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ABSTRACT. We prove a differential inequality for real forms of arbitrary degree, the problem
being considered on closed orthahtsC R™. A sufficient positivity criterion is derived. Our re-
sults allow computer implementation and contain enough information to imply the fundamental
AM — GM inequality.
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1. INTRODUCTION AND NOTATIONS

Positivity criteria for realh-ary d-forms (d-homogeneous polynomiafs: R” — R) are of
practical significance, but effective results exist for lower degree only.

e For quadratic forms, Sylvester’s criterion characterizes strict positivifig'okh {0,, }.

e For symmetric cubicsd( = 3), positivity on the first orthanR’ is reduced in[[2] to a
finite number of tests (see Theorém|1.1 below), which are the same for all cubics.

e For symmetric quarticsd(= 4) on R’} or R", and for symmetric quinticsi(= 5) on
R?, positivity is expressed in [11] in terms of finite test-sets depending on the symmet-
ric form. For quartics, explicit discriminants and effective related algorithms (Maple
worksheets) are derived in [12].

All mentioned results provide equivalent conditions and allow computer implementation. For
arbitrary degree, it is of interest to find “reasonable” sufficient conditions for positivity on closed
orthants inR™. In our entire discussion we require that N, n > 2.

For everyk € {1,...,n}, write 0y := (0,...,0) € R¥ 1; := (1,...,1) € R¥, and set
er = (14,0,_%) € R" & = k7'e;. Forz € R”, it is convenient to writer, for its kth
component. Therefore, we avoid denoting vectors with symbols with lower indexes (upper
indexes will be allowed) andy, 1, ¢, € arethe only exception® this rule.
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2 VLAD TIMOFTE

For everyx = (z1,...,z,) € R", set
supp(z) = {j € {1,....n} [a; # 0}, =] := Y |ayl.
j=1

We need the following theorem, which is known in the context of even symmetric sextics (for
the original statement see [2, Th. 3.7, p. 567]).

Theorem 1.1.Letg : R — R be a symmetric cubic. Then
g>00nR} < g(e) >0 foreveryk € {1,...,n}.

2. MAIN RESULTS

Let us consider an arbitraritform f : R® — R, with d € N*.
For ease of exposition, let us define the order relatigri bn R™ by

u<v &L u; e {0,0;} foreveryj e {1,...,n}
<= u; = v; foreveryj € supp(u).

Remark 2.1. The following properties of &” are immediate.
1): 0, < u for everyu € R™.
2 u<k 1, < uec{0,1}"
3): For everyu € R", the set{x € R" | x < u} is finite.
4): If H is a closed orthant iR™ and ifu < v € H, thenu € H.
5): If T: R™ — R"is a diagonal linear isomorphism or a permutation of coordinates or a
composition of finitely many such operators, then

uKv <= Tu<gTv.

The following result provides a lower estimé{ﬁmr f in terms of itsd-th differential f(4.
As we shall see, its symmetric variant (Theoienj 2.3) contains enough information to imply the
fundamentadM — G M inequality.

Theorem 2.2.Let H C R" be a closed orthant. There exist, ..., u? € {—1,0,1}"N H, such
that0, # u' < --- < «4 and

(2.1) fz) > Hde ‘ f(d)(on)(ul,...,ud)

foreveryz € H.

d! [l ][ - - Jlu]
In particular, if (9 satisfies the inequality
(2.2) FD0,) (... u?) >0
forall 0, #u' < - <u? € {-1,0,1}" N H,thenf > 0onH.
Theorem 2.3. Assumef to be symmetric, witd > 4. Then there exist if1, ..., n} integers
ki > --- > ky_3 > k, such that
6|24 .oa, _

@3 w2 B )@, e, )
(2.4) _ lll? FD0,)(E €ky o €k» €, €x) TOr everyr € R”

. - d' n kiy 9 €kg g€k €k €k Yy +-

In particular, we haveda) = (b) = (c), where:
@): fD0,)(exy, - ex,) >0 forall ky > -+ > ky,

!Replacingf by — f leads to the corresponding upper estimate.
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(b) f(d_3)(€k)<€k1, e 761@173) >0 for all k> > kd,3 >k,
(c): f>0o0nR%.

Computer implementation of Theorems|2.2 and 2.3 is possible. The presefi¢eiafthe
above statements poses no serious computation problem, since we have the identity

FD0,)(ut, ... ul) = Z (1)t J)f< Zu]) forallu', ..., u? € R™.
JC{1,..,d} jed
3. PROOFs

3.1. The Non-symmetric Case.We first need the following lemma:

Lemma 3.1. There exist. € {0, 1}" andy € R, such that|y|| = 1, supp(y) = supp(u), and

f'(y)(u)
dl|u]

If fis symmetric, we can fingsuch that; > --- > y,. In this case, we have = ¢, for some
ke{l,...,n}.

Proof. Let us first observe that inequaliy (B.1)dshomogeneous in. Consider the compact
setK := {z € R" \HxH = 1} and choose € K, such thatf(y) = min(f|x). Assume for

(3.1) f(z) >

-|Jz||* for everyz € R”:.

simplicity thaty, > --- > vy, (if f is symmetric, we can fing with this property). It follows
thatsupp(y) = {1, ..., k} for somek < n. We claim that
(3.2) kdf (y) = f'(y)(er).

By Euler’s theorem on homogeneous functions we get

(3.3) Z Vi 8x F'W)(y)-

We need to consider two cases:
) If k=1, theny = ¢, and [3.8) obviously reduces fo (B.2).
i) If £ > 2, theny’ := (y1,...,yx) is a global minimum for the restriction of the map
10,00[F> 2 +— f(2,0,_x) € Rtothe subsefz €]0,00[F | ||z|| = 1}. Thus, applying the
method of Lagrange multipliers shows that

of . Of of
(3.4) oY = o S (y) =" ka( y) = A
for some\ € R. Now (3.3) and[(3}4) yield = df (y). Using this in[(3.4) leads to

P =3 o) = kr=kaf (o)

Our claim is proved. For every € R \ {0,,} we have||z| 'z € K, and so

flx) _ F'we) _ F)e)

1
g~ T = 0 = T =
which proves|(3]1) fot: = ¢;. O
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Proof of Theorem 2]2.

Step 1. We first consider the particular cage= R’;. Let us show by induction that for every
i € {1,...,d}, there existy’ € R andu',...,u" € {0,1}", such that|y’|| = 1, supp(y’) =
supp(u), u' < - -+ < u', and

(d — @)Yl

. > .
49 A P
For: = 1 this is clear, by Lemmp 3.1. Assuming the statement to hold for somel, we
will prove it for ¢ + 1. For simplicity, we shall assume that > --- > 4 (if f is symmet-
ric, we can find suchy’ at each step of our induction). Consequently, we haye(y’) =
{1,...,k} andu® = ¢, for somek € {1,...,n}. Let us observe that the m&* > 2 —
fD(2,0, 1) (u',...,u') € Risa(d — i)-form. According to Lemma 3|1, there exigt'! =
(¢,0,-%) € RE x R andu'™ = (v,0,_;) € {0,1}", such that|y*"!|| = 1, supp(y'*!) =
supp(u‘*1), and

FOy) (... u') for everyz € R™.

. , (z‘+1)( z‘+1)(u1 T uz‘+1) _
D (2,0, ), ... u) > I R -||2)|¢= for everyz € R% .
f (Za n k)(u ’ ,U) - (d— Z)HUHIH ||Z|| yz +
Forz = (yi,...,y.) we have(z,0,_) = ¢', |z|| = ||y|]| = 1, and consequently
o ‘ f(i+1)(yi+1)(u1’ o 7ui+1)
(3.6) FOH ') > T
(d — @) fJu*]]

We also havé),, # u'*! < ¢, = u’. Now combining[(3.5) with[(3]6) completes our induction,
as well as the proof foff = R?, sincef@ is constantf @ (y4) = f(9(0,,).

Step 2. We next turn to the general case. Clearly, we can #nd..,d, € {—1,1}, such
that the linear isomorphisfi : R" — R", Tz = (121, ..., 6,2,), mapsR’ onto A, that is,
T(R%) = H. Applying the conclusion of Step 1 to thieform f o 7" yields the existence af
vectorsv!, ..., v? € R%, such thab,, # v < --- < v' < 1,, and

Izl (f o T)D(0,) (0", ..., v%)
- [0t - - flo?]
Let us observe thatT'z|| = ||«|| for everyz € R", and that
(foT)D(0,)(v!, ..., 0% = FDO,)(Tv', ..., Tv?),
0, #Tv' < - <« Tv? < T1, € {-1,1}".
It follows that the vectors’ := T’ are allin{—1,0,1}" N H, and that[(2]L) holds. O

f(Tz) =

for everyz € R”.

3.2. The Symmetric Case.The following needed lemma is a slight generalization of Theo-
remL1.1.

Lemma 3.2. Letg : R — R be a symmetric polynomial wittkeg(g) < 3. Then for every
o > 0 we have

min{g(z) |z € RY, [|lz]| = o} = min g(o&).

Proof. Fix o > 0 and setn := mini<x<, g(0€;), K = {& € R |||z]| = o}. Hence,a =
g(og,) for somep € {1,...,n}. We have forg the decompositiory = Zfzo 9i, With g;
symmetrici-form for everyi € {0, 1,2, 3}. Now define the symmetric cubic

3
h:R"—R, h=>Y $7"g—as

=0
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whereS(z) := o~' 377, ;. Obviously,h|x = g|x — a. By Theorenj 1/, we have > 0 on
R", and sog|x > a. Sincece, € K andg(oé,) = o, we gete = mingcx g(). O

Proof of Theorem 2|3As in the proof of Theorein 2.2 (Step 1), by the same induction based on
Lemma[3.1, we gey € R} andu' = ¢,,...,u"% = ¢, ,, such that|y| = 1, ky > --- >
ka3, supp(y) = supp(ex, ,) = {1,...,ks—3}, and
(3.7) f(z) > Sl 43y (e €,_,) foreveryr € R"

. T Y) €kys oo €ky_g YT 4
Note that the above inequality correspondd to|(3.5) ferd — 3. Since||y|| = 1, supp(y) =
{1,...,k4_3}, and the polynomial map

RFa-3 5 2 9392 0, ) ) Erys - Erys) ER

is a symmetri-form, applying Lemma 3]2 shows that

(38) f(dig)(y> (Eku SRR gkd—S) > f(dig)(gk)(gku s 7€kd—3)
for somek < k,_3. Now combining|[(3.Jr) with[(318) yield$ (2.3). As the map

g: R* — R, g(’z) = f(d73)(270n*k)(€k17'"7€kd73)
is a3-form, we havesg(z) = ¢”(2)(z, 2, z) = ¢""(0x)(z, 2, 2) for everyz € R*. This gives

FUD @) sy ) = 9(1)
_ 9" (0r) (Lgs 1k, 1i)
6
D00 (Erys - s g ks s ER)
_ . ’
which proves|[(2}4). O

Example 3.1. Proof of the fundamental M — GG M inequality by verifying condition (a) from
Theoreni 2.B.

Proof. Letn € N*andf : R" — R, f(z) = >, 2 — n][., z;. We shall prove that > 0

onR’". Since Theorerh 11 shows this for< 3, assume that > 4. For allu', ..., u" € R,
we have

(n) 1 ny\ __ R ) N, n
(3.9) FRO) ) = Y G, (0,) iy (') - i, ("),
11, 5tn=
wherep,,...,p, : R® — R are the standard linear projections. For ease of exposition, let us

define the map
v:R* = {1,...,n}, wv(x)=-card({z1,...,2,}),
and consider the set := {1,... ,n}". Foreveryi = (iy,...,i,) € A, set

n!, o) =
ooy T
8Ii o 61’1‘18[%'2 ce (‘3@" N N

1
(3.10) —n, v(i)=n
0, 1<uw(i)<n
the last equality being easily checked. Now#Aix> --- > k, in {1,...,n}, and let

B:={ic€ Ali; < ki ig < ko, in <k}
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By (3.9) and|(3.10) we get
(3.11) F™00) (egys - - €r,) = gZ

i€EB
whereB; := {i € B|v(i) = 1} andB,, := {i € B|v(i) = n}. Since obviously
By ={e€n,2€¢, ... knen}, Bn,C{i€ Ali, <k, v(i)=n}=F,
we havecard(B;) = k,, andcard(B,,) < card(F) = k,(n — 1)!. To prove the last equality, let
us observe that every element E can be obtained by selecting € {1, ..., k,} (there are
k,, possibilities), and then choosing pairwise distiict .., 7,1 € {1,...,n}\ {i,} (thatis, a
permutation of this set). By (3.1L1) we get
f(”)(On)(ekl, ey Ekn) Z 0.
The conclusion follows by Theorgm 2.3. O

For Polya’s general result on strictly positive forms, we refer the reader to [3]. Bounds for the
exponent from Pdlya’s theorem are givenlin[5, 8]. Various symmetric inequalities can be found
especially in[[3 5], but also in[1]4] 7] 9]. Some general results on symmetric inequalities can
be found in[[10] and [11].

(0n) = n!-card(B;) — n - card(B,),
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