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ABSTRACT. Integral representations for generalised Mathieu series are obtained which recap-
ture the Mathieu series as a special case. Bounds are obtained through the use of the integral
representations.
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1. INTRODUCTION

The series
> 2n
(11) S(T):Zlm, r>0

is well known in the literature as Mathieu’s series. It has been extensively studied in the past
since its introduction by Mathieu [12] in 1890, where it arose in connection with work on
elasticity of solid bodies. The reader is directed to the references for further illustration.

One of the main questions addressed in relafionj (1.1) is to obtain sharp bounds. Alzer, Bren-
ner and Ruehi]2] showed that the best constam@isdb in
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2 P. CERONE ANDC.T. LENARD

area = 2<(3) andb = ; where( (-) denotes the Riemann zeta function defined by

1.2 v

(12) (=25

An integral representation fd# () as given in[(1.]l) was presented|in [6] ahd [7] as

(1.3) S(r)= %/0 exx_ | sin (rz) dx.

Guo [10] utilised [(1. ) and a lemmal[3, pp. 89-90] to obtain bounds o1 , namely,
+3) 1 T (D)7 (k4 2)

14 — — (142 S\ e )

(14 Z k+2 —1 <8(r) < r2 ( * e e(F3)F _ 1

The foIIowmg results were obtained by Qi and coworkers (seel[4], [15] - [17])
41+ (er+ezr)—4r?—1

(1.5) (G_g — 1) A1) (142 = S (r)
(1+ 4r?%) (e_% — e—%) —4(14r?)
< (7% — 1) (1 +72) (1 +4r2)
1 [+ = . 1 —I—e_%
S(r) < ;/0 em_lsm(rm)dx < W’
and
1 2 3(..2 3 9 (TT mr
= m [167’ (7" — 3) +7 (7’ + 1) sech <7> tanh <7>] _

Guo in [10] poses the interesting problem as to whether there is an integral representation of the
generalised Mathieu series

- 2n
(16) SM (’I“) = W, r >0, u>0.
n=1

This is resolved in Sectidd 2.
Recently in [18] an integral representation was obtainedfo(r) , wherem € N, namely

(1.7) S, (r) = (27“)%” ' /0 > tti - cos (% —rt) dt
m h2m—1 (o
;[ k! m(2/<>3+1) ( r(n—+/<:1))

X/Ootkcos[ (2m — k+1)_rt]dt].

et — 1

Bounds were obtained by Tomovski and Teewnski [18] using[(1]3).

It is the intention of the current paper to investigate further integral representations of the
generalised Mathieu serigs ([1.6).

Bounds are obtained in Sectiph 3 f6if (r) . In Sectior] 4 the open problem of obtaining an
integral representation for

> 2n7
S(ripn) =Y oy
( lu ’y) e (n2,7+r2),u+1
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posed by Qil[15] is addressed.
We notice that
S(r;1,1) =8, (r)=S5(r),
the Mathieu series.

2. INTEGRAL REPRESENTATION OF THE GENERALISED MATHIEU SERIES S, (1)

Before proceeding to obtain an integral representatiorbfdr) as given by), it is in-
structive to present an alternative representation in terms of the zeta fugi¢tippresented in
(1.7). Namely, a straightforward series expansion gives

(2.1) S, (r) =2§:r2k(—1)k (“Zk> C(2u+2k+1)
k=0

on using the resulf®) = (—1)* (* 0" ) witha = — (u +1).

Theorem 2.1.The generalised Mathieu seri§s (r) defined by[(1]6) may be represented in the
integral form

o0 /LJF%
(2.2) S, (r)=0C, (r)/ :x — 1Ju7% (re)dz, pu>0,
0
where

(2r)" 2 T (p+1)
andJ, (z) is thev'" order Bessel function of the first kind.
Proof (A). Consider

o x‘““%
(2.4) T, (r)= / 1‘]#*% (rx)de.
0
Then using the series definition fdy (z) (Gradshtein and Ryzhik [9]),

1)k (%)H—Qk

o0 (_
JV(Z):kZ:Ok!F(V—Fk—Fl)

in (2.4) produces after the permissible interchange of summation and integral,

(2.5) T, (r) :Z( ) (5) . / T da.
— k!F(,u—l—k—i—§) g e*—1
Now, the well known representatian [9]
oo xp
(2.6) / ex_ldx:F(p+1)C(p+1)
0

gives from [2.5) withp = 2 (u + k)

(=D ()T (2 4 2k + 1) C (24 2k + 1)
0-3 ro |

An application of the duplication identity for the gamma function

Val (22) =270 (2) T <z + %) :

2.7) T,
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with z = 1+ k + 3 simplifies the expression ifi (2.7) to

2.8) T, (r) = @”%Z(—DM%WWHQH 1.
k=0 )

Repeated use of the identify(z + 1) = zI' (z) gives

F(lekﬂ) _ (“—,:k)F(MD

and so from[(2]8)
@) T (4 1), Nk (u+k‘)
T,(r)= 2 —1)"r C(2u+2k+1
1 (1) VM L)l )
produces the result (2.2) on referencg to](2[1)] (2.3) (2.4).

Proof (A) is now complete. O
Proof (B). From (2.4) we have

(2.9) T, (r)= /000 1oz 2 st (ra)dx

Now Gradshtein and Ryzhik]|[9] on page 712 has the result
o0 20 (203)" T 3
(2.10) / ey, (o) dp = 222 T+ 3)
o VEla? 4
Re(v) > —1, Re(a) > |Imf],

which is referred to in Watson [20] whom in turn attributes the result to an 1875 result of
Gegenbauer.

Takingo = n, v = p — 3 and 8 = r, all real, in [2.10) and substituting i (2.9) readily
produces

R s VRS VRS N
L (r) VT Z [n? + r?
giving from (1.6), [2.4) and (2]3) the resylt (R.2).

We note that the more restrictive condition;of> 0 needs to be imposed for the convergence
of the series although (2]10) requiks (v) =y — 3 > —1. O

Remark 2.2. If we takep = 1 in (1.6) and [(2.R) —[(2]3) thes, (r) = S(r), the Mathieu
series given by (I]1) and its integral represen (1.3). This is easily seen to be the case since

J1 (z) = \/%Sinz and takingu = 1in ) — ) produce.3).

sk
n=1

Remark 2.3. Gradshtein and Ryzhik [9] on page 712 also quote the result

AT (4
(2.11) /0 e Jy (Bz) do = V(a1
Re (v) > —%, Re (a) > [Im (8)],

which Watson[[20] again attributes to an 1875 result by Gegenbauer.
We note that formal differentiation df (2.]11) with respecttproduces the resulft (2.[10).
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Following a similar process as in Proof (B) above, we may show that

s ORI
(2.12) /0 - 1Ju—é (ra)de = NG ; (2 1 17"

Gradshtein and Ryzhik [9] have an explicit expression which can be transformed by a simple
change of variables t¢ (2.12). Namely,

(2.13) /Oww”Ju<bx>dx (20T (v + 1) & 1

em — 1 NG = (g2 4 )t

Re (v) > 0, |Im (b)| < =, which is attributed by Watson [20] to a 1906 result by Kapteyn.

An explicit integral expression fof), () of the current form does not seem to have been
available previously.

Finally, we note tha{(2.10) of (2.[.L1) may be looked upon as an integral transform such as the
Laplace or Hankel transform and the results may be found in tables of such.

Remark 2.4. S, (r) as given in[(2.2) { (2]3) may be written in the alternate form

NS /°° x _1
2.14 S = 2 d
@) S.0) = g | oy [ T ey )] de,
which, foru = m, a positive integer
1 T [ =

where
T T el
(2.16) \/;Rm (2) = \/;z 2 (2).
Form = 1,2, 3,4 we have
\/ng () =sinz, sinz—zcosz, 3sinz—3zcosz — z%sinz,

and
15sin z — 15z cos z — 62%sin z + 22 cos z,

respectively.
Thus, for example,

1 [~ x|
Sl(r)—;/o ex_lsm(m:)dx,

Sy (1) = ﬁ /000 ’ [sin (rz) — (rz) cos (rz)] du,

et —1

T 248 -

Sy (1) ! /000 egcx 7 [3sin (rz) — 3 (rz) cos (ra) — (ra)? sin (rz)] dz,

and

1 < .
Sy (r) = 1927’7/0 | [15sin (rz) — 15 (rx) cos (rz)

—6 (rz)’sin (rz) + (rz) cos (rz)] da.
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The above results for integer can also be obtained using the relationship from|(1.1) and

(I))

= O
2.17 S ( i dz.
(2.17) 1 ( Z n2+r2 7”/0 ew_lsm(m") x

n=1

Formal differentiation with respect toof (2.17) gives

(—4r)52(r):/oo x {xcosrx_sin;x} i
o €e*—1

r r
1 [ .
=—— (sinrax — raxcosrz)dx
r2 er —
0

producing the result above. Continuing in this manner would produce further representations
for S,, (r) .
The following theorem gives an explicit representation§gr(r) , m € N.

Theorem 2.5. For m a positive integer we have

m—1, %J
(218) Sm (7”) = L : ; : i Z %Tk [5k evenAk (T) + 5k odd By (7")] )

where

okt oo Lkt
(219)  Au(r) = / Ssin () dr, By (r) = / cos (1) dr.
0 0

63}_ 6213_

with dcondition = 1 if condition holds and zero otherwise and| is the greatest integer less than
or equal toz.

Proof. From [2.17) we may differentiate — 1 times with respect to to produce

(2.20) STy = (=)™ Pl (20 S, (1)
~© d™1 [sinrx
= . dx.
/0 et — 1 drml( r )x
Now,
d™1 [sinrzx S m— 1\ dmR o dE
ey o (T ):< o) () s
and
!
%(T—l) :( 1) Iy (l+1)
r
dk

s (sinrx) = (—1) [3] 4k [0k evensin (7)) + 0k odacos ()]

wheredcongiion = 1 if condition is true and zero otherwise.
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Thus from (2.211)
d™ 1 (sin(

(2.22) drm—1< )

k=

x (m

:imi( ) (el

— E)7F 2k (6, evensin (ra) 4 S ogacos (r)]
1 m—1 m—1 1 L%J .
= % (m —1)! Z %Tkﬁk [0k evensin (7)) + O, oggcos (rz)] .
k=0

Substitution of[(2.2R) intd (2.20) and simplifying produces the stated r¢sulf (2.18). O

Remark 2.6. The integral representation f6t, (r) given in Theorem 2|5 is simpler than that
obtained in[[18] as given by (1.7). Further, the derivation here is much more straight forward.

3. BOUNDS FOR S, (7)

It was stated in the introduction that considerable effort has been expended in determining
bounds for the generalised Mathieu series. More recently, bounds for the generalised Math-
ieu series[(1]6) has been investigated in particular by Qi and coworkers and by Tomovski and
Trencevski [18].

In arecent article Landau [11] obtained the best possible uniform bounds for Bessel functions
using monotonicity arguments. Of particular interest to us here is that he showed that

b
(3.1) 1], (z)| < e

1/3
uniformly in the argument and is best possible in the exponér&nd constant
(3.2) b, = 23 sup Ai (z) = 0.674885 - - - |,

whereAi (z) is the Airy function satisfying
w” — zw = 0.

Landau also showed that

C
(3.3) [ (@) <
;1;3
uniformly in the order > 0 and the exponerg is best possible with
(3.4) cr, = sup $%J0 (x)
= 0.78574687 . ...

The following theorem is based on the Landau boupds (3[I) } (3.4).

Theorem 3.1. The generalised Mathieu serigs (r) satisfies the bounds far> 1 andr > 0

(3.5) NGy T Lp— -F(“+5)<(u+§),

~ (o) (u—%)% C(p+1) 2
and
(36) S0 < e o (g ) ¢ (e ),
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whereb;, andc,, are given by[(4]2) and (4.4) respectively.
Proof. From (2.2) and[(2]3) we have

o0 QC'LH_%
(3.7) S,(r)<C, (r)/ pr— J1 (rm)‘ de, r>0
0 — 2
and so from([(3]1) we obtain, on utilising (2.6)

Su(r) <Cu(r) ———

which simplifies down to[ (3]5).
Further, using[(3]3) intq (3.7) gives

o0 p,+% 1
SM(T)SCM(T’>-CL'/ * . —dx
0

e —1 |7’5L"3
_ e, [* ahte
=C,(r) ré/o ex—ldx
which upon using[(2]6) produces
7 7
3.9 5,00 <) 5 r (e g) ¢ (nr ).
73
Simplifying (3.8) and usind (2]3) gives the stated reguli|(3.6). O
Corollary 3.2. The Mathieu series§ (r) satisfies the following bounds
3T 5)
. < — —
39 s < 2rnc (3)
and
Tcy, s 1 13 _5
A < ——=.,/=.T|= ) .rs
(310 s<ge3r(s)e (%)

whereb;, andc,, are given by[(3]2) and (3.4) respectively.

Proof. Taking,. = 1 in (3.5) and[(3.5), noting that (r) = S (r) gives the stated results after
some simplification. O

The following corollary gives coarser bounds than Thedrerm 3.1 without the presence of the
zeta function.

Corollary 3.3. The generalised Mathieu serigs (r) satisfies the bounds far> 1 andr > 0

br, 1 F(/‘+%)
(3.11) S ST T T T )
and
. 2 -, CL F(M+%)
(3.12) Su(r) <25y ol T )

with b, andc,, given by|[(3.R) and (3]4).
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Proof. We use the well known inequality
T

et —1

e < <e 2

to produce from[(3]7)
(3.13) S, (1) < C, (r) / e St
0

We know from Laplace transforms or the definition of the gamma function that
> r 1
(3.14) / e “atdr = M
0

as+1

Jui (rx)‘ dx.

123

Hence, placing[(3]1) intq (3.13) and utilising (3.14) we obtain (3.11) after simplification. A
similar approach produces (3]12) starting from|(3.3) rather fhah (3.1). O

4. FURTHER INTEGRAL EXPRESSIONS FORGENERALISED MATHIEU SERIES

In [18], Tomovski and Tretevski gave the integral representation

2 o 2
4.1 S = He e d
(@.1) L) = o | e @,
where
(4.2 f(x)= Zn(f”%, convergent for finitec > 0,

by effectively utilising the resulf (3.14).
They leave the summation of the serieqin|(4.2) as an open problem.
If we placer = 1 — 1 andg = r, all real in ) then we obtain the identity

2
X el 20
(43) CM (T)/O e I‘IH_?JM_% (TZI)) dr = W,

whereC,, (r) is as given by[(2]3).
Proof B of Theorem 2]1 takes = n and sums to produce the identify (2.1] —[2.2).
If we takea = n” then we have fronj (4]3) on summing

(4.4) S(ripmy) =3 ——

(n® + 7“2)“+1

n=1
=0, (T)/ (Z e_””) x“+%JH_% (re)dx,
0 n=1
giving an integral representation that was left as an open problem by Qi [15].
As a matter of fact, if we take = a,, wherea = (ay, as, ..., a,,...) IS a positive sequence,
then
(4.5) (r;p;a ; 2t 7’2 s,
=Cy (7”)/0 (Z 6_a"$> $“+%JM_% (rx) dw.
n=1

We note that fon™ = (17,27, ...) then
S (rima®) =S (rip7).

J. Inequal. Pure and Appl. Math4(5) Art. 100, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10

P. GERONE AND C.T. LENARD

The series

(a2 +12)?

n=1

has been investigated in [16].
A closed form expression for

F(a) = Ze’a”x, x>0
n=1

wherea,, IS a positive sequence, remains an open problem.
If a* =(1,2,3,...,n,...), then

[1]

2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

1
et —1°

F(a") =
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