fn−1(xσ(x))] for n ≥ 1. By direct
computation, we obtain

fn(x) = 2−n

[
f(x2n

) +
n∑
k=1

2k−1f((x2n−k

σ(x)2n−k

)2k−1

)

]
for all n ≥ 1.

By lettingx = y, in (2.3) we get

(2.7)

∥∥∥∥1

2
[f(x2) + f(xσ(x))]− 2f(x)

∥∥∥∥ ≤ δ,

so

(2.8) ‖f1(x)− 2f0(x)‖ ≤ δ for all x ∈ G.

In the following, we prove by induction the inequalities

(2.9) ‖fn(x)− 2fn−1(x)‖ ≤ δ

(2.10) ‖fn(x)− 2nf(x)‖ ≤ (2n − 1)δ
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4 BOUIKHALENE , ELQORACHI, AND REDOUANI

for all n ∈ N andx ∈ G. It is clear that (2.8) is (2.9) forn = 1. The inductive step must now
be demonstrated to hold true for the integern+ 1, that is

‖fn+1(x)− 2fn(x)‖ =

∥∥∥∥1

2
[fn(x

2) + fn(xσ(x))]− 2
1

2
[fn−1(x

2) + fn−1(xσ(x))]

∥∥∥∥(2.11)

≤ 1

2
[‖fn(x2)− 2fn−1(x

2)‖] +

∥∥∥∥1

2
[fn(xσ(x))− 2fn−1(xσ(x))]

∥∥∥∥
≤ 1

2
[δ + δ] = δ.

This proves that (2.9) is true for any natural numbern.
Now, by using the inequality

(2.12) ‖fn(x)− 2nf(x)‖ ≤ ‖fn(x)− 2fn−1(x)‖+ 2‖fn−1(x)− 2n−1f(x)‖

we check that (2.10) holds true for anyn ∈ N.
Let us define

(2.13) gn(x) =
fn(x)

2n
= 2−2n

[
f(x2n

) +
n∑
k=1

2k−1f((x2n−k

σ(x)2n−k

)2k−1

)

]
for any positive integern andx ∈ G.

Now, by using (2.11) and (2.13), we get

(2.14) ‖gn+1(x)− gn(x)‖ ≤
δ

2n+1
.

It easily follows that{gn(x)} is a Cauchy sequence for allx ∈ G. SinceB is complete, we
can defineg(x) = limn−→+∞ gn(x) for anyx ∈ G. From (2.10), one can verify thatg satisfies
the first assertion of (2.6). Now, we will show thatg satisfies the second assertion of (2.6). By
induction one proves that the sequencefn(x) satisfies

(2.15)

∥∥∥∥1

2
[fn(x

2) + fn(xσ(x))]− fn(x)− fn(x)

∥∥∥∥ ≤ δ

for all n ∈ N.
Forn = 1, we have∥∥∥∥1

2
[f1(x

2) + f1(xσ(x))]− f1(x)− f1(x)

∥∥∥∥(2.16)

=

∥∥∥∥1

2

[
1

2

[
f

(
x22

)
+ f(x2σ(x)2) + f((xσ(x))2) + f((xσ(x))2)

]
− 1

2
[f(x2) + f(xσ(x))]− 1

2
[f(x2) + f(xσ(x))]

]∥∥∥∥
≤

∥∥∥∥1

2

[
1

2

[
f

(
x22

)
+ f(x2σ(x)2)− 2f(x2)

]]
+

1

2

[
1

2

[
f((xσ(x))2) + f((xσ(x))2)− 2f(xσ(x))

]]∥∥∥∥
≤ 1

2
[δ + δ] = δ.
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So (2.15) is true forn = 1. We assume then that (2.15) holds forn and we prove that (2.15) is
true forn+ 1.∥∥∥∥1

2
[fn+1(x

2) + fn+1(xσ(x))]− fn+1(x)− fn+1(x)

∥∥∥∥(2.17)

=

∥∥∥∥1

2

[
1

2

[
fn

(
x22

)
+ fn(x

2σ(x)2) + fn((xσ(x))2) + fn((xσ(x))2)
]

−1

2
[fn(x

2) + fn(xσ(x))]− 1

2

[
fn(x

2) + fn(xσ(x))
]]∥∥∥∥

≤
∥∥∥∥1

2

[
1

2

[
fn

(
x22

)
+ fn(x

2σ(x)2)− 2fn(x
2)

]]∥∥∥∥
+

∥∥∥∥1

2

[
1

2
[fn((xσ(x))2) + fn((xσ(x))2)− 2fn(xσ(x))]

]∥∥∥∥
≤ 1

2
[δ + δ] = δ.

Consequently, the sequencegn(x) satisfies

(2.18)

∥∥∥∥1

2
[gn(x

2) + gn(xσ(x))]− gn(x)− gn(x)

∥∥∥∥ ≤ δ

2n

for all n ∈ N and then by lettingn→ +∞ we get the desired result.
Assume now that there exists another mappingh : G −→ B which satisfies‖f(x)−h(x)‖ ≤

δ andh(x2) + h(xσ(x)) = 4h(x) for all x ∈ G.
First, we will prove by mathematical induction that

(2.19) ‖fn(x)− 2nh(x)‖ ≤ δ for all x ∈ G.

Forn = 1, we have

‖f1(x)− 2h(x)‖ =

∥∥∥∥1

2
[f(x2) + f(xσ(x))]− 1

2
[h(x2) + h(xσ(x))]

∥∥∥∥(2.20)

≤ 1

2
[‖f(x2)− h(x2)‖+ ‖f(xσ(x))− h(xσ(x))‖]

≤ 1

2
[δ + δ] = δ.

Suppose (2.19) is true forn and we will prove it forn+ 1. Hence, we have

‖fn+1(x)− 2n+1h(x)‖ =

∥∥∥∥1

2
[fn(x

2) + fn(xσ(x))]− 2n
1

2
[h(x2) + h(xσ(x))]

∥∥∥∥(2.21)

≤ 1

2
[‖fn(x2)− 2nh(x2)‖+ ‖fn(xσ(x))− 2nh(xσ(x))‖]

≤ 1

2
[δ + δ] = δ.

This proves that (2.19) is true for alln ∈ N. From (2.19), we obtain
∥∥∥fn(x)

2n − h(x)
∥∥∥ ≤ δ

2n , so

by lettingn→ +∞ and by using the definition ofg we getg = h. This completes the proof of
the theorem. �

By using the precedent proof we easily obtain the following result.
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6 BOUIKHALENE , ELQORACHI, AND REDOUANI

Proposition 2.2. Let σ be an automorphism of the semigroupG such thatσ ◦ σ = I. LetB a
Banach space. Suppose thatf : G −→ B satisfies the inequality (2.3). Then for everyx ∈ G,
the limit

g(x) = lim
n→+∞

2−nfn(x)

exists, andg is a unique function satisfying

‖f(x)− g(x)‖ ≤ δ, and g(x2) + g(xσ(x)) = 4g(x) for all x ∈ G,

where the sequence of functionsfn is defined onG by the formulasf0(x) = f(x) andfn(x) =
1
2
[fn−1(x

2) + fn−1(xσ(x))] for n ≥ 1.

The following result shows that in this context the only property ofB (Definition 2.1) in-
volved is the completeness. For the proof, we refer to the one used by Yang in [22].

Theorem 2.3. Let σ be a morphism of the semigroupG such thatσ ◦ σ = I. Suppose that
equation (2.2) is stable for the pair(G,C) (resp. (G,R)) Then for every complex (resp. real)
Banach spaceB, (2.2) is stable for the pair(G,B).

The main result of the present section is the following

Theorem 2.4.Letσ be an antiautomorphism of the amenable semigroupG such thatσ◦σ = I.
Then equation (2.2) is stable for the pair(G,C).

First, we prove the following useful lemma

Lemma 2.5. Letσ be an antiautomorphism of the semigroupG such thatσ ◦ σ = I. LetB be
a Banach space. Suppose thatf : G −→ B satisfies the inequality

(2.22)

∥∥∥∥1

2
(f(xy) + f(xσ(y)))− f(x)− f(y)

∥∥∥∥ ≤ δ, for someδ ≥ 0.

Then for everyx ∈ G, the limit

(2.23) q(x) = lim
n→+∞

2−2n
{
f(x2n

) + (2n − 1)f(x2n−1

σ(x)2n−1

)
}

exists. Moreover, the mappingq satisfies the inequality

(2.24) ‖ f(x)− q(x) ‖≤ 7δ for all x ∈ G.

Proof. Assume thatf : G −→ B satisfies the inequality (2.22). We will prove by induction that

(2.25)

∥∥∥∥f(x)− 1

22n
{f(2nx) + (2n − 1)f(2n−1x+ 2n−1σ(x))}

∥∥∥∥
≤ 2

(
7

2
+

3

22n−1
− 19

2n+1

)
δ

for some positive integern. By lettingy = x, in (2.22) we get

(2.26) ‖f(x2) + (2− 1)f(xσ(x))− 22f(x)‖ ≤ 2δ,

so

(2.27)

∥∥∥∥f(x)− 1

22
{f(x2) + (2− 1)f(xσ(x))}

∥∥∥∥ ≤ δ

(
1− 1

2

)
for all x ∈ G.
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This proves (2.25) forn = 1. The inductive step must now be demonstrated to hold true for the
integern+ 1, that is∥∥∥∥f(x)− 1

22(n+1)

{
f(x2n+1

) + (2n+1 − 1)f(x2n

σ(x)2n

)
}∥∥∥∥

≤ 1

22(n+1)

∥∥∥f(x2n+1

) + f
(
x2n

σ(x)2n)
− 4f(x2n

)
∥∥∥

+
1

22(n+1)

∥∥∥2(2n − 1)f
(
x2n−1

σ(x)2n−1

x2n−1

σ(x)2n−1
)
− 4(2n − 1)f

(
x2n−1

σ(x)2n−1
)∥∥∥

+
1

22(n+1)

∥∥∥4f(x2n

) + 4(2n − 1)f
(
x2n−1

σ(x)2n−1
)
− 22(n+1)f(x)

∥∥∥
+

2(2n − 1)

22(n+1)

∥∥∥f (
x2n

σ(x)2n)
− f

(
x2n−1

σ(x)2n−1

x2n−1

σ(x)2n−1
)∥∥∥

≤ 2δ

22(n+1)
+

(2n − 1)2δ

22(n+1)
+

(
7

2
+

3

22n−1
− 19

2n+1

)
2δ

+
2(2n − 1)

22(n+1)

∥∥∥f(x2n

σ(x)2n

)− f
(
x2n−1

σ(x)2n−1

x2n−1

σ(x)2n−1
)∥∥∥ .

To complete the proof of the induction assumption (2.25), we need the following inequalities.
Let x = y = e in (2.22) to get‖2f(e)‖ ≤ 2δ. Puttingx = e in (2.22), gives

‖ f(y) + f(σ(y))− 2f(e)− 2f(y)‖ ≤ 2δ.

Consequently,

(2.28) ‖f(y)− f(σ(y))‖ ≤ 4δ.

By interchangingx by y in (2.22), we obtain

(2.29) ‖f(yx) + f(yσ(x))− 2f(x)− 2f(y)‖ ≤ 2δ.

By using (2.22), (2.28), (2.29) and the triangle inequality, we deduce that

(2.30) ‖f(xy)− f(yx)‖ ≤ 8δ.

Now, from (2.22), we obtain

(2.31)
∥∥∥2f

(
x2n−1

σ(x)2n

x2n−1
)
− 2f

(
x2n−1

σ(x)2n−1
)
− 2f

(
σ(x)2n−1

x2n−1
)∥∥∥ ≤ 2δ.

Since

(2.32)
∥∥f (

x2n

σ(x)2n)
− f

(
σ(x)2n

x2n)∥∥ ≤ 8δ

and

(2.33)
∥∥∥f (

x2n−1

σ(x)2n

x2n−1
)
− f(x2n

σ(x)2n

)
∥∥∥ ≤ 8δ

then

(2.34)
∥∥∥2f

(
x2n−1

σ(x)2n

x2n−1
)
− 4f

(
x2n−1

σ(x)2n−1
)∥∥∥ ≤ 18δ

J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 56, 18 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 BOUIKHALENE , ELQORACHI, AND REDOUANI

and ∥∥∥f(x2n

σ(x)2n

)− 2f
(
x2n−1

σ(x)2n−1
)∥∥∥(2.35)

≤
∥∥∥f (

x2n−1

σ(x)2n

x2n−1
)
− f(x2n

σ(x)2n

)
∥∥∥

+
∥∥∥f (

x2n−1

σ(x)2n

x2n−1
)
− f

(
x2n−1

σ(x)2n−1
)∥∥∥

≤ 8δ +
18δ

2
= 17δ.

Finally, we deduce that∥∥∥f(x2n

σ(x)2n

)− f
(
x2n−1

σ(x)2n−1

x2n−1

σ(x)2n−1
)∥∥∥(2.36)

≤
∥∥∥f(x2n

σ(x)2n

)− 2f
(
x2n−1

σ(x)2n−1
)∥∥∥

+
∥∥∥2f

(
x2n−1

σ(x)2n−1
)
− f

(
x2n−1

σ(x)2n−1

x2n−1

σ(x)2n−1
)∥∥∥

≤ 17δ + δ = 18δ

and consequently,∥∥∥∥f(x)− 1

22(n+1)

{
f

(
x2n+1

)
+ (2n+1 − 1)f

(
x2n

σ(x)2n)}∥∥∥∥
≤ 2δ

22(n+1)
+

2(2n − 1)δ

22(n+1)
+

(
7

2
+

3

22n−1
− 19

2n+1

)
2δ +

2(2n − 1)

22(n+1)
18δ

= 2

(
7

2
+

3

22n+1
− 19

2n+2

)
δ.

This proves the validity of the inequality (2.25).
Let us define

(2.37) qn(x) =
1

22n

{
f(x2n

) + (2n − 1)f(x2n−1

σ(x)2n−1

)
}

for any positive integern andx ∈ G.
Then{qn(x)} is a Cauchy sequence for everyx ∈ G. In fact by using (2.22), (2.36) and

(2.37), we get

‖qn+1(x)− qn(x)‖

≤ 1

22(n+1)

∥∥∥f (
x2n+1

)
+ f(x2n

σ(x)2n

)− 4f(x2n

)
∥∥∥

+
1

22(n+1)

∥∥∥2(2n − 1)f
(
x2n

σ(x)2n)
− 4(2n − 1)f

(
x2n−1

σ(x)2n−1
)∥∥∥

≤ δ

22(n+1)
+

1

22(n+1)

∥∥∥2(2n − 1)f
(
x2n−1

σ(x)2n−1

x2n−1

σ(x)2n−1
)

− 4(2n − 1)f
(
x2n−1

σ(x)2n−1
) ∥∥∥

+
2(2n − 1)

22(n+1)

∥∥∥f(x2n

σ(x)2n

)− f
(
x2n−1

σ(x)2n−1

x2n−1

σ(x)2n−1
)∥∥∥

≤ 2δ

22(n+1)
+

2(2n − 1)δ

22(n+1)
+

36δ(2n − 1)

22(n+1)

≤ 40δ

2n
.
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It easily follows that{qn(x)} is a Cauchy sequence for allx ∈ G. SinceB is complete, we
can defineq(x) = limn−→+∞ qn(x) for anyx ∈ G and, in view of (2.25) one can verify thatq
satisfies the inequality (2.24). This completes the proof of Lemma 2.5. �

Proof of Theorem 2.4.We follow the ideas and the computations used in [22]. By using (2.30)
one derives the functional inequality

(2.38) |f((xy)n)− f((yx)n)| ≤ 8δ.

In addition, from (2.3), (2.38) and the triangle inequality we deduce that

|f((xy)2n

(σ(xy))2n

)− f((yx)2n

(σ(yx))2n

)|(2.39)

≤ |f((xy)2n

(σ(xy))2n

) + f((xy)2n

(xy)2n

)− 4f((xy)2n

)|
+ | − f((yx)2n

(yx)2n

)− f((yx)2n

(σ(yx))2n

) + 4f((yx)2n

)|
+

∣∣f((xy)2n

(xy)2n

)− f((yx)2n

(yx)2n

)
∣∣ + 4

∣∣f((xy)2n

)− f((yx)2n

)
∣∣

≤ 2δ + 2δ + 8δ + 32δ = 44δ.

From Lemma 2.5, for everyx ∈ G, the limit

(2.40) q(x) = lim
n→+∞

2−2n
{
f(x2n

) + (2n − 1)f
(
x2n−1

σ(x)2n−1
)}

exists and

(2.41) |f(x)− q(x)| ≤ 7δ.

Furthermore, in view of (2.38) – (2.39)q satisfies the relation

(2.42) q(xy) = q(yx), x, y ∈ G

and by (2.41) – (2.22)q satisfies the inequality equation

(2.43) |q(xy) + q(xσ(y))− 2q(x)− 2q(y)| ≤ 44δ

for all x, y ∈ G.
Consequently, for any fixedy ∈ G the function

x 7−→ q(xy) + q(xσ(y))− 2q(x)

is bounded. SinceG is amenable, there exists an invariant meanmx on the space of bounded,
complex-functions onG. With the help ofmx we define the following function onG

(2.44) ψ(y) = mx{qy + qσ(y) − 2q}

for all y ∈ G, whereqy(z) = q(zy), z ∈ G.
Furthermore, by using (2.29) and (2.44), we get

ψ(zy) + ψ(σ(z)y) = mx{qzy + qσ(y)σ(z) − 2q}+mx{qσ(z)y + qσ(y)z − 2q}(2.45)

= mx{zyq + qσ(y)σ(z) − 2q}+mx{σ(z)yq + qσ(y)z − 2q}
= mx{zyq +σ(z)y q − 2(yq)}+mx{qσ(y)σ(z) + qσ(y)z − 2qσ(y)}

+mx{2qy + 2qσ(y) − 4q}
= 2ψ(z) + 2ψ(y).
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10 BOUIKHALENE , ELQORACHI, AND REDOUANI

So,Q(y) = ψ(y)
2

satisfies equation (2.2) and the following inequality

|Q(y)− q(y)| = 1

2
|mx{qy + qσ(y) − 2q − 2q(y)}|(2.46)

≤ sup
x∈G

1

2
|{q(xy) + q(xσ(y))− 2q(x)− 2q(y)}|

≤ 44

2
δ = 22δ.

Consequently, there exists a mappingQ which satisfies the functional equation (2.2) and the
inequality|f(y)−Q(y)| ≤ 29δ. This completes the proof of the theorem. �

Theorem 2.6. Let σ be an automorphism of the amenable semigroupG such thatσ ◦ σ = I.
Then equation (2.2) is stable for the pair(G,C).

Proof. From inequality (2.3), we deduce that for any fixedy ∈ G the functionx 7−→ f(xy) +
f(xσ(y))− 2f(x) is bounded. SinceG is amenable, then we can define

(2.47) φ(y) = mx{fy + fσ(y) − 2f}

for all y ∈ G.
We have

φ(yz)+φ(yσ(z))(2.48)

= mx{fyz + fσ(y)σ(z) − 2f}+mx{fyσ(z) + fσ(y)z − 2f}
= mx{fyz + fyσ(z) − 2fy}+mx{fσ(y)σ(z) + fσ(y)z − 2fσ(y)}

+ 2mx{fy + fσ(y) − 2f}
= φ(z) + φ(σ(z)) + 2φ(y) = 2φ(z) + 2φ(y),

soφ is a solution of equation (2.2). Moreover, we have∣∣∣∣f(y)− φ(y)

2

∣∣∣∣ =
1

2
|mx{fy + fσ(y) − 2f − 2f(y)}|(2.49)

≤ 1

2
sup
x∈G

|f(xy) + f(xσ(y))− 2f(x)− 2f(y)| ≤ δ.

This completes the proof of theorem. �

By using Theorem 2.4 and the proof of Proposition 2.1 we get the following corollaries.
In the first corollary, the estimate improves the ones obtained in the proof of Theorem 2.4.

Corollary 2.7. Letσ be an antiautomorphism of the amenable semigroupG such thatσ◦σ = I.
LetB a Banach space. Suppose thatf : G −→ B satisfies the inequality (2.3). Then for every
x ∈ G, the limit

(2.50) Q(x) = lim
n→+∞

2−2n

[
f(x2n

) +
n∑
k=1

2k−1f
(
(x2n−k

σ(x)2n−k

)2k−1
)]

exists. Moreover,Q is the unique solution of equation (1.4) satisfying

(2.51) ‖f(x)−Q(x)‖ ≤ δ for all x ∈ G.

Corollary 2.8. Letσ be a morphism of the amenable semigroupG such thatσ ◦ σ = I. Then
for every Banach spaceB, equation (2.2) is stable for the pair(G,B).
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Corollary 2.9 ([20]). Let σ = I. LetG be an amenable semigroup. Then for every Banach
spaceB, equation

(2.52) f(xy) = f(x) + f(y), x, y ∈ G
is stable for the pair(G,B).

Corollary 2.10 ([22]). Letσ(x) = x−1. LetG be an amenable group. Then for every Banach
spaceB, equation

(2.53) f(xy) + f(xy−1) = 2f(x) + 2f(y), x, y ∈ G
is stable for the pair(G,B).

Corollary 2.11 ([2]). Let σ be an automorphism of the vector spaceG such thatσ ◦ σ = I.
Then for every Banach spaceB, the equation

(2.54) f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y), x, y ∈ G
is stable for the pair(G,B).

3. STABILITY OF EQUATION (1.5) IN AMENABLE SEMIGROUPS

In this section we investigate the Hyers-Ulam stability of the functional equation

(3.1) f(xy) + g(xσ(y)) = f(x) + g(y), x, y ∈ G,
whereG is an amenable semigroup with element unitye andσ : G −→ G is an automorphism
of G such thatσ ◦ σ = I.

The stability of equation (3.1) was studied by several authors in the case whereG is an abelian
group andσ = −I. For more information, see for example [12].

First we establish some results which will be instrumental in proving our main results.
In the following lemma, we will present a Hyers-Ulam stability result for Jensen’s functional

equation:

(3.2) f(xy) + f(xσ(y)) = 2f(x), x, y ∈ G.

Lemma 3.1. Let G be an amenable semigroup. Letσ be an homomorphism ofG such that
σ ◦ σ = I and letf : G −→ C be a function. Assume that there existsδ ≥ 0 such that

(3.3) |f(xy) + f(xσ(y))− 2f(x)| ≤ δ

for all x, y ∈ G. Then, there exists a solutionJ : G −→ C of Jensen’s functional equation (3.2)
such that

(3.4) |f(x)− J(x)− f(e)| ≤ δ

for all x ∈ G.

Proof. Let us denote byf e(x) = f(x)+f(σ(x))
2

the even part off and byf o(x) = f(x)−f(σ(x))
2

the
odd part off .

By replacingx by σ(x) andy by σ(y) in (3.3), we get

(3.5) |f(σ(x)σ(y)) + f(σ(x)y)− 2f(σ(x))| ≤ δ.

Now, if we add (subtract) the argument of the inequality (3.3) to (from) inequality (3.5), we
deduce that the functionsf e andf o satisfy the following inequalities

(3.6) |f e(xy) + f e(xσ(y))− 2f e(x)| ≤ δ

(3.7) |f o(xy) + f o(xσ(y))− 2f o(x)| ≤ δ

J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 56, 18 pp. http://jipam.vu.edu.au/
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12 BOUIKHALENE , ELQORACHI, AND REDOUANI

for all x, y ∈ G.
By puttingx = e in (3.6), we obtain

(3.8) |f e(y)− f(e)| ≤ δ

2
.

The inequality (3.7) can be written as follows

(3.9) |f o(yx)− f o(σ(y)x)− 2f o(y)| ≤ δ.

This implies that for fixedy ∈ G, the functionx 7−→ f o(yx)− f o(σ(y)x) is bounded. SinceG
is amenable, letmx be an invariant mean on the space of complex bounded functions onG and
define the mapping:

(3.10) ψ(y) = mx{yf o −σ(y) f
o} for all y ∈ G.

Consequently from (3.10), we obtain thatψ satisfies the Jensen’s functional equation

ψ(yz)+ψ(yσ(z))(3.11)

= mx{yzf o −σ(y)σ(z) f
o}+mx{yσ(z)f

o −σ(y)z f
o}

= mx{yzf o −σ(y)z f
o}+mx{yσ(z)f

o −σ(y)σ(z) f
o}

= mx{z[yf o −σ(y) f
o]}+mx{σ(z)[yf

o −σ(y) f
o]}

= 2ψ(y).

The functionJ(y) = ψ(y)
2

satisfies the Jensen’s functional equation (3.2) and the following
inequality

(3.12) |J(y)− f o(y)| ≤ 1

2
sup
x∈G

|f o(yx)− f o(σ(y)x)− 2f o(y)| ≤ δ

2
.

Finally, we obtain

|f(y)− J(y)− f(e)| = |f e(y) + f o(y)− J(y)− f(e)|(3.13)

≤ |f e(y)− f(e)|+ |f o(y)− J(y)| ≤ δ.

This completes the proof of Lemma 3.1. �

By using the proof of the preceding lemma, we get the stability of the Jensen function equa-
tion

(3.14) f(yx) + f(σ(y)x) = 2f(x), x, y ∈ G.

Lemma 3.2. Let G be an amenable semigroup. Letσ be a homomorphism ofG such that
σ ◦ σ = I and letf : G −→ C be a function. Assume that there existsδ ≥ 0 such that

(3.15) |f(yx) + f(σ(y)x)− 2f(x)| ≤ δ

for all x, y ∈ G. Then, there exists a solutionJ : G −→ C of Jensen’s functional equation
(3.14) such that

(3.16) |f(x)− J(x)− f(e)| ≤ δ

for all x ∈ G. More precisely,J is given by the formula

(3.17) J(y) = mx{f oy − f oσ(y)} for all y ∈ G.
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In the following lemma, we obtain a partial stability theorem for the Pexider’s functional
equation

(3.18) f1(xy) + f2(xσ(y)) = f3(x) + f4(y), x, y ∈ G
that includes the functional equation (1.5) and the Drygas’s functional equation:

(3.19) f(xy) + f(xσ(y)) = 2f(x) + f(y) + f(σ(y)), x, y ∈ G
as special cases.

Lemma 3.3. Let G be an amenable semigroup. Letσ be an automorphism ofG such that
σ ◦ σ = I. If the functionsf1, f2, f3, f4 : G −→ C satisfy the inequality

(3.20) |f1(xy) + f2(xσ(y))− f3(x)− f4(y)| ≤ δ

for all x, y ∈ G, then there exists a unique functionq : G −→ C, a solution of equation (1.4).
Also, there exists a solutionJ1, (resp. J2): G −→ C of Jensen’s functional equation (3.14),
(resp. (3.2)) such that,

(3.21) |f3(x)− J2(x)− q(x)− f3(e)| ≤ 16δ,

(3.22) |f4(x)− J1(x)− q(x)− f4(e)| ≤ 16δ,

(3.23)

∣∣∣∣f e1 (x) + f e2 (x)− q(x)− 1

2
f1(e)−

1

2
f2(e)

∣∣∣∣ ≤ 6δ,

(3.24) |(f e1 − f e2 )(xy)− (f e1 − f e2 )(xσ(y))| ≤ 12δ,∣∣∣∣f o1 (x)− 1

2
J1(x)−

1

2
J2(x)

∣∣∣∣ ≤ 10δ

and ∣∣∣∣f o2 (x)− 1

2
J2(x) +

1

2
J1(x)

∣∣∣∣ ≤ 10δ

for all x, y ∈ G.

Proof. In the present proof, we follow the computations used in the papers [1], [12], and [23].
For any functionf : G −→ C, we defineF (x) = f(x)− f(e).
By puttingx = y = e in (3.20), we get

(3.25) |f1(e) + f2(e)− f3(e)− f4(e)| ≤ δ.

Consequently, if we subtract the inequality (3.20) from the new inequality (3.25), we obtain

(3.26) |F1(xy) + F2(xσ(y))− F3(x)− F4(y)| ≤ 2δ.

Now, by replacingx by σ(x) andy by σ(y) in (3.26) and if we add (subtract) the inequality
obtained to (3.26), we deduce that

(3.27) |F e
1 (xy) + F e

2 (xσ(y))− F e
3 (x)− F e

4 (y)| ≤ 2δ,

and

(3.28) |F o
1 (xy) + F o

2 (xσ(y))− F o
3 (x)− F o

4 (y)| ≤ 2δ

for all x, y ∈ G. Hence, if we replacey by e, andx by e respectively in (3.27), we get

(3.29) |F e
1 (x) + F e

2 (x)− F e
3 (x)| ≤ 2δ
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and

(3.30) |F e
1 (y) + F e

2 (y)− F e
4 (y)| ≤ 2δ.

So, in view of (3.27), (3.29) and (3.30), we obtain

|F e
1 (xy) + F e

2 (xσ(y))− (F e
1 + F e

2 )(x)− (F e
1 + F e

2 )(y)|(3.31)

≤ |F e
1 (xy) + F e

2 (xσ(y))− F e
3 (x)− F e

4 (y)|
+ |F e

1 (x) + F e
2 (x)− F e

3 (x)|+ |F e
1 (y) + F e

2 (y)− F e
4 (y)|

≤ 6δ.

By replacingy by σ(y) in (3.31), we get the following

(3.32) |F e
1 (xσ(y)) + F e

2 (xy)− (F e
1 + F e

2 )(x)− (F e
1 + F e

2 )(y)| ≤ 6δ.

If we add (subtract) the inequality (3.31) to (3.32), we get

(3.33) |(F e
1 + F e

2 )(xy) + (F e
1 + F e

2 )(xσ(y))− 2(F e
1 + F e

2 )(x)− 2(F e
1 + F e

2 )(y)| ≤ 12δ,

(3.34) |(F e
1 − F e

2 )(xy)− (F e
1 − F e

2 )(xσ(y))| ≤ 12δ

for all x, y ∈ E1. Hence, in view of Theorem 2.6, there exists a unique functionq, a solution of
equation (1.4) such that

(3.35) |(F e
1 + F e

2 )(x)− q(x)| ≤ 6δ for all x ∈ G.
Consequently, from (3.29), (3.30) and (3.35), we deduce that

(3.36) |F e
3 (x)− q(x)| ≤ 8δ

and

(3.37) |F e
4 (x)− q(x)| ≤ 8δ

for all x ∈ G.
On the other hand, from (3.28) we get

(3.38) |F o
3 (x)− F o

1 (x)− F o
2 (x)| ≤ 2δ

and

(3.39) |F o
4 (x)− F o

1 (x) + F o
2 (x)| ≤ 2δ,

for all x ∈ G. Hence, we obtain

(3.40) |2F o
1 (x)− F o

3 (x)− F o
4 (x)| ≤ 4δ

and

(3.41) |2F o
2 (x)− F o

3 (x) + F o
4 (x)| ≤ 4δ

for all x ∈ G and consequently, we have

|F o
3 (xy) + F o

3 (xσ(y))− 2F o
3 (x)|(3.42)

≤ |F o
3 (xy)− F o

1 (xy)− F o
2 (xy)|

+ |F o
3 (xσ(y))− F o

1 (xσ(y))− F o
2 (xσ(y))|

+ |F o
1 (xy) + F o

2 (xσ(y))− F o
3 (x)− F o

4 (y)|
+ |F o

1 (xσ(y)) + F o
2 (xy)− F o

3 (x)− F o
4 (σ(y))|

≤ 8δ
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and

|F o
4 (yx) + F o

4 (σ(y)x)− 2F o
4 (x)|(3.43)

≤ |F o
4 (yx)− F o

1 (yx) + F o
2 (yx)|

+ |F o
4 (σ(y)x)− F o

1 (σ(y)x) + F o
2 (σ(y)x)|

+ |F o
1 (yx) + F o

2 (yσ(x))− F o
3 (y)− F o

4 (x)|
+ |F o

1 (σ(y)x) + F o
2 (σ(y)σ(x))− F o

3 (σ(y))− F o
4 (x)|

≤ 8δ

for all x, y ∈ G.
Now, from Lemma 3.1 and Lemma 3.2 there exist two solutions of Jensen’s functional equa-

tion (3.14) and (3.2),J1, J2 : G −→ C such that

(3.44) |F o
4 (x)− J1(x)| ≤ 8δ.

and

(3.45) |F o
3 (x)− J2(x)| ≤ 8δ

for all x ∈ G. Now, by small computations, we obtain the rest of the proof. �

By using the previous lemmas, we may deduce our main result.

Theorem 3.4. LetG be an amenable semigroup. Letσ be an automorphism ofG such that
σ ◦ σ = I. If the functionsf, g : G −→ C satisfy the inequality

(3.46) |f(xy) + g(xσ(y))− f(x)− g(y)| ≤ δ,

for all x, y ∈ G, then there exists a unique functionq : G −→ C, a solution of equation (1.4).
Also, there exist two solutionsJ1, (resp.J2): G −→ C of Jensen’s functional equation (3.14),
(resp. (3.2)) such that

(3.47) |f(x)− J2(x)− q(x)− f(e)| ≤ 16δ

and

(3.48) |g(x)− J1(x)− q(x)− g(e)| ≤ 16δ,

for all x ∈ G.

The stability of the Drygas’s functional equation (3.19) is a consequence of the preceding
theorem.

Theorem 3.5. LetG be an amenable semigroup. Letσ be an automorphism ofG such that
σ ◦ σ = I. Let the functionf : G −→ C satisfy the inequality

(3.49) |f(xy) + f(xσ(y))− 2f(x)− f(y)− f(σ(y))| ≤ δ,

for all x, y ∈ G. Then there exists a unique functionq : G −→ C, a solution of equation (1.4),
and a solutionJ : G −→ C of Jensen’s functional equation (3.2) such that

(3.50) |f(x)− J(x)− q(x)− f(e)| ≤ 16δ

for all x ∈ G.

Corollary 3.6. LetG be an amenable semigroup with a unity element. Letσ be an automor-
phism ofG such thatσ ◦ σ = I. If the functionsf1, f2, f3, f4 : G −→ C satisfy the functional
equation

(3.51) f1(xy) + f2(xσ(y)) = f3(x) + f4(y)
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for all x, y ∈ G, then there exists a quadratic functionq : G −→ C. There also exists a function
ν : G −→ C, a solution of

(3.52) ν(xy) = ν(xσ(y)), x, y ∈ G.
In addition, there existα, β, γ, δ ∈ C and two solutionsJ1, (resp. J2) of Jensen’s equation
(3.14) (resp. (3.2)) such that

(3.53) f1(x) =
1

2
J1(x) +

1

2
J2(x) +

1

2
ν(x) +

1

2
q(x) + α,

(3.54) f2(x) = −1

2
J1(x) +

1

2
J2(x)−

1

2
ν(x) +

1

2
q(x) + β,

(3.55) f3(x) = J2(x) + q(x) + γ

and

(3.56) f4(x) = J1(x) + q(x) + δ

for all x ∈ G.

From Lemma 3.3, we can deduce the results obtained in [12].

Corollary 3.7. LetG be a vector space. If the functionsf1, f2, f3, f4 : G −→ C satisfy the
inequality

(3.57) |f1(x+ y) + f2(x− y)− f3(x)− f4(y)| ≤ δ

for all x, y ∈ G, then there exists a unique functionq : G −→ C, a solution of equation (1.2).
Also,α ∈ C exists, and there are exactly two additive functionsa1, a2 : G −→ C such that

(3.58)

∣∣∣∣f1(x)−
1

2
a1(x)−

1

2
a2(x)−

1

2
q(x)− f1(0)− α

∣∣∣∣ ≤ 19δ,

(3.59)

∣∣∣∣f2(x) +
1

2
a1(x)−

1

2
a2(x)−

1

2
q(x)− f2(0) + α

∣∣∣∣ ≤ 19δ,

(3.60) |f3(x)− a2(x)− q(x)− f3(0)| ≤ 16δ

and

(3.61) |f4(x)− a1(x)− q(x)− f4(0)| ≤ 16δ

for all x ∈ G.

The following corollary follows from Lemma 3.3. This result is well known in the commu-
tative case, see for example [15].

Corollary 3.8. LetG be an amenable semigroup. If the functionsf1, f2, f3 : G −→ C satisfy
the inequality

(3.62) |f1(xy)− f2(x)− f3(y)| ≤ δ

for all x, y ∈ G, then there exists a unique additive functiona : G −→ C such that

(3.63) |f1(x)− a(x)− f1(e)| ≤ 38δ,

(3.64) |f2(x)− a(x)− f2(e)| ≤ 16δ
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and

(3.65) |f3(x)− a(x)− f3(e)| ≤ 16δ

for all x ∈ G.
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