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ABSTRACT. In this paper, we are concerned with the followistty difference equations
AMy(k=1)+ f(k,y(k)) =0, ke {l,...,T},
Aly(0)=0,i=0,1,...,n—2, A" 2y(T 4+ 1) = aA"2y(¢),
wheref is continuousp > 2, T > 3 and¢ € {2,...,T — 1} are three fixed positive integers,
constanty > 0 such thatvé < T+ 1. Under some suitable conditions, we obtain the existence

result of at least three positive solutions for the problem by using the Leggett-Williams fixed
point theorem.

Key words and phrasediscrete three-point boundary value problem; Multiple solutions; Green’s function; Cone; Fixed
point.
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1. INTRODUCTION

This paper deals with the following three-point discrete boundary value problem (BVP, for
short):

(1.2) Ay(0)=0,i=0,1,...,n—2, A" ?y(T+1) = aA" ?y(¢),

whereAy(k — 1) = y(k) —y(k — 1), A"y(k — 1) = A" Y Ay(k - 1)),k € {1,...,T}.
Throughout, we assume that the following conditions are satisfied:
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(Hy) T > 3and¢ € {2,...,T — 1} are two fixed positive integers, > 0 such thatn¢ <
T+ 1.

(Hy) feC{1,...,T}x][0,400),[0,400)) andf(k,-) = 0 does not hold 041, ...,{—1}
and{¢,...,T}.
In the few past years, there has been increasing interest in studying the existence of multiple
positive solutions for differential and difference equations, for example, we refer the reader to
[1] - [8].

Recently, Ma[[9] studied the following second-order three-point boundary value problem
(L.3) 4 Xa(t)f(u) =0, t € (0,1), u(0) =0, auly)=u(l),

by applying fixed-point index theorems and Leray-Schauder degree and upper and lower solu-
tions. In the case = 1, under the conditions thatis superlinear or sublinear, Ma [10] con-
sidered the existence of at least one positive solution of prolplem (1.3) by using Krasnosel'skii's
fixed-point theorem.

However, in[9] —[11], the author did not give the associate Green’s function and exceptional
work was carried out for higher order multi-point difference equations. In the current work, we
give the associate Green’s function and obtain the existence of multiple positive solutions for
BVP (1.1) —[1.2) by employing the Leggett-Williams fixed point theorem. Our results are new
and different from those in [9] +[11]. Particularly, we do not require the assumptiory tisat
either superlinear or sublinear.

2. BACKGROUND DEFINITIONS AND GREEN’'S FUNCTION

For the convenience of the reader, we present here the necessary definitions from cone theory
in Banach space, which can be foundiin [3].

Let N be the nonnegative integers, welet; = {k € N :i < k < j} andN, = Ny,

We say thay is a positive solution of BVF (1}1) + (1.2), if : Nr.,,—1 — R, y satisfies
(1.1) onN, 7, y fulfills (L.2) andy is nonnegative oiNy_,,_, and positive orN,,_; 7.

Definition 2.1. Let F be a Banach space, a nonempty closediSet F is said to be a cone
provided that

() if € Kand\ > 0then\x € K;
(i) if z € K and—z € K thenz = 0.
If K C Eis acone, we denote the order inducedyn F by <. Forz,y € K, we write
x<yifandonlyify —x € K.

Definition 2.2. A maph is a nonnegative continuous concave functional on the ¢oméich
is convex, provided that
(i) h: K — [0, 00) is continuous;

(i) h(tz+ (1 —1t)y) > th(z) + (1 —t)h(y) forallz,y € K and0 < t < 1.

Now we shall denote
Ke={ye K: |yl <c}
and
K(h,a,b) ={y € K : h(y) = a, ||yl| < b},

where|| - || is the maximum norm.
Next we shall state the fixed point theorem due to Leggett-Williams [12] alsd see [3].
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Theorem 2.1. Let E be a Banach space, and |&t C E be a cone inE. Assume that is a
nonnegative continuous concave functionalforsuch thath.(y) < ||y| for all y € K., and let
S : K. — K, be a completely continuous operator. Suppose that theretexist < b < d <
¢ such that

(A1) {y € K(h,b,d) : h(y) > b} # Dandh(Sy) > bforall y € K(h,b,d);
(A2) [[Syll < afor|ly|| < a;

(As) h(Sy) > bforally € K(h,b,c)with || Sy| > d.

ThensS has at least three fixed poins, y» andy; in K, such that]jy: || < a, h(y2) > b and
lys|| > a with A(ys) < b.

In the following, we assume that the functi6iik, () is the Green’s function of the problem
—Amy(k — 1) = 0 with the boundary conditior (1.2).
Itis clear that (see [3])

g(k,l) = A" 2G(k,1), (with respect tdk)
is the Green’s function of the problemA?y(k — 1) = 0 with the boundary condition
(2.1) y(0) =0,  y(T+1)=ay).

We shall give the Green'’s function of the problemh?y(k—1) = 0 with the boundary condition

2.3).

Lemma 2.2. The problem
(2.2) A?y(k —1) 4+ u(k) = 0, k€ Ny,

with the boundary conditiorn (2.1) has the unique solution

k—1 k T
(2.3) y(k) =—> (k—lu(l) + Tr1—at > (T +1-1u(l)
=1 =1
ak !
T aE lz;(g —Du(l), k€ Ngpy.

Proof. From [2.2), one has

Ay(1) = Ay(0) = —u(1).

We sum the above equalities to obtain

Ay(k) = Ay(0) — Zu(l), k € Nr,

=1
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here and in the following, we denoEf:pu(l) =0, if p > ¢. Similarly, we sum the equalities
from 0 to k£ and change the order of summation to obtain

k l

y(k +1) = y(0) + (k+ 1)Ay(0) = 33 u(j)

=1 j=1

Mw

=y(0) + (k+ 1)Ay(0) — (k+1—10u(l), ke&Ngp,

=1
ie.,

k—1
(2.4) y(k) = y(0) + kAy(0 Z Yu(l), k€ Npiq.

=1

By using the boundary conditiop (2.1), we have

T -1
1
By (2.4) and|[(2.p), we have shown that (2.3) holds. O

Lemma 2.3. The function

(T +1—k—a(—k
[ 711 af >], I € Nyjp_1 [ Nye_1;
(T+1—k)+ af(k— l)’ | € Nex 1.
T+1—a& ’
(2.6) g(k,1) =
ET+1—1—a(§—1)] leN .
T+1-aé ’ b
E(T+1-1)
—_- leN Ne¢ 7.
| T+1—ag’ € Nior [1Ner
is the Green’s function of the following problem
(2.7) ~A%’y(k—1)=0, k€ Ny,
(2.1) y(0) =0, y(T +1) = ay(§).

Proof. We shall divide the proof into the following two steps.

Step 1.We supposé < £. Then the unique solution of problefn (R.7), (2.1) can be written as

k—1

=1

T = -
S s S(T+1-Du(l)+> (T+1- l)u(l)]

ok
e+ (f—l)U(l)]
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k‘

-1

BT+ 1—k—a(e— k)
_l:1 TT1_at u(l)
k[T +1—1—a - L k(T +1-1) ,
+ T+1—-af )+ —|—1—a§ u(d)

l

T
=> gk, Du(l
=1

Step 2.We supposé > £. Then the unique solution of problefn (.7), (2.1) can be written as

Il
>

=

y(k) = - z(k — Du(l) + Ig(k - l)U(l)]
T+ f_ ot §(T+ 1—Du(l) + §<T+ 1—Du(l) + i(TJr 1— Du(l)
T+1k— a;i —u
_ 5 T4k o;f L
+':::lTJrlT—JrlJ_rzg( +ékTJ;1__aé ()

T
=> gk Du(l
=1

Thus the unique solution of proble.2.1) can be writtem(&f = Zszl g(k,Du(l). O

We observe that the conditiert < 7'+1 implies thaty (%, 1) is nonnegative oiN7 ., x Ny r,
and positive ofN; 1 x Ny 7. From [2.8), we have

=> gk, Du(l)
where )

g(k,1) == (T—l—l—af)_l (k(T +1-0)—-(k-DT+1- O‘S)X[l,kfl](l) —ak(§ — Z)X[l,gfﬂ(l)) .
This is a positive function, which means that the finite set

{9(k,0)/g(k, k) k,l=1,2,...,T}
takes positive values. Létl;, M, be its minimum and maximum values, respectively.

3. EXISTENCE OF TRIPLE SOLUTIONS

In the following, we denote

m—kgll\ngngl = max ngl

kENT 41
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and

m = min g(k,k), M = max g(k, k).

kGNE,T keENT 1

Then0 < m < M, 0 < i < M.
Let £ be the Banach space defined by

E={y:Nri,1 — R Ay(0)=0,i=0,1,...,n— 2}
Define

K = {y € E: A" ?y(k) >0fork € Npyy andkn}\}n A" 2y(k) > 0||y||}

eNeg 1
whereo = AT (0, 1), ||yl Jax |A" 2y (k)|. Itis clear thatX is a cone ink.
Finally, let the nonnegative continuous concave functiégnalk’ — [0, oo) be defined by

hy) = i A" ?y(k), yeK.

Note that fory € K, h(y) < ||y||-

Remark 3.1. If y € K, ||y|| < ¢, then
0 S y(k) S qc, ke NTJrnfla

where (T (T +n)--(T+2n—4)
+n— +n)--- (L +2n—
p— T = .
Infact, ify € K, ||y]| < ¢, then0 < A" 2y(k) < c, k € Npyq,i.e.,

0 < A(A" 3y(k) = A" Py(k+1) — A" 3y((k) <ec.

Then one has
0 < A" %y(1) — A" Py(0)
0 < A"Py(2) — A" y(1)

¢,

VARVAN

Gy

0 < A" 3y(k) — A" 3y(k—1) <c.
We sum the above inequalities to obtain
0 < A" 3y(k) < ke, k € Npio.
Similarly, we have
k
_ . k(k+1
0<A” 4y(k) < (Z z) c= %c, k € Nprys.
=1
By using the induction method, one has

0 < y(k) < k(k + 1)<n_(l;;>—'i— n— 3)0’

k€ Nrpyn_1.

Then

(TH+n—1)T+n)---(T+2n—4)
(n—2)!

Theorem 3.2. Assume that there exist constant$, c such that) < a < b < ¢ - min {a, i

and satisfy

0<y(k) < ¢ =g, k€Npin .
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(Hs) f(k,y) < 57, (k,y) € [0, T +n—1] x [0, ¢],

(Ha) f(k,y) < 47, (ky) €0, T +n —1] x [0, qal,

(Hs) There exists somig € [n — 2,7 +n — 1], such thatf (k,y) > mio, (k,y) € n—2,T+
n—1] x [b, 2], wherem, = kﬁgigﬁg(k, [) > 0.

Then BVP[(1]1) 4 (T}2) has at least three positive solutigng, andys, such that

(3.1) [l <a, h(yz) >0,
and
(3.2) lysll > a with h(ys) <b.

Proof. Let the operatof : K — E be defined by
T

(Sy)(k) =D Gk D) f(Ly(D), k€ Npppor.

=1
It follows that

(3.3) A"2(Sy) (k Zg (k1) f ),for ke Np.

We shall now show that the opera@)mapsK into itself. For this, ley € K, from (H,), (H2),
one has

T

(3.4) A2 (Sy)(k) = gk, D f(Ly(1) = 0,for k€ Ny,
=1

and

A"2(Sy)(k) =Y gk, 1) f (1 y(1)

< My > glk k) (1. (D)
=1

T
< MM f(Ly)),  for ke Npg.

=1
Thus

ISyl < MM f(1y(0)).

=1

From(H,), (H), and [3.8), fork € N, 7, we have
T

A"2(Sy) (k) > MY g(k, k) f(Ly(1)

T
~ Mlm
> Mym Lyl —||Syl|| = o||S
> M, Z_:f( y(1)) = M2M|| yll = ollSyll
Subsequently
(3.5) min A""*(Sy)(k) = o[ Syl|.

kGN& T
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From (3.4) and[(315), we obtaifly € K. HenceS(K) C K. Also standard arguments yield
thatS : K — K is completely continuous.

We now show that all of the conditions of Theorem| 2.1 are fulfilled. Foy alK., we have
|ly|| < ¢. From assumptioiH;), we get

o n—2
ISyl = max |A™%(Sy)(b)

T
= Dax ;g(k7l)f(l,y(l))‘
c T
< _
kéﬁl\%ﬁ;g(k’l) c

HenceS : K, — K..

Similarly, if y € K,, then assumptio(f,) yields f(k,y) < 47, for k € Npyi. Asin the
argument above, we can shawv: K, — K,. Therefore, conditioriA,) of Theore is
satisfied.

Now we prove that conditiofi4, ) of Theorenj 2]l holds. Let

Then we can show that € K (h,b, L) andh(y*) > £ > b. So

{yeK<h,b,§)  h(y) >b} 20,

From assumption&H,) and(Hs), one has

kENgyT

W(Sy) = min > " g(k, 1) f(l,y(1))

This shows that conditiofid;) of Theorenj 211 is satisfied.
Finally, suppose that € K (h, b, ¢) with || Sy|| > £, then

h(Sy) = min A"2(Sy)(k) = oSy > b

Thus, conditior(4;) of Theorenj 2.1 is also satisfied. Therefore, Thedrein 2.1 implies that BVP

(1.7) - [1.2) has at least three positive solutignsy,, y; described by (3]1) an@ (3.2). O

Corollary 3.3. Suppose that there exist constants
0<a; <b < m{ }< < by < m{ m}< <
- min — - min — <o
aq 1 C1 g, M (05} 2 Co g, M Qp,

p is a positive integer, such that the following conditions are satisfied:
(H7) f(kvy) < %7 (kay) S [O7T+ n— 1] X [O7qai]7i S NLP;
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(Hs) There existyy € [n — 2, T +n — 1], such thatf (k,y) > 2, (k,y) € [n—2,T +n —
1] x [bi, ], 4 € Ny 1.
Then BVP[(1]1) 4{(T}2) has at leagi — 1 positive solutions.
Proof. Whenp = 1, from condition(H-), we showS : K,, — K, C K,. By using
the Schauder fixed point theorem, we show that BVP, (1.1) 1 (1.2) has at least one fixed point
y1 € K,,. Whenp = 2, it is clear that Theore .2 holds ( with = a3). Then we can
obtain BVP [1.1) -{(1]2) has at least three positive solutigng, andys, such that|y, || < a1,

h(ys) > b1, ||lys|| > a1, with h(y3) < b;. Following this way, we finish the proof by the
induction method. The proof is completed. O

If the casen = 2, similar to the proof of Theorem 3.2, we obtain the following result.

Corollary 3.4. Assume that there exist constant$, c such that) < a < b < ¢ - min {a, %}
and satisfy

(Ho) f(k,y) < 57, (k,y) € [0, T +n—1] x [0,¢],
(Hyo) f(k,y) < 170 (kyy) € [0,T +n —1] x [0, 4],
(HU) f(k7y) > %7 (kvy) € [£7T+n_ 1] X [bv g]

Then BVP[(1]1) 4 (I]2) has at least three positive solutigng, andys, satisfying[(3.]L) and
B2.

Finally, we give an example to illustrate our main result.

Example 3.1. Consider the following second order third point boundary value problem

(3.6) A’y(k—1)+ f(k,y) =0, k€ Nyg,
7
(3.7) y(0) =0, (1) = gy(),
wheref(k,y) = k}rol%oa(y), and
= + sin® if y € |0 L
720 oMY A NETIR
1 1 , .
a(y) = %+6<y—%>+sm8y, if y € [5.3];
1 89 sin’*(y—3 .
| 5t iglﬁ%———)-+-$n8y, if y € [3,360].

ThenT =6,n=3,a =% <1,T+1—an =% > 0. Then the condition$H, ), (H,) are
satisfied, and the function

(1(42 — 2
w, I € Nyjp_1[)Nipg;
3U(T—k)+7(k—1

Gl 1) = = ( g E=D e Na
T g
k(42 — 21
g’ l e Nk,2;
9
[ k(7 -1), [ € Ni6(1Nag,

is the Green’s function of the problemA?y(k — 1) = 0,k € Ny ¢ with (3.7).
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Thuswecancompubez 27M_18m_7,1\7f_ My =23 My=9,0=5 <=
%. We choose that = 35, b= 10, c = 360, consequently,
100
k) =
J(ky) = = 500W)
(L= C (k,y) € [0,7] % [0, 4] ;
720 _M 7y ) 7301
<a)<{ L i6(3-L)r1<20=2C (k,y) €10,7] x [&,3];
720 30 M’ 307
1 89 3
= 0% 9= < k .
\ 720+ z +2< 0=+ (k,y) €[0,7] x [3,360]
Thus .
Flkyy) < <20 (ko) € [0.7) x [0,360];
and

1 1
Flky) € o +siny < —— = =

1
— k 0,7 0, —1;
.. a1 Eebx o]

)
100 | 1 1 1 1 b 1
ky) > — |=—— — - — infy| > -— = — k —,3|.
fk:y) 2 17 {720%(10 30) e y] 2 W EBTX {27’3}
That is to say, all the conditions of Corolldry .4 are satisfied. Then the boundary value problem
(3.9), (3.7) has at least three positive solutigns, andy;, such that

1 1
—, for N — . for N

yi(k) < g5, fork € Ny, ya(k) > o, fork € Ny,

and . .

k) > —, fork € N, with k) < o

e (k) = g5 Tork € No with iy wsll) < 57
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