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1. I NTRODUCTION

The series

(1.1) S (r) =
∞∑

n=1

2n

(n2 + r2)2 , r > 0

is well known in the literature as Mathieu’s series. It has been extensively studied in the past
since its introduction by Mathieu [12] in 1890, where it arose in connection with work on
elasticity of solid bodies. The reader is directed to the references for further illustration.

One of the main questions addressed in relation (1.1) is to obtain sharp bounds. Alzer, Bren-
ner and Ruehr [2] showed that the best constantsa andb in

1

x2 + a
< S (x) <

1

x2 + b
, x 6= 0
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2 P. CERONE AND C.T. LENARD

area = 1
2ζ(3)

andb = 1
6

whereζ (·) denotes the Riemann zeta function defined by

(1.2) ζ (p) =
∞∑

n=1

1

np
.

An integral representation forS (r) as given in (1.1) was presented in [6] and [7] as

(1.3) S (r) =
1

r

∫ ∞

0

x

ex − 1
sin (rx) dx.

Guo [10] utilised (1.3) and a lemma [3, pp. 89–90] to obtain bounds onS (r) , namely,

(1.4)
π

r3

∞∑
k=0

(−1)k (k + 1
2

)
e(k+ 1

2)
π
r − 1

< S (r) <
1

r2

(
1 +

π

r

∞∑
k=0

(−1)k (k + 1
2

)
e(k+ 1

2)
π
r − 1

)
.

The following results were obtained by Qi and coworkers (see [4], [15] – [17])

4 (1 + r2)
(
e−

π
r + e−

π
2r

)
− 4r2 − 1(

e−
π
r − 1

)
(1 + r2) (1 + 4r2)

≤ S (r)(1.5)

≤
(1 + 4r2)

(
e−

π
r − e−

π
2r

)
− 4 (1 + r2)(

e−
π
r − 1

)
(1 + r2) (1 + 4r2)

S (r) <
1

r

∫ π
r

0

x

ex − 1
sin (rx) dx <

1 + e−
π
2r

r2 + 1
4

,

and

S (r) ≥ 1

8r (1 + r2)3

[
16r

(
r2 − 3

)
+ π3

(
r2 + 1

)3
sech 2

(πr

2

)
tanh

(πr

2

)]
.

Guo in [10] poses the interesting problem as to whether there is an integral representation of the
generalised Mathieu series

(1.6) Sµ (r) =
∞∑

n=1

2n

(n2 + r2)1+µ , r > 0, µ > 0.

This is resolved in Section 2.
Recently in [18] an integral representation was obtained forSm (r) , wherem ∈ N, namely

(1.7) Sm (r) =
2

(2r)m m!

∫ ∞

0

tm

et − 1
cos
(mπ

2
− rt

)
dt

− 2
m∑

k=1

[
(k − 1) (2r)k−2m−1

k! (m− k + 1)

(
− (m + 1)

m− k

)

×
∫ ∞

0

tk cos
[

π
2

(2m− k + 1)− rt
]

et − 1
dt

]
.

Bounds were obtained by Tomovski and Trenčevski [18] using (1.3).
It is the intention of the current paper to investigate further integral representations of the

generalised Mathieu series (1.6).
Bounds are obtained in Section 3 forSµ (r) . In Section 4 the open problem of obtaining an

integral representation for

S (r; µ, γ) =
∞∑

n=1

2nγ

(n2γ + r2)µ+1
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MATHIEU SERIES 3

posed by Qi [15] is addressed.
We notice that

S (r; 1, 1) = S1 (r) = S (r) ,

the Mathieu series.

2. I NTEGRAL REPRESENTATION OF THE GENERALISED M ATHIEU SERIES Sµ (r)

Before proceeding to obtain an integral representation forSµ (r) as given by (1.6), it is in-
structive to present an alternative representation in terms of the zeta functionζ (p) presented in
(1.2). Namely, a straightforward series expansion gives

(2.1) Sµ (r) = 2
∞∑

k=0

r2k (−1)k

(
µ + k

k

)
ζ (2µ + 2k + 1)

on using the result
(

α
k

)
= (−1)k (k−α−1

k

)
with α = − (µ + 1) .

Theorem 2.1.The generalised Mathieu seriesSµ (r) defined by (1.6) may be represented in the
integral form

(2.2) Sµ (r) = Cµ (r)

∫ ∞

0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx, µ > 0,

where

(2.3) Cµ (r) =

√
π

(2r)µ− 1
2 Γ (µ + 1)

andJν (z) is theν th order Bessel function of the first kind.

Proof (A). Consider

(2.4) Tµ (r) =

∫ ∞

0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx.

Then using the series definition forJν (z) (Gradshtein and Ryzhik [9]),

Jν (z) =
∞∑

k=0

(−1)k ( z
2

)ν+2k

k!Γ (ν + k + 1)

in (2.4) produces after the permissible interchange of summation and integral,

(2.5) Tµ (r) =
∞∑

k=0

(−1)k ( r
2

)µ+2k− 1
2

k!Γ
(
µ + k + 1

2

) ∫ ∞

0

x2(µ+k)

ex − 1
dx.

Now, the well known representation [9]

(2.6)
∫ ∞

0

xp

ex − 1
dx = Γ (p + 1) ζ (p + 1)

gives from (2.5) withp = 2 (µ + k)

(2.7) Tµ (r) =
∞∑

k=0

(−1)k ( r
2

)µ+2k− 1
2 Γ (2µ + 2k + 1) ζ (2µ + 2k + 1)

k!Γ
(
µ + k + 1

2

) .

An application of the duplication identity for the gamma function

√
πΓ (2z) = 22z−1Γ (z) Γ

(
z +

1

2

)
,
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4 P. CERONE AND C.T. LENARD

with z = µ + k + 1
2

simplifies the expression in (2.7) to

(2.8) Tµ (r) =
(2r)µ− 1

2 2√
π

∞∑
k=0

(−1)k r2k Γ (µ + k + 1)

k!
ζ (2µ + 2k + 1) .

Repeated use of the identityΓ (z + 1) = zΓ (z) gives

Γ (µ + k + 1)

k!
=

(
µ + k

k

)
Γ (µ + 1)

and so from (2.8)

Tµ (r) =
(2r)µ− 1

2 Γ (µ + 1)√
π

2
∞∑

k=0

(−1)k r2k

(
µ + k

k

)
ζ (2µ + 2k + 1)

produces the result (2.2) on reference to (2.1), (2.3) and (2.4).
Proof (A) is now complete. �

Proof (B). From (2.4) we have

Tµ (r) =

∫ ∞

0

e−x

1− e−x
xµ+ 1

2 Jµ− 1
2
(rx) dx(2.9)

=
∞∑

k=1

∫ ∞

0

e−nxxµ+ 1
2 Jµ− 1

2
(rx) dx.

Now Gradshtein and Ryzhik [9] on page 712 has the result∫ ∞

0

e−αxxν+1Jν (βx) dx =
2α (2β)ν Γ

(
ν + 3

2

)
√

π [α2 + β2]ν+ 3
2

,(2.10)

Re (ν) > −1, Re (α) > |Im β| ,
which is referred to in Watson [20] whom in turn attributes the result to an 1875 result of
Gegenbauer.

Taking α = n, ν = µ − 1
2

andβ = r, all real, in (2.10) and substituting in (2.9) readily
produces

Tµ (r) =
(2r)µ− 1

2 Γ (µ + 1)√
π

∞∑
n=1

2n

[n2 + r2]µ+1 ,

giving from (1.6), (2.4) and (2.3) the result (2.2).
We note that the more restrictive condition ofµ > 0 needs to be imposed for the convergence

of the series although (2.10) requiresRe (ν) = µ− 1
2

> −1. �

Remark 2.2. If we takeµ = 1 in (1.6) and (2.2) – (2.3) thenS1 (r) ≡ S (r) , the Mathieu
series given by (1.1) and its integral representation (1.3). This is easily seen to be the case since

J 1
2
(z) =

√
2
πz

sin z and takingµ = 1 in (2.2) – (2.3) produces (1.3).

Remark 2.3. Gradshtein and Ryzhik [9] on page 712 also quote the result∫ ∞

0

e−αxxνJν (βx) dx =
(2β)ν Γ

(
ν + 1

2

)
√

π (α2 + β2)ν+ 1
2

(2.11)

Re (ν) > −1

2
, Re (α) > |Im (β)| ,

which Watson [20] again attributes to an 1875 result by Gegenbauer.
We note that formal differentiation of (2.11) with respect toα produces the result (2.10).
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MATHIEU SERIES 5

Following a similar process as in Proof (B) above, we may show that

(2.12)
∫ ∞

0

xµ− 1
2

ex − 1
Jµ− 1

2
(rx) dx =

(2r)µ− 1
2 Γ (µ)√
π

∞∑
n=1

1

(n2 + r2)µ .

Gradshtein and Ryzhik [9] have an explicit expression which can be transformed by a simple
change of variables to (2.12). Namely,

(2.13)
∫ ∞

0

xνJν (bx)

eπx − 1
dx =

(2b)ν Γ
(
ν + 1

2

)
√

π

∞∑
n=1

1

(n2π2 + b2)ν+ 1
2

,

Re (ν) > 0, |Im (b)| < π, which is attributed by Watson [20] to a 1906 result by Kapteyn.
An explicit integral expression forSµ (r) of the current form does not seem to have been

available previously.
Finally, we note that (2.10) or (2.11) may be looked upon as an integral transform such as the

Laplace or Hankel transform and the results may be found in tables of such.

Remark 2.4. Sµ (r) as given in (2.2) – (2.3) may be written in the alternate form

(2.14) Sµ (r) =

√
π

2µ− 1
2 r2µ−1Γ (µ + 1)

∫ ∞

0

x

ex − 1

[
(rx)µ− 1

2 Jµ− 1
2
(rx)

]
dx,

which, forµ = m, a positive integer

(2.15) Sm (r) =
1

2m−1r2m−1m!

√
π

2

∫ ∞

0

x

ex − 1
Rm (rx) dx,

where

(2.16)

√
π

2
Rm (z) =

√
π

2
zm− 1

2 Jm− 1
2
(z) .

Form = 1, 2, 3, 4 we have√
π

2
Rm (z) = sin z, sin z − z cos z, 3 sin z − 3z cos z − z2 sin z,

and
15 sin z − 15z cos z − 6z2 sin z + z3 cos z,

respectively.
Thus, for example,

S1 (r) =
1

r

∫ ∞

0

x

ex − 1
sin (rx) dx,

S2 (r) =
1

4r3

∫ ∞

0

x

ex − 1
[sin (rx)− (rx) cos (rx)] dx,

S3 (r) =
1

24r5

∫ ∞

0

x

ex − 1

[
3 sin (rx)− 3 (rx) cos (rx)− (rx)2 sin (rx)

]
dx,

and

S4 (r) =
1

192r7

∫ ∞

0

x

ex − 1
[15 sin (rx)− 15 (rx) cos (rx)

−6 (rx)2 sin (rx) + (rx) cos (rx)
]
dx.
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6 P. CERONE AND C.T. LENARD

The above results for integerm can also be obtained using the relationship from (1.1) and
(1.3)

(2.17) S1 (r) = S (r) =
∞∑

n=1

2n

(n2 + r2)2 =
1

r

∫ ∞

0

x

ex − 1
sin (rx) dx.

Formal differentiation with respect tor of (2.17) gives

(−4r) S2 (r) =

∫ ∞

0

x

ex − 1

[
x cos rx

r
− sin rx

r2

]
dx

= − 1

r2

∫ ∞

0

x

ex − 1
(sin rx− rx cos rx) dx

producing the result above. Continuing in this manner would produce further representations
for Sm (r) .

The following theorem gives an explicit representation forSm (r) , m ∈ N.

Theorem 2.5.For m a positive integer we have

(2.18) Sm (r) =
1

2m−1
· 1

r2m−1
· 1

m

m−1∑
k=0

(−1)b
3k
2 c

k!
rk [δk evenAk (r) + δk oddBk (r)] ,

where

(2.19) Ak (r) =

∫ ∞

0

xk+1

ex − 1
sin (rx) dx, Bk (r) =

∫ ∞

0

xk+1

ex − 1
cos (rx) dx,

with δcondition = 1 if condition holds and zero otherwise andbxc is the greatest integer less than
or equal tox.

Proof. From (2.17) we may differentiatem− 1 times with respect tor to produce

S
(m−1)
1 (r) = (−1)m−1 m! (2r)m−1 Sm (r)(2.20)

=

∫ ∞

0

x

ex − 1
· dm−1

drm−1

(
sin rx

r

)
dx.

Now,

(2.21)
dm−1

drm−1

(
sin rx

r

)
=

m−1∑
k=0

(
m− 1

k

)
dm−1−k

drm−1−k

(
r−1
)
· dk

drk
(sin rx)

and

dl

drl

(
r−1
)

= (−1)l l!r−(l+1),

dk

drk
(sin rx) = (−1)b

k
2c xk [δk evensin (rx) + δk oddcos (rx)]

whereδcondition = 1 if condition is true and zero otherwise.
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MATHIEU SERIES 7

Thus from (2.21)

dm−1

drm−1

(
sin (rx)

r

)
(2.22)

=
1

rm

m−1∑
k=0

(
m− 1

k

)
(−1)m−1−k+b k

2c

× (m− 1− k)!rkxk [δk evensin (rx) + δk oddcos (rx)]

=
(−1)m−1

rm
(m− 1)!

m−1∑
k=0

(−1)b
3k
2 c

k!
rkxk [δk evensin (rx) + δk oddcos (rx)] .

Substitution of (2.22) into (2.20) and simplifying produces the stated result (2.18). �

Remark 2.6. The integral representation forSm (r) given in Theorem 2.5 is simpler than that
obtained in [18] as given by (1.7). Further, the derivation here is much more straight forward.

3. BOUNDS FOR Sµ (r)

It was stated in the introduction that considerable effort has been expended in determining
bounds for the generalised Mathieu series. More recently, bounds for the generalised Math-
ieu series (1.6) has been investigated in particular by Qi and coworkers and by Tomovski and
Treňcevski [18].

In a recent article Landau [11] obtained the best possible uniform bounds for Bessel functions
using monotonicity arguments. Of particular interest to us here is that he showed that

(3.1) |Jν (x)| < bL

ν
1
3

uniformly in the argumentx and is best possible in the exponent1
3

and constant

(3.2) bL = 2
1
3 sup

x
Ai (x) = 0.674885 · · · ,

whereAi (x) is the Airy function satisfying

w′′ − xw = 0.

Landau also showed that

(3.3) |Jν (x)| ≤ cL

x
1
3

uniformly in the orderν > 0 and the exponent1
3

is best possible with

cL = sup
x

x
1
3 J0 (x)(3.4)

= 0.78574687 . . . .

The following theorem is based on the Landau bounds (3.1) – (3.4).

Theorem 3.1.The generalised Mathieu seriesSµ (r) satisfies the bounds forµ > 1
2

andr > 0

(3.5) Sµ (r) ≤ bL

√
π

(2r)µ− 1
2

· 1(
µ− 1

2

) 1
3

·
Γ
(
µ + 3

2

)
Γ (µ + 1)

ζ

(
µ +

3

2

)
,

and

(3.6) Sµ (r) ≤ cL ·
√

π

2µ− 1
2 rµ− 1

6

· Γ
(

µ +
7

6

)
ζ

(
µ +

7

6

)
,
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8 P. CERONE AND C.T. LENARD

wherebL andcL are given by (4.2) and (4.4) respectively.

Proof. From (2.2) and (2.3) we have

(3.7) Sµ (r) ≤ Cµ (r)

∫ ∞

0

xµ+ 1
2

ex − 1

∣∣∣Jµ− 1
2
(rx)

∣∣∣ dx, r > 0

and so from (3.1) we obtain, on utilising (2.6)

Sµ (r) ≤ Cµ (r) · bL(
µ− 1

2

) 1
3

Γ

(
µ +

3

2

)
ζ

(
µ +

3

2

)
,

which simplifies down to (3.5).
Further, using (3.3) into (3.7) gives

Sµ (r) ≤ Cµ (r) · cL ·
∫ ∞

0

xµ+ 1
2

ex − 1
· 1

|rx|
1
3

dx

= Cµ (r) · cL

r
1
3

∫ ∞

0

xµ+ 1
6

ex − 1
dx

which upon using (2.6) produces

(3.8) Sµ (r) ≤ Cµ (r) · cL

r
1
3

· Γ
(

µ +
7

6

)
ζ

(
µ +

7

6

)
.

Simplifying (3.8) and using (2.3) gives the stated result (3.6). �

Corollary 3.2. The Mathieu seriesS (r) satisfies the following bounds

(3.9) S (r) ≤ 3π

2
11
12

bLζ

(
5

2

)
and

(3.10) S (r) ≤ 7cL

36
·
√

π

2
· Γ
(

1

6

)
ζ

(
13

6

)
· r−

5
6 ,

wherebL andcL are given by (3.2) and (3.4) respectively.

Proof. Takingµ = 1 in (3.5) and (3.6), noting thatS (r) = S1 (r) gives the stated results after
some simplification. �

The following corollary gives coarser bounds than Theorem 3.1 without the presence of the
zeta function.

Corollary 3.3. The generalised Mathieu seriesSµ (r) satisfies the bounds forµ > 1
2

andr > 0

(3.11) Sµ (r) ≤ 2
√

π · bL(
µ− 1

2

) 1
3

· 1

rµ− 1
2

·
Γ
(
µ + 1

2

)
Γ (µ + 1)

and

(3.12) Sµ (r) ≤ 2
2
3
√

π · cL

rµ− 1
6

·
Γ
(
µ + 1

6

)
Γ (µ + 1)

with bL andcL given by (3.2) and (3.4).
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Proof. We use the well known inequality

e−x <
x

ex − 1
< e−

x
2

to produce from (3.7)

(3.13) Sµ (r) ≤ Cµ (r)

∫ ∞

0

e−
x
2 xµ− 1

2

∣∣∣Jµ− 1
2
(rx)

∣∣∣ dx.

We know from Laplace transforms or the definition of the gamma function that

(3.14)
∫ ∞

0

e−αxxsdx =
Γ (s + 1)

αs+1
.

Hence, placing (3.1) into (3.13) and utilising (3.14) we obtain (3.11) after simplification. A
similar approach produces (3.12) starting from (3.3) rather than (3.1). �

4. FURTHER I NTEGRAL EXPRESSIONS FORGENERALISED M ATHIEU SERIES

In [18], Tomovski and Treňcevski gave the integral representation

(4.1) Sµ (r) =
2

Γ (µ + 1)

∫ ∞

0

xµe−r2xf (x) dx,

where

(4.2) f (x) =
∞∑

n=1

ne−n2x, convergent for finitex > 0,

by effectively utilising the result (3.14).
They leave the summation of the series in (4.2) as an open problem.
If we placeν = µ− 1

2
andβ = r, all real in (2.9) then we obtain the identity

(4.3) Cµ (r)

∫ ∞

0

e−αxxµ+ 1
2 Jµ− 1

2
(rx) dx =

2α

[α2 + r2]µ+1 ,

whereCµ (r) is as given by (2.3).
Proof B of Theorem 2.1 takesα = n and sums to produce the identity (2.1) – (2.2).
If we takeα = nγ then we have from (4.3) on summing

S (r; µ, γ) =
∞∑

n=1

2nγ

(n2γ + r2)µ+1(4.4)

= Cµ (r)

∫ ∞

0

(
∞∑

n=1

e−nγx

)
xµ+ 1

2 Jµ− 1
2
(rx) dx,

giving an integral representation that was left as an open problem by Qi [15].
As a matter of fact, if we takeα = an wherea = (a1, a2, . . . , an, . . . ) is a positive sequence,

then

S (r; µ; a) =
∞∑

n=1

2an

(a2
n + r2)µ+1(4.5)

= Cµ (r)

∫ ∞

0

(
∞∑

n=1

e−anx

)
xµ+ 1

2 Jµ− 1
2
(rx) dx.

We note that fora+ = (1γ, 2γ, . . . ) then

S
(
r; µ; a+

)
= S (r; µ, γ) .
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The series
∞∑

n=1

2an

(a2
n + r2)2

has been investigated in [16].
A closed form expression for

F (a) =
∞∑

n=1

e−anx, x > 0

wherean is a positive sequence, remains an open problem.
If a∗ = (1, 2, 3, . . . , n, . . . ), then

F (a∗) =
1

ex − 1
.
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