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1. INTRODUCTION
Let

An = {P = (p17p2) s 7pn)

pi>07ipi:1}u n 22,

=1
be the set of complete finite discrete probability distributions.
The Kullback Leibler's[[13}elative informationis given by

(1.1) K(P||Q) = Zpi In <Z—> ;

forall P,Q € A,,.

In A, we have taken alp; > 0. If we takep; > 0,Vi = 1,2,...,n, then in this case we
have to suppose thatin0 = 0ln (3) = 0. From theinformation theoretigoint of view we
generally take all the logarithms with base 2, but here we have taken only natural logarithms.
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2 INDER JEET TANEJA

We observe that the measufe {1.1) is not symmetri€’ iand (). Its symmetric version,
famous ag-divergencdJeffreys [12]; Kullback and Leiber [13]), is given by

n

(1.2) J(P|lQ) = K(P|Q) + K(QIIP) =) (pi — ¢:)In (%) :

i=1
Let us consider the one parametric generalization of the measure (1.1),retdldek informa-
tion of types given by

(1.3) K (P[|Q) = [s(s — 1)] [pr%”%], s#0,1.

In this case we have the following limiting cases

lim K,(P||Q) = K(P||Q),
and

lim K, (P||Q) = K (Q|P).

The expressiorj (1.3) has been studied by Vdjda [22]. Previous to it many authors studied its
characterizations and applications (ref. Taneja [20] and on line book Tangja [21]).
We have some interesting particular cases of the megsufe (1.3).

(i) Whens = 1, we have
K1p(Pl|Q) = 4[1 — B(P||Q)] = 4h(P|Q)

where

(1.4) B(P||Q) = Zm,

is the famous as Bhattacharya’s fistance and

(L5) MPIQ) = 5 3 (Vi — Vi)

=1
is famous as Hellinger's [14iscrimination
(i) When s = 2, we have

K (P||Q) = 5x*(PllQ),
where
(1.6) Q) =Y ;fm =321

is they?—divergencegPearson [16]).
(i) When s = —1, we have
1
L(PIIQ) = 5x(QIIP),

where

n

(17) Q) =y ek ;,ql') => -1

i=1
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For simplicity, let us write the measurés (1.3) in the unified way:
E(PllQ). s#0,1,
(1.8) . (Pl|Q) = { K(Q[IP), s=0,
K(P||Q), s=1.

Summarizing, we have the following particular cases of the meagurés (1.8):
() 2-1(PlIQ) = 5x*(QIIP).

(i) Do(P||Q) = K(Q||P).

(i) ©15(P||Q) = 4[1 — B(P||Q)] = 4h(P[|Q).

(iv) ©1(P||Q) = K(P[|Q).

(V) 22(P[|Q) = 5x*(Pl|Q).

2. CsiIszAR’S f—DIVERGENCE AND |INFORMATION BOUNDS

Given a convex functiorf : [0,00) — R, the f—divergence measure introduced by Csiszar
[4] is given by

(2.1) Crp.0) = > aif (g)
i=1 t
wherep, ¢ € RY.

The following two theorems can be seen in Csiszar and Korner [5].

Theorem 2.1. (Joint convexity). Iff : [0, c0) — R be convex, thefi;(p, ¢) is jointly convex in
p andg, wherep, ¢ € R’

Theorem 2.2. (Jensen’s inequality). Lef : [0,00) — R be a convex function. Then for any
p,g e R, withP, =>" p; >0,Q,=> ", p; >0, we have the inequality

Cr(pq) > Quf (Pn> :

Qn
The equality sign holds for strictly convex functions iff
p_pP_ P

qi 42 dn

In particular, for allP, @ € A,,, we have

Cy(PllQ) = f(1),

with equality iff P = Q.
In view of Theorem§ 2|1 arid 2.2, we have the following result.

Result 1. Forall P,Q € A,,, we have
(i) ®5(P||Q) > 0foranys € R, with equality iff P = Q.
(i) @4(P||Q) is convex function of the pair of distributioni®, Q) € A,, x A,, and for any
seR.

Proof. Take
[s(s — 1)) ' [ut —1—s(u—1)], s#0,1;

(2.2) ds(u) =Qqu—1—Inu, s =0;

l—u+ulnu, s=1
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forall v > 0in (2.1), we have
Ky(PllQ), s#0,1;
Cr(PllQ) = @ (P[|Q) = ¢ K(Q[|P), s=0;
K(P||Q), s=1.

Moreover,
(s—1)t(ut-1), s#0,1;
(2.3) d(u) =<1 —ut, s =0;
In u, s=1
and
w2 s#£0,1;
(2.4) Ol(u) =< u"? s5=0;

ul, s=1.

Thus we have)!(u) > 0 for all « > 0, and hencegp,(u) is strictly convex for alk. > 0. Also,
we havegs(1) = 0. In view of Theorems$ 2|1 ar[d 2.2 we have the proof of parts (i) and (ii)
respectively. O

For some studies on the meas(2.2) refer to Liese and Vajda [15], Osterrgicher [17] and
Cerone et al.[[3].

The following theorem summarizes some of the results studies by Dragamir [7], [8]. For
simplicity we have takerf(1) = 0 andP, @ € A,..

Theorem 2.3.Let f : R, — R be differentiable convex and normalized i.g(1) = 0. If
P,Q € A, are such that

0<r<P<R<oco, Vie{l,2,...,n}

4;

forsomer and Rwith0 < r < 1 < R < oo, then we have the following inequalities:

(25 0< CyPIIQ) < § (R—7) (f'(R)~ (1),
(26 0.< CyPIIQ) < fy(r. R),
and
(2.7) 0 < By(r, R) — Cy(P|Q)
< 2T (7 - na - - velo)]
< TR=D)(FR) - F().
where

R—r ’
and x*(P||Q) andC}(P||Q) are as given by[ (1]6) anfl (2.1) respectively.
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In view of above theorem, we have the following result.

Result2. Let P,Q € A, ands € R. If there exists, R such that
Di

0<r<=<R<oo, Vie{l,2 ..., n}
q;
with0 < r <1 < R < oo, then we have
(2.9) 0 < Q(P[|Q) < ps(r, R),
(2.10) 0 < @,(P[|Q) < ¢s(r, R),
and
(2.11) 0 < ¢s(r, R) — ©,(P||Q)
< ky(rR) [(R—1)(1 —r) = x*(PlIQ)]
S ,us(r, R)7
where
(R—r)(Rs—1—ps—1
% ((5—1) )’ s 7 1;
(2.12) p1s(r, R) =
%(R—T)ln(%), s=1
—1 1 —
2.13) oo ) — B 006(0) + (1= 1)0u(R)
R—r
(((R—1)(r*—1)+(1—7)(R*—1
(R HINEY o1,
- (R—1)In %Jr(lfr) ln% oA,
- (R=r) ; s =0;
(R—)rlnr+(1—r)RIn R _
\ B—r) , s =1,
and
Rs—l _ T’S_l
PPy . s#FL
(2.14) b, R) = L) =) ) (R =r)(s 1)
R—r InR—1Inr s 1
R—r -
Proof. The above result follows immediately from Theorien 2.3, by takifg = ¢,(u), where
¢s(u) is as given by[(2]2), then in this case we haygP||Q) = ©,(P||Q). O
Moreover,
1
,US(T, R) = Z(R - T)Q kS(Ta R)a
where

[Loa(r, R)", s # 1
ks(r, R) =
[L_q(r, R)]_1 s=1,
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andL,(a,b) is the famous (ref. Bullen, Mitrinogiand Vast [2]) p-logarithmic meargiven by

( 1
ppt+1_gpt+l [ p .
[(p+1>(b—a)}  p7 L0
b—a .
Lp(a’7 b) - Inb—Ina’ b= _17
b5
1w ]te _
K e |:aa] 9 p 07

forallp e R,a,b € R, a #b.
We have the following corollaries as particular cases of Rg$ult 2.

Corollary 2.4. Under the conditions of Res{it 2, we have

(2.15) 0= X(QIP) < §(R+7) (Rr;;) ,

(2.16) 0< K(Q||P) < (R4;L:) :

@247) 0 K(PIQ) < 3(R-r)m (7)),
(B—r) (VE- V)

(2.18) 0<h(PIIQ) < ——

and

(2.19) 0 < X*(PIIQ) < 5(R )"

Proof. (2.15) follows by takings = —1, (2.16) follows by takings = 0, (2.17) follows by
takings = 1, (2.18) follows by takings = § and [2.1) follows by taking = 2in (2.9). O

Corollary 2.5. Under the conditions of Res{it 2, we have

(R—1)(1—r)
(2.20) 0 <X*(QIIP) < = ,
(2.21) 0 < K(QlIp) < R LS,
(2.22) 0 < K(P||Q) < (R_l)rln;t(l—T)RlnR7
2.23 0 < h(P <<\/§_1>(1_ﬁ)
(2.23) <HPIQ) <
and
(2.24) 0 < (PIIQ) < (R—1)(1 7).

Proof. (2.20) follows by takings = —1, (2.21) follows by takings = 0, (2.22) follows by

takings = 1, (2.23) follows by takings = ; and [2.2}) follows by taking = 2in (2.10). O
In view of (2.16), [(2.1]),[(2.21) and (2.22), we have the following bound3-divergence

(2.25) 0 < J(P||Q) <min{t;(r,R),ta(r,R)},

where

() = 1R =1 [(0R) "+ (La(r, )]
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and
to(r,R) = (R—1)(1 —7) (L_1(r,R))"".

The expression, (r, R) is due to[(2.16) and (2.17) and the expressign, R) is due to[(2.2]1)
and [2.22).

Corollary 2.6. Under the conditions of Res{it 2, we have
(R—1)(1—r)

(2.26) 0< - - X*(QI|P)
R+r 2

<t (= D0L=1) = 2(PIQ)).

(2.27) By +A=nng o onp)

R—r
< = [(R=1)01 -1 —x(PIQ)].

(R—1)rlnr+(1—=7r)RInR

(2.28) 0< -~ - K(P||Q)
< R (R - 1)1 - 1)~ X2(PIIQ)]
and
(VE=1) (1= v7)
(2.29) 0< — h(P]|Q)
(\/}_%Jr \/F)
1

< R—1)(1—7)—=x*(P||Q)] .
2m(ﬁ+ﬁ)[( )(1—7) = x*(Pl|Q)]

Proof. (2.26) follows by takings = —1, (2.27) follows by takings = 0, (2.28) follows by
takings = 1, (2.29) follows by takings = 3 in (2.11). O

3. MAIN RESULTS

In this section, we shall present a theorem generalizing the one obtained by Dradomir [9].
The results due to Dragomir][9] are limited only t6— divergence while the theorem es-
tablished here is given in terms afelative information of types, that in particular lead us
to bounds in terms of?—divergenceKullback-Leibler’srelative informationand Hellinger’s
discrimination

Theorem 3.1.Letf : I C R, — R the generating mapping be normalized, i&1) = 0 and
satisfy the assumptions:

(i) fis twice differentiable orfr, R), where) < r <1 < R < o0;

(if) there exists the real constants, M with m < M such that

(3.2) m< 2> f'(z) <M, Vze(r,R), scR.
If P,QQ € A, are discrete probability distributions satisfying the assumption
O<r< B < R < o0,
q;

then we have the inequalities:
(32) m [QSS(T? R) - (I)s(PHQ)] S ﬁf(ra R) - Cf(PHQ) S M [¢5(7", R) - (I)S(PHQ)] 9
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whereC(P||Q), ®,(P||Q), B¢ (r, R) and¢,(r, R) are as given by (2]1)] (1.8], (2.8) and

(2.13) respectively.
Proof. Let us consider the functions, (-) andF, s(-) given by
(3.3) Fins(u) = f(u) = moy(u),
and
(3.4) Fags(u) = M¢s(u) — f(u),

respectively, where: andM are as given by (3]1) and functien(-) is as given by[(2]3).

Since f(u) and ¢s(u) are normalized, thei,, (-) and Fy; () are also normalized, i.e.,
F,.s(1) = 0andF) s(1) = 0. Moreover, the functiong(u) ande,(u) are twice differentiable.
Then in view of [2.4) and (3]1), we have

El (u) = f"(u) —mu™? = w2 (u® 7 f"(u) —m) >0
and
Fro(u) = Mu* ™ — f"(u) = w7 (M —uw**f"(u)) >0,
forall u € (r, R) ands € R. Thus the functiong’,, () and F, (-) are convex orr, R).
We have seen above that the real mappifigs(-) andF) (-) defined oveR ;. given by [3.3)

and [3.4) respectively are normalized, twice differentiable and convéx, @t). Applying the
r.h.s. of the inequality] (2]6), we have

(3.5) Cr,..(P||Q) < Bp,. . (1, R),
and
(36) CFm,S(PHQ) < 6FM,5 (T7 R>7
respectively.
Moreover,
(3.7) Cr..(PllQ) = C;(Pl|Q) — m®,(P|[|Q),
and
(3.8) Cry.. (Pl|Q) = MO (P||Q) — C;(P|Q).

In view of (3.5) and[(3.]7), we have

Cr(PllQ) = m®y(Pl|Q) < Or,.(r, R),
ie.,
Cy(P||Q) — m®,(Pl|Q) < By(r, R) — mas(r, R)
ie.,
m [¢s(r, R) — ®5(Pl|Q)] < By (r, R) — C¢(PQ).
Thus, we have the L.h.s. of the inequality (3.2).
Again in view of (3.6) and(3]8), we have

M(I)S<P||Q) - Cf(PHQ) S ﬁFM,s(T’ R)>

ie.,
M, (P||Q) = Cp(P||Q) < M¢s(r, R) — B;(r, R),
ie.,
Br(r, R) — Cp(Pl|Q) < M [¢s(r, R) — ©4(P]|Q)].
Thus we have the r.h.s. of the inequalfty (3.2). O
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Remark 3.2. For similar kinds of results in comparing tlie-divergence with Kullback-Leibler
relative informationsee the work by Dragomir [10]. The case of Hellingiscriminationis
discussed in Dragomir [6].

We shall now present some particular case of the Theprgm 3.1.

3.1. Information Bounds in Terms of y?—Divergence. In particular fors = 2, in Theorem
[3.1, we have the following proposition:

Proposition 3.3. Let f : I C Ry — R the generating mapping be normalized, i&1) = 0
and satisfy the assumptions:
(i) fis twice differentiable orfr, R), where) < r <1 < R < o0;
(ii) there exists the real constants M with m < M such that
(3.9 m < f"(z) <M, Vxe (r,R).
If P,QQ € A, are discrete probability distributions satisfying the assumption
0<r< bi < R < o0,
q;
then we have the inequalities:

(3.10) 3 [(R=11 =) = *(PlQ)]

< B4(r. )~ C4(PIIQ)
<Y lr-va-n-xlQ).

whereC}(P||Q), B¢(r, R) and x*(P||Q) are as given by[ (2]1)[ (2.8) and (1.6) respec-
tively.

The above proposition was obtained by Dragomir[in [9]. As a consequence of the above
Propositiorj 3.3, we have the following result.

Result 3. Let P, € A, ands € R. Letthere exist, R (0 < r <1 < R < o) such that

0<r<P <R<co, Vie{l,2,... n}

4i

then in view of Propositioh 3|3, we have
(3.11) B[R =1)( -1~ x(PlIQ)]

< ¢s(r7 R) - (I)S(PHQ)

<" [R-1)1-r) —(PIQ)], s <2
and

7’5_2

(3.12) [(R=1)(1 =) = x*(PlIQ)]

2
< (bs(rv R) - q)s(PHQ)

< IR-1D0 ) - 2PIQ)] . 522
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Proof. Let us considerf(u) = ¢s(u), where¢,(u) is as given by[(2]2), then according to
expression (2]4), we have

Blu) = u .
Now if u € [r, R] C (0, 00), then we have
RS2 < ¢(u) <572, 5<2,

or accordingly, we have

<rT s <2
(3.13) ¢y (u)

> 72 5> 2
and

<R s> 2
(3.14) s (u)

> R72 s<2,

wherer and R are as defined above. Thus in view pf {3.9), (8.13) &nd [3.14), we have the
proof. O

In view of Resulf B, we have the following corollary.

Corollary 3.4. Under the conditions of Res{it 3, we have

(3.15) = [(R=1)(1 - ) —x*(Pl|Q)
BT i)
< S IR-D0 - —2(PQ)].
(3.16) o [(R =101 = 1) = *(PlIQ)
< (R— 1)1n];%4_—§al —r)hng K(Q||P)
< 53 [(R=1)(1 =) = (PIQ)]
(3.17) o5 [(R=1(1 = 1) = (PQ)]
< (R — 1)rlnrR+_(i —r)RnR K(P|Q)
< o [(R=1)(1 =)~ (Pl|Q)]
and
318) = [(R=1)(1-1) = (7))
TR
< hle)
< = [B= 10 -0 =P
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Proof. (3.15) follows by takings = —1, (3.16) follows by takings = 0, (3.17) follows by
taking s = 1, (3.18) follows by takings = 1 in Resul{ 8. While fors = 2, we have equality
sign. O
Proposition 3.5. Let f : I C R, — R the generating mapping be normalized, i.&1) = 0
and satisfy the assumptions:

() f istwice differentiable ortr, R), where0 < r <1 < R < o0;

(i) there exists the real constants, M such thatn < M and
(3.19) m < 2?f"(x) < M, Vx € (r,R).

If P,QQ € A, are discrete probability distributions satisfying the assumption
O<r< & < R < o0,

di

then we have the inequalities:

2B i)

< Bi(r, R) — C4(P|Q)

(3.20)

m[(R—1)(1—r)
<2[E=E=D i)
whereC}(P||Q), B¢ (r, R) and x*(Q||P) are as given by (2|1)[ (2.8) and (1.7) respec-

tively.
As a consequence of above proposition, we have the following result.

Result4.Let P,(Q € A, ands € R. Letthere exist, R (0 < r <1 < R < o0) such that

0<r<P<R<co, Vie{l,2,...,n},

4i

then in view of Propositiop 3|5, we have

(3.21) T B0 i)

< ¢s(r, R) — @,(P||Q)

S e R 1] RS
and
(3.22) TS; [(R — %1 =1 _ xQ(QHP)}

< 6,(r, B) — 3,(P||Q)

< - IR0 e sz

Proof. Let us considerf(u) = ¢s(u), where¢,(u) is as given by[(2]2), then according to
expression (2]4), we have

Hu) = .
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Let us define the function : [r, R] — R such thay(u) = v*¢”(u) = v**!, then we have

R s> —1;
(3.23) sup g(u) =

u€[r,R] et s < —1
and
st s > 1
(3.24) inf g(u) =
u€lr,R] RS+1, s < —1.
In view of (3.23) , [(3.2]4) and Propositipn B.5, we have the proof of the result. O

In view of Resulf #, we have the following corollary.

Corollary 3.6. Under the conditions of Res{ilt 4, we have
r[(R—=1)(1—r) 5
| EEIEED e
<(R—1)ln +(1—=7r)lng
- R—r

<t [(R‘ ”]S ) —><2<@||P>] ,

(3.25)

K(QI|P)

(3.26) - { -l

)rlnr—i—( —r)RInR
R—r
< R {(R—l)(l—r)
2 rR

S

- K(P[|Q)

-e@ip)

(3.27)

G (D0 )]
(VE=1) (1= vA)

<

- VR + /1

< VE {(R‘ Ll

- h(P||Q)

and
(3.29) [ -l
S

1)(1 —7) = xX*(PllQ)

5 [(R-1D(A 1)
R [ rR

IN

-e@ip).

f. (3.29) follows by takings = 0, (3.26) follows by taking = 1, (3.27) follows by taking
s = 3 and (3.28) follows by taking = 2 in Resul@. While fors = —1, we have equality

sign. O
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3.2. Information Bounds in Terms of Kullback-Leibler Relative Information. In particular
for s = 1, in the Theorem 3|1, we have the following proposition (see also Dragomir [10]).

Proposition 3.7. Let f : I C R, — R the generating mapping be normalized, i.,&1) = 0
and satisfy the assumptions:

(i) fis twice differentiable orfr, R) , where0 < r <1 < R < o0;

(ii) there exists the real constants, M with m < M such that
(3.29) m<zf'(z) <M, Vzxé€(r,R).

If P,Q € A, are discrete probability distributions satisfying the assumption
O<r< Pi < R < o0,
q;

then we have the inequalities:
(3.30) m{(R—l)rln;t(:—r)RlnR_K(PHQ)}
< fs(r, R) = Cy(Pl|Q)
(R— 1)rlnrR+_(: ~r)RInR K(P||Q)} |
whereC(P||Q), Bs(r, R) and K (P||Q) as given by[(2]1)[ (2|8) anfl (1.1) respectively.

In view of the above proposition, we have the following result.

]

Result5. Let P,Q € A,, ands € R. Let there exist, R (0 <r < 1 < R < o0) such that
0<r<P<R<oo, Vie{l,2,...,n},
qi

then in view of Propositiop 3|7, we have

3.31) ! FR —Url 7;_(; —r)RR _ K(PHQ)]

< ¢S<T’ R) - q)s(PHQ)

< g [(R— 1)rln;—|—_(; —r)RInRkR KUDHQ)} s>
and
3.32) R [(R - 1)rln;+_(: —rRlnk _ K(P|IQ)}

< ¢s(r, R) — 04(P||Q)

P [(R— 1)r1n;+_(: —r)RnR K(PH@} Cs<1.

Proof. Let us considerf(u) = ¢s(u), whereg,(u) is as given by[(2]2), then according to
expression[(2]4), we have

Bllw) = .
Let us define the function : [r, R] — R such thay(u) = ¢/ (u) = u*~!, then we have
R s> 1;
(3.33) sup g(u) =
uE[’I‘,R] 7,,8—1’ S S 1
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and
rsTl s> 1
(3.34) inf g(u) =
u€[r,R] Rsfl’ s < 1.
In view of (3.33), (3.3#) and Propositipn 8.7 we have the proof of the result.
In view of Resulf’b, we have the following corollary.

Corollary 3.8. Under the conditions of Res{it 5, we have

(3.35) % {(R—l)rlnrR%—_(:—T)RlnR_K(P“Q)}
<DL Qe
< % {(R— 1)rlnrR—i—_(: —r)RInR —K(P||Q)] ’
(3.36) %[(R—l)rlnrR—i—_(:—r)RlnR_K(PHQ)}
< (R—l)ln}i—i_—gal—r)ln% _K(Q||P)
< % {(R— 1)Hn;+_(: —r)RInR —K(P||Q)] 7
I [(R—Drlnr+(1—=r)RInR
ean = G - K(PlIQ)
<@@4ywwvhpQ
< NG — h(P[|Q)
< 4\1/1_0 {(R— 1)rln7]’%—|—_(:—r)RlnR —K(P||Q)}
and
(3.38) [ —rinr+ (T —r)RnR K(P||Q)}

<(R 1)(1—7”) X(PllQ)
(R—1rlnr+(1—r)RInR
R—r

<2r| - K(PllQ)|.

Proof. ([3_35) follows by takings = —1, (3.36) follows by takings = 0, (3.37) follows by
takings = = and K3 3%3) follows by taking = 2 in Resul@ Fors = 1, we have equality

sign.

In particular, fors = 0 in Theorenj 3.]L, we have the following proposition:

Proposition 3.9. Let f : I C Ry — R the generating mapping be normalized, i&1) =

and satisfy the assumptions:
() f istwice differentiable oiir, R), where0 < r <1 < R < oc;
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(i) there exists the real constants M with m < M such that
(3.39) m < 2 f"(x) < M, V€ (r,R).

If P,QQ € A, are discrete probability distributions satisfying the assumption
0<r< bi < R < o0,
qi

then we have the inequalities:

(3.40) . {(R — 1)1n};{t Eﬂl —7)In 5 B K(QHP)}
< Bs(r, R) = C¢(Pl1Q)
(R—1)In++(1—r)ns
< . - K@QIP)

whereC(P||Q), Bs(r, R) and K (Q||P) as given by[(2]1)[ (28) anfl (1.1) respectively.

In view of Proposition 39, we have the following result.
Result 6. Let P, ) € A, ands € R. Let there exist, R (0 < r <1 < R < o0) such that

0<r<P<R<co, Vie{l,2,...,n}
q;

then in view of Propositiop 3|9, we have

(3.41) g [(R—l)lnétiﬂl—r)ln% —K(QHP)]

< ¢s(r, R) — ©5(P|Q)

< B [(R—l)ln}itg—mn}% —K(Q||P)] s 0
and
(3.42) R® [(R — ln}i E} “riing K(QIIP)]

< ¢s(r> R) - (I)s(PHQ)
< [(R—l)lné—i_—(rl—r)ln% —K(QHP)] Cs<o.

Proof. Let us considerf(u) = ¢s(u), where¢,(u) is as given by[(2]2), then according to
expression (2]4), we have

BUu) = u.
Let us define the function : [, R] — R such thay(u) = u?¢”(u) = u*, then we have
R, s>0;
(3.43) sup g(u) =
uG['r‘,R] 7"3, S S 0
and
re, 520
(3.44) inf g(u) =
u€[r,R| RS, s <0.
In view of (3.43), (3.4) and Propositipn 8.9, we have the proof of the result. O
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In view of Resulf , we have the following corollary.

Corollary 3.10. Under the conditions of Reslilt 6, we have

N
g%[<R—1”“§if‘”1“%-K@”Pﬂ’
_ —1)r1n;+_(:—7")R1nR—K(PHQ)
LS R T
FT(R=1D)l+(1—r)ni
(3.47) 1 { R—r (QHP)]
_(vE-1)a-v h(PIIQ
et 111
AR [EDt 00 )
and
I
< (R=-1)(1=r) = x*(PllQ)
o [V H0AG o)

Proof. (]37:5) follows by takings = —1, (3.48) follows by takings = 1, (3.47) follows by
takings = 3 and [3 4?) follows by taking = 2 in Resul@i Fors = 0, we have equality

sign. (]

3.3. Information Bounds in Terms of Hellinger’s Discrimination. In particular, fors = %

in Theorenj 3.1, we have the following proposition (see also Dragomir [6]).

Proposition 3.11.Let f : I C R, — R the generating mapping be normalized, i&1) = 0
and satisfy the assumptions:

(i) fis twice differentiable orfr, R), where) < r <1 < R < o0;

(ii) there exists the real constants M with m < M such that

(3.49) m < 232 f"(x) <M, Vz e (r,R).

If P,Q € A, are discrete probability distributions satisfying the assumption

0<r<? <R<oo,

d;
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then we have the inequalities:

(VE-1) (1= vm)
VR+/r

< Br(r, R) — Cy(Pl|Q)

(VE-1)a-vm)
VR +\/r

whereC(P||Q), Bs(r, R) andh(P||Q) as given by[(2]1)[ (2|8) anf (1.5) respectively.
In view of Proposition 3.1]1, we have the following result.
Result 7. Let P, € A, ands € R. Letthere exist, R (0 < r <1 < R < 00) such that

0<r<P<R<oco, Vie{l,2,...,n},

4i
then in view of Propositiop 3.11, we have

[(ﬁl) (NG

(3.50) 4m [ - h(PIQ)]

<4AM

- h(PIQ)] :

(3.51) 4r2 NN
< (bs(rv R) - (I)S<P||Q)

- h(PQ)]

<4R*T <\/}_%_1> LD — h(P||Q) s> 1
B VR+ 1 T2
and
(3.52) AR™T <\/E _ 1> S h(P||Q)
VR4 /1
< ¢5(r, R) — @,(P|Q)
< 4r™" [WEl) LoV h(PQ)} s< i
B VR + /T T2

Proof. Let the functions, (u) given by [3.29) be defined over, R]. Definingg(u) = u*/2¢! (u) =
uT, obviously we have

R¥, s>4;
(3.53) sup g(u) = -
u€(r,R] P s< !
and
P, s>
3.54 inf g(u) =
(3.54) ue[nR]g( ) .
Y — 2"
In view of (3.53), [3.54) and Propositi¢n 3|11, we get the proof of the result. O

In view of Resul{ ¥, we have the following corollary.
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Corollary 3.12. Under the conditions of Res{ilt 7, we have

3.55 ; <\/§_1>(1_ﬁ> h(P
(3.55) N VEi (PllQ)
<D i)
_s [vE-na-v
= 3 \/E—i—\/F - ( ||Q) )
o [VEo-
< (R — 1)lnR—ESn1—r)l K(Q||P)
4 (ﬁ%—l)u—ﬁ)_hPHQ)
SV VR +\r ( ’
(VE-1) (1= v7)
(3.57) AT TR — h(P]|Q)
< (R—l)rln;t(:—r)RlnR K (P[Q)
(VE-1)(1-vP)
<4VR TR — h(P||Q)
and
(3.58) v h(P
: \/—+\[ — h(P[|Q)
< (R=1)(1—=r) = x*(PllQ)
(m—l) (1= V7)
< 8VR? N h(PQ)]-

Proof. (3.55) follows by takings = —1, (3.56) follows by takings = 0, (3.57) follows by
takings = 1 and [3.5}3) follows by taking = 2 in Resulﬂ. Fors = % we have equality

sign. O
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