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ABSTRACT. Aninequality of Landau type for functions whose derivatives satisfy Holder’s con-
dition is studied.
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1. INTRODUCTION

S.S. Dragomir and C.I. Preda have proved the following theorem|(see [1]):

Theorem A. Let I be an interval inR and f : I — R locally absolutely continuous function
onl.If f € L (I)and the derivativg” : I — R satisfies Holder’s condition

(1.1) If'(t) = f'(s)| < H-|t—s|* forany t,sel,

whereH > 0 anda € (0, 1] are given, thery’ € L..(I) and one has the inequalities:
2(1+ D] -l

it m(l) > 2e0 (%)T (1+1)5,

(1-2) Hf/H < 4|11 [m<])]a

: H
m(I) + 2% (a+1) .

0 <m(n) <255 (L) (4 2y
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where|| - || is theco-norm on the interval, andm(7) is the length of .

In our paper we shall give an improvement of this theorem.

2. MAIN RESULTS

Theorem 2.1. Let I be an interval andf : I — R function onI satisfying conditions of
Theoreni A. Theif’ € L. (1) and the following inequlities hold:

(2O D]l

it (1) > 23 (L) (14 )=

a

&) <Y g, o
m(D T a1 mU)]
\ if 0<m(I) <2 (%)m(lqﬁ)ﬁ,
where|| - || is theoco-norm on the interval, andm([) is the length of .

In our proof and in the subsequent discussion we use three lemmas.
Lemma 2.2. Leta,b € R, a < b, a € (0, 1]. Then the following inequality holds:
(2.2) (b—2)*" + (2 —a)* < (b—a)*™!, V€ a,b).

Proof. Consider the functiop : [a, ] — R given by:
y(@) = (b—2)*" + (2 —a)*".
We observe that the unique solution of the equation
y(z)=(a+1)[(z—a)* = (b—2)*]=0

iszg = 2 € [a, b]. The functiony/(z) is decreasing ofu, z,) and increasing ofi, b). Thus,

the maximal values fog(z) are attained on the boundaryeft] : y(a) = y(b) = (b — a)*™,
which proves the lemma. O

A generalization of the following lemma is proved in [1]:

Lemma 2.3.Let A, B > 0 anda € (0, 1]. Consider the functiop,, : (0, 00) — R given by:

A
(2.3) ga(N) = 5+ B A%
Define)\, := (%)C%+1 € (0,00). Then for); € (0, 00) we have the bound
A—f+B~A? if 0< X\ <X
(2.4) inf g,(\) = .
AS(0A] (a+ 1)a~atm - Aat1 - Bari if Ap > Ap.

Proof. We have:

: A o
ga()\):—p—l—&-B&\ L
The unique solution of the equatigf)(\) = 0, A € (0,00), iS Ay = ((%B)‘%+1 € (0,00). The
function g, () is decreasing off0, \y) and increasing offi\y, cc). The global minimum for

ga(X) 0N (0, 00) is:

1 _a
a+1 a+1 . o
@9 aw=a(0) " 1B (T) = e g,
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which proves|[(2}4). O

Lemma 2.4.Let A, B > 0 anda € (0,1]. Consider the functiong, : (0,00) — R and
he = (0,00) — R defined by:

{ ga(A) :%_‘_B)‘a
(2.6)

ha(A) = 28 + Z ).

Define)\q := (GAB)Q%1 € (0,00). Then for\; € (0,00) we have:

{ Ael(r()lf\l]ga(A) < )\el(%,f)\ﬂ ho(XN) i 0 <A <2\

(2.7) . : -
inf g,(A\) = inf ha(A) if A > 2.

)\E(O,)q] )\E(O,)\l}

Proof. In Lemma] 2.8, we found that the global minimum fgy()\) is obtained forA = \,.
Similarly we find that the global minimum fdr, () is obtained forA = 2, and its value is
equal to the minimal value af, ()), i.e. ho(2X0) = ga(Xo).

The only solution of equation, (\) = hy(A), A € (0, 00), is:

Asz{ﬁrl’

and we can easily check th& < Ag < 2Ag. Thus, for\; < Ay we haveg, (A1) < ho(A1) and
A 1(%{; ]ga()\) <, 1(%{; }ha()\), and the rest of the proof is obvious. O
€(0,A1 €(0,A1

Proof of Theorer 2]1Now we start proving our theorem using the identity:

@8 @)= f@+E-af@+ [ )~ f@ls aser

or, by changing: with a anda with x:

a

@) f@=f@+e-af@ [ 7o)~ f@lds  avel

T

Analogously, we have fa € I:
@10) SO =@+ 0- D@+ [ 16 - Wl brel
From [29) and{Z-10) we obtain:
@1D) 10~ @)= 0-arw)+ [ 1) - fiwlas
+ [ - Falds abrer

and

@12) -0 [y - s — 2 [0 - ralas
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Assuming that > a we have the inequality:

/ £(s) = f/(x)lds

b—a

/ ‘f(b)_
(213)  |f'(x)] < E

/ F(s) = f(@)\ds]|.

Sincef’ is of « — H Hdlder type, then:

(2.14) / |f'(s x)|ds| < H - / |s — x|%ds
/ s —x)%ds
= Hl(b—x)a“; brel b>x
(2.15) / /(s x)|ds| < H - / |s — z|%ds
/ x — s)%ds
afil(x—a)o‘“; a,vr€l, a<z.
From (2.138),[(2.174) and (2.115) we deduce:
b) —
@216) |7/(x) < O -]
H

[(b—2)*™ + (x—a)*™]; abrel a<z<b.

_l’_
(b—a)(a+1)
Sincef € Lo (1) then|f(b) — f(a)| < 2| f]|. Using Lemma 2]2 we obviously get that:

2 H
(2.17) |f'(z )|_M+?(b—a)o‘; a,byxel, a<xz<b.

Denoteb — a = \. Sincea,b € I, b > a, we have) € (0,m([)), and we can analyze the

right-hand side of the inequality (2]17) as a function of variabl&hus we obtain:
/ 211, H \a
. < —=
(2.18) F@] < T+ A = ()

for z € I and for every\ € (0, (I))
Taking the infimum ovei € (0, m(1)) in (2.18), we get:

2.19 < inf  gy(\).
(2.19) |f'(x)] < el 9 ()

If we take the supremum overe [ in (2.19) we conclude that

(2.20) sup |f'(2)] = |Ifl < | _inf ga(A).
zel m(1))
Making use of Lemmp 2|3 we obtain the desired reguli (2.1). O
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Remark 2.5. Denote)\, = [2 (1+3) T} . Comparing the results of TheoreH A and

Theoren] 2.1 we can see that in the casew0f) > 2\, the estimated values fof/’|| in both
theorems coincide. If < m(I) < 2, the estimated value fdff’|| given by [2.1) is better than
the one given by (1]2). Namely, using Lemma 2.4 we have:
2011, H o _ Al H a.
m@) "o <L e MO

(2.21) m(I) € (0, Ao]

and

NV e - A, H .
(2.22) {2(1+a>] Ao - H <m([)+2a(a+1)[m(l)], m(I) € [Ao,2X).

Remark 2.6. Let the conditions of Theorefm 2.1 be fulfilled. Then a simple consequence of
(2.17) is the following inequality:

H
(b —a)f'(x) = ) + fl@) < == [(b=2) +(x—a)**']; abrel a<z<h

This result is an extension of the result obtained by V.G. Avakutmawmid S. Aljagic in [2]
(see alsa[3]).
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