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ABSTRACT. In this paper, we have obtained bounds on Csiszár’sf-divergencein terms ofrela-
tive information of type susing Dragomir’s [9] approach. The results obtained in particular lead
us to bounds in terms ofχ2−Divergence, Kullback-Leibler’srelative informationand Hellinger’s
discrimination.
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1. I NTRODUCTION

Let

∆n =

{
P = (p1, p2, . . . , pn)

∣∣∣∣∣pi > 0,
n∑

i=1

pi = 1

}
, n ≥ 2,

be the set of complete finite discrete probability distributions.
The Kullback Leibler’s [13]relative informationis given by

(1.1) K(P ||Q) =
n∑

i=1

pi ln

(
pi

qi

)
,

for all P, Q ∈ ∆n.
In ∆n, we have taken allpi > 0. If we takepi ≥ 0,∀i = 1, 2, . . . , n, then in this case we

have to suppose that0 ln 0 = 0 ln
(

0
0

)
= 0. From theinformation theoreticpoint of view we

generally take all the logarithms with base 2, but here we have taken only natural logarithms.
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2 INDER JEET TANEJA

We observe that the measure (1.1) is not symmetric inP and Q. Its symmetric version,
famous asJ-divergence(Jeffreys [12]; Kullback and Leiber [13]), is given by

(1.2) J(P ||Q) = K(P ||Q) + K(Q||P ) =
n∑

i=1

(pi − qi) ln

(
pi

qi

)
.

Let us consider the one parametric generalization of the measure (1.1), calledrelative informa-
tion of types given by

(1.3) Ks(P ||Q) = [s(s− 1)]−1

[
n∑

i=1

ps
iq

1−s
i − 1

]
, s 6= 0, 1.

In this case we have the following limiting cases

lim
s→1

Ks(P ||Q) = K(P ||Q),

and
lim
s→0

Ks(P ||Q) = K(Q||P ).

The expression (1.3) has been studied by Vajda [22]. Previous to it many authors studied its
characterizations and applications (ref. Taneja [20] and on line book Taneja [21]).

We have some interesting particular cases of the measure (1.3).

(i) Whens = 1
2
, we have

K1/2(P ||Q) = 4 [1−B(P ||Q)] = 4h(P ||Q)

where

(1.4) B(P ||Q) =
n∑

i=1

√
piqi,

is the famous as Bhattacharya’s [1]distance, and

(1.5) h(P ||Q) =
1

2

n∑
i=1

(
√

pi −
√

qi)
2,

is famous as Hellinger’s [11]discrimination.
(ii) Whens = 2, we have

K2(P ||Q) =
1

2
χ2(P ||Q),

where

(1.6) χ2(P ||Q) =
n∑

i=1

(pi − qi)
2

qi

=
n∑

i=1

p2
i

qi

− 1,

is theχ2−divergence(Pearson [16]).
(iii) When s = −1, we have

K−1(P ||Q) =
1

2
χ2(Q||P ),

where

(1.7) χ2(Q||P ) =
n∑

i=1

(pi − qi)
2

pi

=
n∑

i=1

q2
i

pi

− 1.
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For simplicity, let us write the measures (1.3) in the unified way:

(1.8) Φs(P ||Q) =


Ks(P ||Q), s 6= 0, 1,

K(Q||P ), s = 0,

K(P ||Q), s = 1.

Summarizing, we have the following particular cases of the measures (1.8):
(i) Φ−1(P ||Q) = 1

2
χ2(Q||P ).

(ii) Φ0(P ||Q) = K(Q||P ).
(iii) Φ1/2(P ||Q) = 4 [1−B(P ||Q)] = 4h(P ||Q).
(iv) Φ1(P ||Q) = K(P ||Q).
(v) Φ2(P ||Q) = 1

2
χ2(P ||Q).

2. CSISZÁR’ S f−DIVERGENCE AND I NFORMATION BOUNDS

Given a convex functionf : [0,∞) → R, thef−divergence measure introduced by Csiszár
[4] is given by

(2.1) Cf (p, q) =
n∑

i=1

qif

(
pi

qi

)
,

wherep, q ∈ Rn
+.

The following two theorems can be seen in Csiszár and Körner [5].

Theorem 2.1. (Joint convexity). Iff : [0,∞) → R be convex, thenCf (p, q) is jointly convex in
p andq, wherep, q ∈ Rn

+.

Theorem 2.2. (Jensen’s inequality). Letf : [0,∞) → R be a convex function. Then for any
p, q ∈ Rn

+, with Pn =
∑n

i=1 pi > 0, Qn =
∑n

i=1 pi > 0, we have the inequality

Cf (p, q) ≥ Qnf

(
Pn

Qn

)
.

The equality sign holds for strictly convex functions iff
p1

qi

=
p2

q2

= · · · = pn

qn

.

In particular, for allP, Q ∈ ∆n, we have

Cf (P ||Q) ≥ f(1),

with equality iff P = Q.
In view of Theorems 2.1 and 2.2, we have the following result.

Result 1. For allP, Q ∈ ∆n, we have
(i) Φs(P ||Q) ≥ 0 for anys ∈ R, with equality iff P = Q.

(ii) Φs(P ||Q) is convex function of the pair of distributions(P, Q) ∈ ∆n ×∆n and for any
s ∈ R.

Proof. Take

(2.2) φs(u) =


[s(s− 1)]−1 [us − 1− s(u− 1)] , s 6= 0, 1;

u− 1− ln u, s = 0;

1− u + u ln u, s = 1
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for all u > 0 in (2.1), we have

Cf (P ||Q) = Φs (P ||Q) =


Ks(P ||Q), s 6= 0, 1;

K(Q||P ), s = 0;

K(P ||Q), s = 1.

Moreover,

(2.3) φ′s(u) =


(s− 1)−1 (us−1 − 1) , s 6= 0, 1;

1− u−1, s = 0;

ln u, s = 1

and

(2.4) φ′′s(u) =


us−2, s 6= 0, 1;

u−2, s = 0;

u−1, s = 1.

Thus we haveφ′′s(u) > 0 for all u > 0, and hence,φs(u) is strictly convex for allu > 0. Also,
we haveφs(1) = 0. In view of Theorems 2.1 and 2.2 we have the proof of parts (i) and (ii)
respectively. �

For some studies on the measure (2.2) refer to Liese and Vajda [15], Österreicher [17] and
Cerone et al. [3].

The following theorem summarizes some of the results studies by Dragomir [7], [8]. For
simplicity we have takenf(1) = 0 andP, Q ∈ ∆n.

Theorem 2.3. Let f : R+ → R be differentiable convex and normalized i.e.,f(1) = 0. If
P, Q ∈ ∆n are such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

for somer andR with 0 < r ≤ 1 ≤ R < ∞, then we have the following inequalities:

(2.5) 0 ≤ Cf (P ||Q) ≤ 1

4
(R− r) (f ′(R)− f ′(r)) ,

(2.6) 0 ≤ Cf (P ||Q) ≤ βf (r, R),

and

0 ≤ βf (r, R)− Cf (P ||Q)(2.7)

≤ f ′(R)− f ′(r)

R− r

[
(R− 1)(1− r)− χ2(P ||Q)

]
≤ 1

4
(R− r) (f ′(R)− f ′(r)) ,

where

(2.8) βf (r, R) =
(R− 1)f(r) + (1− r)f(R)

R− r
,

andχ2(P ||Q) andCf (P ||Q) are as given by (1.6) and (2.1) respectively.
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In view of above theorem, we have the following result.

Result 2. Let P, Q ∈ ∆n ands ∈ R. If there existsr, R such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

with 0 < r ≤ 1 ≤ R < ∞, then we have

(2.9) 0 ≤ Φs(P ||Q) ≤ µs(r, R),

(2.10) 0 ≤ Φs(P ||Q) ≤ φs(r, R),

and

0 ≤ φs(r, R)− Φs(P ||Q)(2.11)

≤ ks(r, R)
[
(R− 1)(1− r)− χ2(P ||Q)

]
≤ µs(r, R),

where

(2.12) µs(r, R) =


1
4

(R−r)(Rs−1−rs−1)
(s−1)

, s 6= 1;

1
4
(R− r) ln

(
R
r

)
, s = 1

φs(r, R) =
(R− 1)φs(r) + (1− r)φs(R)

R− r
(2.13)

=



(R−1)(rs−1)+(1−r)(Rs−1)
(R−r)s(s−1)

, s 6= 0, 1;

(R−1) ln 1
r
+(1−r) ln 1

R

(R−r)
, s = 0;

(R−1)r ln r+(1−r)R ln R
(R−r)

, s = 1,

and

(2.14) ks(r, R) =
φ′s(R)− φ′s(r)

R− r
=


Rs−1 − rs−1

(R− r)(s− 1)
, s 6= 1;

ln R− ln r

R− r
, s = 1.

Proof. The above result follows immediately from Theorem 2.3, by takingf(u) = φs(u), where
φs(u) is as given by (2.2), then in this case we haveCf (P ||Q) = Φs(P ||Q). �

Moreover,

µs(r, R) =
1

4
(R− r)2 ks(r, R),

where

ks(r, R) =

[Ls−2(r, R)]s−2 , s 6= 1;

[L−1(r, R)]−1 s = 1,
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andLp(a, b) is the famous (ref. Bullen, Mitrinović and Vasíc [2]) p-logarithmic meangiven by

Lp(a, b) =



[
bp+1−ap+1

(p+1)(b−a)

] 1
p
, p 6= −1, 0;

b−a
ln b−ln a

, p = −1;

1
e

[
bb

aa

] 1
b−a

, p = 0,

for all p ∈ R, a, b ∈ R+, a 6= b.
We have the following corollaries as particular cases of Result 2.

Corollary 2.4. Under the conditions of Result 2, we have

0 ≤ χ2(Q||P ) ≤ 1

4
(R + r)

(
R− r

rR

)2

,(2.15)

0 ≤ K(Q||P ) ≤ (R− r)2

4Rr
,(2.16)

0 ≤ K(P ||Q) ≤ 1

4
(R− r) ln

(
R

r

)
,(2.17)

0 ≤ h(P ||Q) ≤
(R− r)

(√
R−

√
r
)

8
√

Rr
(2.18)

and

(2.19) 0 ≤ χ2(P ||Q) ≤ 1

2
(R− r)2.

Proof. (2.15) follows by takings = −1, (2.16) follows by takings = 0, (2.17) follows by
takings = 1, (2.18) follows by takings = 1

2
and (2.19) follows by takings = 2 in (2.9). �

Corollary 2.5. Under the conditions of Result 2, we have

0 ≤ χ2(Q||P ) ≤ (R− 1)(1− r)

rR
,(2.20)

0 ≤ K(Q||P ) ≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
,(2.21)

0 ≤ K(P ||Q) ≤ (R− 1)r ln r + (1− r)R ln R

R− r
,(2.22)

0 ≤ h(P ||Q) ≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

(2.23)

and

(2.24) 0 ≤ χ2(P ||Q) ≤ (R− 1)(1− r).

Proof. (2.20) follows by takings = −1, (2.21) follows by takings = 0, (2.22) follows by
takings = 1, (2.23) follows by takings = 1

2
and (2.24) follows by takings = 2 in (2.10). �

In view of (2.16), (2.17), (2.21) and (2.22), we have the following bounds onJ-divergence:

(2.25) 0 ≤ J(P ||Q) ≤ min {t1(r, R), t2(r, R)} ,

where

t1(r, R) =
1

4
(R− r)2

[
(rR)−1 + (L−1(r, R))−1]
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and
t2(r, R) = (R− 1)(1− r) (L−1(r, R))−1 .

The expressiont1(r, R) is due to (2.16) and (2.17) and the expressiont2(r, R) is due to (2.21)
and (2.22).

Corollary 2.6. Under the conditions of Result 2, we have

0 ≤ (R− 1)(1− r)

rR
− χ2(Q||P )(2.26)

≤ R + r

(rR)2

[
(R− 1)(1− r)− χ2(P ||Q)

]
,

0 ≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )(2.27)

≤ 1

rR

[
(R− 1)(1− r)− χ2(P ||Q)

]
,

0 ≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)(2.28)

≤ ln R− ln r

R− r

[
(R− 1)(1− r)− χ2(P ||Q)

]
and

0 ≤

(√
R− 1

)
(1−

√
r)(√

R +
√

r
) − h(P ||Q)(2.29)

≤ 1

2
√

rR
(√

R +
√

r
) [

(R− 1)(1− r)− χ2(P ||Q)
]
.

Proof. (2.26) follows by takings = −1, (2.27) follows by takings = 0, (2.28) follows by
takings = 1, (2.29) follows by takings = 1

2
in (2.11). �

3. M AIN RESULTS

In this section, we shall present a theorem generalizing the one obtained by Dragomir [9].
The results due to Dragomir [9] are limited only toχ2− divergence, while the theorem es-
tablished here is given in terms ofrelative information of types, that in particular lead us
to bounds in terms ofχ2−divergence, Kullback-Leibler’srelative informationand Hellinger’s
discrimination.

Theorem 3.1.Letf : I ⊂ R+ → R the generating mapping be normalized, i.e.,f(1) = 0 and
satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 ≤ r ≤ 1 ≤ R ≤ ∞;
(ii) there exists the real constantsm, M with m < M such that

(3.1) m ≤ x2−sf ′′(x) ≤ M, ∀x ∈ (r, R), s ∈ R.

If P, Q ∈ ∆n are discrete probability distributions satisfying the assumption

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

(3.2) m [φs(r, R)− Φs(P ||Q)] ≤ βf (r, R)− Cf (P ||Q) ≤ M [φs(r, R)− Φs(P ||Q)] ,
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whereCf (P ||Q), Φs(P ||Q), βf (r, R) andφs(r, R) are as given by (2.1), (1.8), (2.8) and
(2.13) respectively.

Proof. Let us consider the functionsFm,s(·) andFM,s(·) given by

(3.3) Fm,s(u) = f(u)−mφs(u),

and

(3.4) FM,s(u) = Mφs(u)− f(u),

respectively, wherem andM are as given by (3.1) and functionφs(·) is as given by (2.3).
Sincef(u) and φs(u) are normalized, thenFm,s(·) and FM,s(·) are also normalized, i.e.,

Fm,s(1) = 0 andFM,s(1) = 0. Moreover, the functionsf(u) andφs(u) are twice differentiable.
Then in view of (2.4) and (3.1), we have

F ′′
m,s(u) = f ′′(u)−mus−2 = us−2

(
u2−sf ′′(u)−m

)
≥ 0

and
F ′′

M,s(u) = Mus−2 − f ′′(u) = us−2
(
M − u2−sf ′′(u)

)
≥ 0,

for all u ∈ (r, R) ands ∈ R. Thus the functionsFm,s(·) andFM,s(·) are convex on(r, R).
We have seen above that the real mappingsFm,s(·) andFM,s(·) defined overR+ given by (3.3)

and (3.4) respectively are normalized, twice differentiable and convex on(r, R). Applying the
r.h.s. of the inequality (2.6), we have

(3.5) CFm,s(P ||Q) ≤ βFm,s(r, R),

and

(3.6) CFm,s(P ||Q) ≤ βFM,s
(r, R),

respectively.
Moreover,

(3.7) CFm,s(P ||Q) = Cf (P ||Q)−mΦs(P ||Q),

and

(3.8) CFM,s
(P ||Q) = MΦs(P ||Q)− Cf (P ||Q).

In view of (3.5) and (3.7), we have

Cf (P ||Q)−mΦs(P ||Q) ≤ βFm,s(r, R),

i.e.,
Cf (P ||Q)−mΦs(P ||Q) ≤ βf (r, R)−mφs(r, R)

i.e.,
m [φs(r, R)− Φs(P ||Q)] ≤ βf (r, R)− Cf (P ||Q).

Thus, we have the l.h.s. of the inequality (3.2).
Again in view of (3.6) and (3.8), we have

MΦs(P ||Q)− Cf (P ||Q) ≤ βFM,s
(r, R),

i.e.,
MΦs(P ||Q)− Cf (P ||Q) ≤ Mφs(r, R)− βf (r, R),

i.e.,
βf (r, R)− Cf (P ||Q) ≤ M [φs(r, R)− Φs(P ||Q)] .

Thus we have the r.h.s. of the inequality (3.2). �
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Remark 3.2. For similar kinds of results in comparing thef−divergence with Kullback-Leibler
relative informationsee the work by Dragomir [10]. The case of Hellingerdiscriminationis
discussed in Dragomir [6].

We shall now present some particular case of the Theorem 3.1.

3.1. Information Bounds in Terms of χ2−Divergence. In particular fors = 2, in Theorem
3.1, we have the following proposition:

Proposition 3.3. Let f : I ⊂ R+ → R the generating mapping be normalized, i.e.,f(1) = 0
and satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 < r ≤ 1 ≤ R < ∞;
(ii) there exists the real constantsm, M with m < M such that

(3.9) m ≤ f ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assumption

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

m

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.10)

≤ βf (r, R)− Cf (P ||Q)

≤ M

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
,

whereCf (P ||Q), βf (r, R) andχ2(P ||Q) are as given by (2.1), (2.8) and (1.6) respec-
tively.

The above proposition was obtained by Dragomir in [9]. As a consequence of the above
Proposition 3.3, we have the following result.

Result 3. Let P, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞) such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

then in view of Proposition 3.3, we have

Rs−2

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.11)

≤ φs(r, R)− Φs(P ||Q)

≤ rs−2

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
, s ≤ 2

and

rs−2

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.12)

≤ φs(r, R)− Φs(P ||Q)

≤ Rs−2

2

[
(R− 1)(1− r)− χ2(P ||Q)

]
, s ≥ 2.
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Proof. Let us considerf(u) = φs(u), whereφs(u) is as given by (2.2), then according to
expression (2.4), we have

φ′′s(u) = us−2.

Now if u ∈ [r, R] ⊂ (0,∞), then we have

Rs−2 ≤ φ′′s(u) ≤ rs−2, s ≤ 2,

or accordingly, we have

(3.13) φ′′s(u)

≤ rs−2, s ≤ 2;

≥ rs−2, s ≥ 2

and

(3.14) φ′′s(u)

≤ Rs−2, s ≥ 2;

≥ Rs−2, s ≤ 2,

wherer andR are as defined above. Thus in view of (3.9), (3.13) and (3.14), we have the
proof. �

In view of Result 3, we have the following corollary.

Corollary 3.4. Under the conditions of Result 3, we have
1

R3

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.15)

≤ (R− 1)(1− r)

rR
− χ2(Q||P )

≤ 1

r3

[
(R− 1)(1− r)− χ2(P ||Q)

]
,

1

2R2

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.16)

≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

≤ 1

2r2

[
(R− 1)(1− r)− χ2(P ||Q)

]
,

1

2R

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.17)

≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

≤ 1

2r

[
(R− 1)(1− r)− χ2(P ||Q)

]
and

1

8
√

R3

[
(R− 1)(1− r)− χ2(P ||Q)

]
(3.18)

≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

− h(P ||Q)

≤ 1

8
√

r3

[
(R− 1)(1− r)− χ2(P ||Q)

]
.
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Proof. (3.15) follows by takings = −1, (3.16) follows by takings = 0, (3.17) follows by
takings = 1, (3.18) follows by takings = 1

2
in Result 3. While fors = 2, we have equality

sign. �

Proposition 3.5. Let f : I ⊂ R+ → R the generating mapping be normalized, i.e.,f(1) = 0
and satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 < r ≤ 1 ≤ R < ∞;
(ii) there exists the real constantsm, Msuch thatm < M and

(3.19) m ≤ x3f ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assumption

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

m

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.20)

≤ βf (r, R)− Cf (P ||Q)

≤ m

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
,

whereCf (P ||Q), βf (r, R) andχ2(Q||P ) are as given by (2.1), (2.8) and (1.7) respec-
tively.

As a consequence of above proposition, we have the following result.

Result 4. Let P, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞) such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

then in view of Proposition 3.5, we have

Rs+1

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.21)

≤ φs(r, R)− Φs(P ||Q)

≤ rs+1

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
, s ≤ −1

and

rs+1

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.22)

≤ φs(r, R)− Φs(P ||Q)

≤ Rs+1

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
, s ≥ −1.

Proof. Let us considerf(u) = φs(u), whereφs(u) is as given by (2.2), then according to
expression (2.4), we have

φ′′s(u) = us−2.
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Let us define the functiong : [r, R] → R such thatg(u) = u3φ′′s(u) = us+1, then we have

(3.23) sup
u∈[r,R]

g(u) =

Rs+1, s ≥ −1;

rs+1, s ≤ −1

and

(3.24) inf
u∈[r,R]

g(u) =

rs+1, s ≥ −1;

Rs+1, s ≤ −1.

In view of (3.23) , (3.24) and Proposition 3.5, we have the proof of the result. �

In view of Result 4, we have the following corollary.

Corollary 3.6. Under the conditions of Result 4, we have

r

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.25)

≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

≤ R

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
,

r2

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.26)

≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

≤ R2

2

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
,

√
r3

8

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.27)

≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

− h(P ||Q)

≤
√

R3

8

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
and

r3

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
(3.28)

≤ (R− 1)(1− r)− χ2(P ||Q)

≤ R3

[
(R− 1)(1− r)

rR
− χ2(Q||P )

]
.

Proof. (3.25) follows by takings = 0, (3.26) follows by takings = 1, (3.27) follows by taking
s = 1

2
and (3.28) follows by takings = 2 in Result 4. While fors = −1, we have equality

sign. �
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3.2. Information Bounds in Terms of Kullback-Leibler Relative Information. In particular
for s = 1, in the Theorem 3.1, we have the following proposition (see also Dragomir [10]).

Proposition 3.7. Let f : I ⊂ R+ → R the generating mapping be normalized, i.e.,f(1) = 0
and satisfy the assumptions:

(i) f is twice differentiable on(r, R) , where0 < r ≤ 1 ≤ R < ∞;
(ii) there exists the real constantsm, M with m < M such that

(3.29) m ≤ xf ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assumption

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

m

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.30)

≤ βf (r, R)− Cf (P ||Q)

≤ M

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
,

whereCf (P ||Q), βf (r, R) andK(P ||Q) as given by (2.1), (2.8) and (1.1) respectively.

In view of the above proposition, we have the following result.

Result 5. Let P, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞) such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

then in view of Proposition 3.7, we have

rs−1

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.31)

≤ φs(r, R)− Φs(P ||Q)

≤ Rs−1

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
, s ≥ 1

and

Rs−1

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.32)

≤ φs(r, R)− Φs(P ||Q)

≤ rs−1

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
, s ≤ 1.

Proof. Let us considerf(u) = φs(u), whereφs(u) is as given by (2.2), then according to
expression (2.4), we have

φ′′s(u) = us−2.

Let us define the functiong : [r, R] → R such thatg(u) = φ′′s(u) = us−1, then we have

(3.33) sup
u∈[r,R]

g(u) =

Rs−1, s ≥ 1;

rs−1, s ≤ 1
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and

(3.34) inf
u∈[r,R]

g(u) =

rs−1, s ≥ 1;

Rs−1, s ≤ 1.

In view of (3.33), (3.34) and Proposition 3.7 we have the proof of the result. �

In view of Result 5, we have the following corollary.

Corollary 3.8. Under the conditions of Result 5, we have

2

R2

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.35)

≤ (R− 1)(1− r)

rR
− χ2(Q||P )

≤ 2

r2

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
,

1

R

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.36)

≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

≤ 1

r

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
,

1

4
√

R

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.37)

≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

− h(P ||Q)

≤ 1

4
√

r

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
and

2r

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
(3.38)

≤ (R− 1)(1− r)− χ2(P ||Q)

≤ 2R

[
(R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

]
.

Proof. (3.35) follows by takings = −1, (3.36) follows by takings = 0, (3.37) follows by
taking s = 1

2
and (3.38) follows by takings = 2 in Result 5. Fors = 1, we have equality

sign. �

In particular, fors = 0 in Theorem 3.1, we have the following proposition:

Proposition 3.9. Let f : I ⊂ R+ → R the generating mapping be normalized, i.e.,f(1) = 0
and satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 < r ≤ 1 ≤ R < ∞;
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(ii) there exists the real constantsm, M with m < M such that

(3.39) m ≤ x2f ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assumption

0 < r ≤ pi

qi

≤ R < ∞,

then we have the inequalities:

m

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.40)

≤ βf (r, R)− Cf (P ||Q)

≤ M

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
,

whereCf (P ||Q), βf (r, R) andK(Q||P ) as given by (2.1), (2.8) and (1.1) respectively.

In view of Proposition 3.9, we have the following result.

Result 6. Let P, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞) such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

then in view of Proposition 3.9, we have

rs

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.41)

≤ φs(r, R)− Φs(P ||Q)

≤ Rs

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
, s ≥ 0

and

Rs

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.42)

≤ φs(r, R)− Φs(P ||Q)

≤ rs

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
, s ≤ 0.

Proof. Let us considerf(u) = φs(u), whereφs(u) is as given by (2.2), then according to
expression (2.4), we have

φ′′s(u) = us−2.

Let us define the functiong : [r, R] → R such thatg(u) = u2φ′′s(u) = us, then we have

(3.43) sup
u∈[r,R]

g(u) =

Rs, s ≥ 0;

rs, s ≤ 0

and

(3.44) inf
u∈[r,R]

g(u) =

rs, s ≥ 0;

Rs, s ≤ 0.

In view of (3.43), (3.44) and Proposition 3.9, we have the proof of the result. �
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In view of Result 6, we have the following corollary.

Corollary 3.10. Under the conditions of Result 6, we have

2

R

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.45)

≤ (R− 1)(1− r)

rR
− χ2(Q||P )

≤ 2

r

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
,

r

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.46)

≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

≤ R

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
,

√
r

4

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.47)

≤

(√
R− 1

)
(1−

√
r)

√
R +

√
r

− h(P ||Q)

≤
√

R

4

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
and

2r2

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
(3.48)

≤ (R− 1)(1− r)− χ2(P ||Q)

≤ 2R2

[
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

]
.

Proof. (3.45) follows by takings = −1, (3.46) follows by takings = 1, (3.47) follows by
taking s = 1

2
and (3.48) follows by takings = 2 in Result 6. Fors = 0, we have equality

sign. �

3.3. Information Bounds in Terms of Hellinger’s Discrimination. In particular, fors = 1
2

in Theorem 3.1, we have the following proposition (see also Dragomir [6]).

Proposition 3.11.Letf : I ⊂ R+ → R the generating mapping be normalized, i.e.,f(1) = 0
and satisfy the assumptions:

(i) f is twice differentiable on(r, R), where0 < r ≤ 1 ≤ R < ∞;
(ii) there exists the real constantsm, M with m < M such that

(3.49) m ≤ x3/2f ′′(x) ≤ M, ∀x ∈ (r, R).

If P, Q ∈ ∆n are discrete probability distributions satisfying the assumption

0 < r ≤ pi

qi

≤ R < ∞,
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then we have the inequalities:

4m


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.50)

≤ βf (r, R)− Cf (P ||Q)

≤ 4M


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 ,

whereCf (P ||Q), βf (r, R) andh(P ||Q) as given by (2.1), (2.8) and (1.5) respectively.

In view of Proposition 3.11, we have the following result.

Result 7. Let P, Q ∈ ∆n ands ∈ R. Let there existr, R (0 < r ≤ 1 ≤ R < ∞) such that

0 < r ≤ pi

qi

≤ R < ∞, ∀i ∈ {1, 2, . . . , n},

then in view of Proposition 3.11, we have

4r
2s−1

2


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.51)

≤ φs(r, R)− Φs(P ||Q)

≤ 4R
2s−1

2


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 , s ≥ 1

2

and

4R
2s−1

2


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.52)

≤ φs(r, R)− Φs(P ||Q)

≤ 4r
2s−1

2


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 , s ≤ 1

2
.

Proof. Let the functionφs(u) given by (3.29) be defined over[r, R]. Definingg(u) = u3/2φ′′s(u) =

u
2s−1

2 , obviously we have

(3.53) sup
u∈[r,R]

g(u) =

R
2s−1

2 , s ≥ 1
2
;

r
2s−1

2 , s ≤ 1
2

and

(3.54) inf
u∈[r,R]

g(u) =

r
2s−1

2 , s ≥ 1
2
;

R
2s−1

2 , s ≤ 1
2
.

In view of (3.53), (3.54) and Proposition 3.11, we get the proof of the result. �

In view of Result 7, we have the following corollary.
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Corollary 3.12. Under the conditions of Result 7, we have

8√
R3


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.55)

≤ (R− 1)(1− r)

rR
− χ2(Q||P )

≤ 8√
r3


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 ,

4√
R


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.56)

≤
(R− 1) ln 1

r
+ (1− r) ln 1

R

R− r
−K(Q||P )

≤ 4√
r


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 ,

4
√

r


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.57)

≤ (R− 1)r ln r + (1− r)R ln R

R− r
−K(P ||Q)

≤ 4
√

R


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)


and

8
√

r3


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

(3.58)

≤ (R− 1)(1− r)− χ2(P ||Q)

≤ 8
√

R3


(√

R− 1
)

(1−
√

r)
√

R +
√

r
− h(P ||Q)

 .

Proof. (3.55) follows by takings = −1, (3.56) follows by takings = 0, (3.57) follows by
taking s = 1 and (3.58) follows by takings = 2 in Result 7. Fors = 1

2
, we have equality

sign. �
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