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Abstract

In this paper, we are concerned with the following nth difference equations

∆ny(k − 1) + f(k, y(k)) = 0, k ∈ {1, . . . , T},

∆iy(0) = 0, i = 0, 1, . . . , n− 2, ∆n−2y(T + 1) = α∆n−2y(ξ),

where f is continuous, n ≥ 2, T ≥ 3 and ξ ∈ {2, . . . , T − 1} are three fixed
positive integers, constant α > 0 such that αξ < T + 1. Under some suitable
conditions, we obtain the existence result of at least three positive solutions for
the problem by using the Leggett-Williams fixed point theorem.
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Key words: Discrete three-point boundary value problem; Multiple solutions; Green’s

function; Cone; Fixed point.
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1. Introduction
This paper deals with the following three-point discrete boundary value problem
(BVP, for short):

(1.1) ∆ny(k − 1) + f(k, y(k)) = 0, k ∈ {1, . . . , T},

(1.2) ∆iy(0) = 0, i = 0, 1, . . . , n− 2, ∆n−2y(T + 1) = α∆n−2y(ξ),

where∆y(k − 1) = y(k) − y(k − 1), ∆ny(k − 1) = ∆n−1(∆y(k − 1)),
k ∈ {1, . . . , T}.

Throughout, we assume that the following conditions are satisfied:

(H1) T ≥ 3 andξ ∈ {2, . . . , T − 1} are two fixed positive integers,α > 0 such
thatαξ < T + 1.

(H2) f ∈ C({1, . . . , T} × [0, +∞), [0, +∞)) andf(k, ·) ≡ 0 does not hold on
{1, . . . , ξ − 1} and{ξ, . . . , T}.

In the few past years, there has been increasing interest in studying the exis-
tence of multiple positive solutions for differential and difference equations, for
example, we refer the reader to [1] – [8].

Recently, Ma [9] studied the following second-order three-point boundary
value problem

(1.3) u′′ + λa(t)f(u) = 0, t ∈ (0, 1), u(0) = 0, αu(η) = u(1),
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by applying fixed-point index theorems and Leray-Schauder degree and upper
and lower solutions. In the caseλ = 1, under the conditions thatf is superlinear
or sublinear, Ma [10] considered the existence of at least one positive solution
of problem (1.3) by using Krasnosel’skii’s fixed-point theorem.

However, in [9] – [11], the author did not give the associate Green’s func-
tion and exceptional work was carried out for higher order multi-point differ-
ence equations. In the current work, we give the associate Green’s function
and obtain the existence of multiple positive solutions for BVP (1.1) – (1.2) by
employing the Leggett-Williams fixed point theorem. Our results are new and
different from those in [9] – [11]. Particularly, we do not require the assumption
thatf is either superlinear or sublinear.
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2. Background Definitions and Green’s Function
For the convenience of the reader, we present here the necessary definitions
from cone theory in Banach space, which can be found in [3].

Let N be the nonnegative integers, we letNi,j = {k ∈ N : i ≤ k ≤ j} and
Np = N0,p.

We say thaty is a positive solution of BVP (1.1) – (1.2), if y : NT+n−1 −→
R, y satisfies (1.1) onN1,T , y fulfills (1.2) andy is nonnegative onNT+n−1 and
positive onNn−1,T .

Definition 2.1. LetE be a Banach space, a nonempty closed setK ⊂ E is said
to be a cone provided that

(i) if x ∈ K andλ ≥ 0 thenλx ∈ K;

(ii) if x ∈ K and−x ∈ K thenx = 0.

If K ⊂ E is a cone, we denote the order induced byK on E by≤. For
x, y ∈ K, we writex ≤ y if and only ify − x ∈ K.

Definition 2.2. A maph is a nonnegative continuous concave functional on the
coneK which is convex, provided that

(i) h : K −→ [0,∞) is continuous;

(ii) h(tx + (1− t)y) ≥ th(x) + (1− t)h(y) for all x, y ∈ K and0 ≤ t ≤ 1.
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Now we shall denote

Kc = {y ∈ K : ‖y‖ < c}

and
K(h, a, b) = {y ∈ K : h(y) ≥ a, ‖y‖ ≤ b},

where‖ · ‖ is the maximum norm.
Next we shall state the fixed point theorem due to Leggett-Williams [12] also

see [3].

Theorem 2.1. Let E be a Banach space, and letK ⊂ E be a cone inE.
Assume thath is a nonnegative continuous concave functional onK such that
h(y) ≤ ‖y‖ for all y ∈ Kc, and letS : Kc −→ Kc be a completely continuous
operator. Suppose that there exist0 < a < b < d ≤ c such that

(A1) {y ∈ K(h, b, d) : h(y) > b} 6= ∅ andh(Sy) > b for all y ∈ K(h, b, d);

(A2) ‖Sy‖ < a for ‖y‖ < a;

(A3) h(Sy) > b for all y ∈ K(h, b, c) with ‖Sy‖ > d.

ThenS has at least three fixed pointsy1, y2 andy3 in Kc such that‖y1‖ < a,
h(y2) > b and‖y3‖ > a with h(y3) < b.

In the following, we assume that the functionG(k, l) is the Green’s function
of the problem−∆ny(k − 1) = 0 with the boundary condition (1.2).

It is clear that (see [3])

g(k, l) = ∆n−2G(k, l), (with respect tok)
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is the Green’s function of the problem−∆2y(k − 1) = 0 with the boundary
condition

(2.1) y(0) = 0, y(T + 1) = αy(ξ).

We shall give the Green’s function of the problem−∆2y(k − 1) = 0 with the
boundary condition (2.1).

Lemma 2.2. The problem

(2.2) ∆2y(k − 1) + u(k) = 0, k ∈ N1,T ,

with the boundary condition (2.1) has the unique solution

(2.3) y(k) = −
k−1∑
l=1

(k − l)u(l) +
k

T + 1− αξ

T∑
l=1

(T + 1− l)u(l)

− αk

T + 1− αξ

ξ−1∑
l=1

(ξ − l)u(l), k ∈ NT+1.

Proof. From (2.2), one has

∆y(k)−∆y(k − 1) = −u(k),

∆y(k − 1)−∆y(k − 2) = −u(k − 1),

...

∆y(1)−∆y(0) = −u(1).
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We sum the above equalities to obtain

∆y(k) = ∆y(0)−
k∑

l=1

u(l), k ∈ NT ,

here and in the following, we denote
∑q

l=p u(l) = 0, if p > q. Similarly, we
sum the equalities from0 to k and change the order of summation to obtain

y(k + 1) = y(0) + (k + 1)∆y(0)−
k∑

l=1

l∑
j=1

u(j)

= y(0) + (k + 1)∆y(0)−
k∑

l=1

(k + 1− l)u(l), k ∈ NT ,

i.e.,

(2.4) y(k) = y(0) + k∆y(0)−
k−1∑
l=1

(k − l)u(l), k ∈ NT+1.

By using the boundary condition (2.1), we have

(2.5) ∆y(0) =
1

T + 1− αξ

T∑
l=1

(T +1− l)u(l)− α

T + 1− αξ

ξ−1∑
l=1

(ξ− l)u(l).

By (2.4) and (2.5), we have shown that (2.3) holds.
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Lemma 2.3. The function

(2.6) g(k, l) =



l[T+1−k−α(ξ−k)]
T+1−αξ

, l ∈ N1,k−1

⋂
N1,ξ−1;

l(T+1−k)+αξ(k−l)
T+1−aξ

, l ∈ Nξ,k−1;

k[T+1−l−α(ξ−l)]
T+1−αξ

, l ∈ Nk,ξ−1;

k(T+1−l)
T+1−αξ

, l ∈ Nk,T

⋂
Nξ,T .

is the Green’s function of the following problem

(2.7) −∆2y(k − 1) = 0, k ∈ N1,T ,

(2.1) y(0) = 0, y(T + 1) = αy(ξ).

Proof. We shall divide the proof into the following two steps.

Step 1. We supposek < ξ. Then the unique solution of problem (2.7), (2.1)
can be written as

y(k) = −
k−1∑
l=1

(k − l)u(l) +
k

T + 1− αξ

k−1∑
l=1

(T + 1− l)u(l)

+
k

T + 1− αξ

[
ξ−1∑
l=k

(T + 1− l)u(l) +
T∑

l=ξ

(T + 1− l)u(l)

]

− αk

T + 1− αξ

[
k−1∑
l=1

(ξ − l)u(l) +

ξ−1∑
l=k

(ξ − l)u(l)

]
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=
k−1∑
l=1

l[T + 1− k − α(ξ − k)]

T + 1− αξ
u(l)

+

ξ−1∑
l=k

k[T + 1− l − α(ξ − l)]

T + 1− αξ
u(l) +

T∑
l=ξ

k(T + 1− l)

T + 1− αξ
u(l)

=
T∑

l=1

g(k, l)u(l).

Step 2. We supposek ≥ ξ. Then the unique solution of problem (2.7), (2.1)

can be written as

y(k) = −

[
ξ−1∑
l=1

(k − l)u(l) +
k−1∑
l=ξ

(k − l)u(l)

]

+
k

T + 1− αξ

[
ξ−1∑
l=1

(T + 1− l)u(l) +
k−1∑
l=ξ

(T + 1− l)u(l)

+
T∑

l=k

(T + 1− l)u(l)

]
− αk

T + 1− αξ

ξ−1∑
l=1

(ξ − l)u(l)

=

ξ−1∑
l=1

l[T + 1− k − α(ξ − k)]

T + 1− αξ
u(l)

+
k−1∑
l=ξ

l(T + 1− k) + αξ(k − l)

T + 1− αξ
u(l) +

T∑
l=k

k(T + 1− l)

T + 1− αξ
u(l)
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=
T∑

l=1

g(k, l)u(l).

Thus the unique solution of problem (2.7), (2.1) can be written asy(k) =∑T
l=1 g(k, l)u(l).

We observe that the conditionαξ < T +1 implies thatg(k, l) is nonnegative
onNT+1 ×N1,T , and positive onN1,T ×N1,T . From (2.3), we have

y(k) =
T∑

l=1

g(k, l)u(l),

where

g(k, l) := (T + 1− αξ)−1
(
k(T + 1− l)

− (k − l)(T + 1− αξ)χ[1,k−1](l)− αk(ξ − l)χ[1,ξ−1](l)
)
.

This is a positive function, which means that the finite set

{g(k, l)/g(k, k) : k, l = 1, 2, . . . , T}

takes positive values. LetM1, M2 be its minimum and maximum values, re-
spectively.
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3. Existence of Triple Solutions
In the following, we denote

m = min
k∈Nξ,T

T∑
l=ξ

g(k, l), M = max
k∈NT+1

T∑
l=1

g(k, l)

and
m̃ = min

k∈Nξ,T

g(k, k), M̃ = max
k∈NT+1

g(k, k).

Then0 < m < M , 0 < m̃ < M̃ .
Let E be the Banach space defined by

E = {y : NT+n−1 −→ R, ∆iy(0) = 0, i = 0, 1, . . . , n− 2}.

Define

K =

{
y ∈ E : ∆n−2y(k) ≥ 0 for k ∈ NT+1 and min

k∈Nξ,T

∆n−2y(k) ≥ σ‖y‖
}

whereσ = M1m̃

M2M̃
∈ (0, 1), ‖y‖ = max

k∈NT+1

|∆n−2y(k)|. It is clear thatK is a cone

in E.
Finally, let the nonnegative continuous concave functionalh : K −→ [0,∞)

be defined by
h(y) = min

k∈Nξ,T

∆n−2y(k), y ∈ K.

Note that fory ∈ K, h(y) ≤ ‖y‖.
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Remark 1. If y ∈ K, ‖y‖ ≤ c, then

0 ≤ y(k) ≤ qc, k ∈ NT+n−1,

where

q = q(n, T ) =
(T + n− 1)(T + n) · · · (T + 2n− 4)

(n− 2)!
.

In fact, if y ∈ K, ‖y‖ ≤ c, then0 ≤ ∆n−2y(k) ≤ c, k ∈ NT+1, i.e.,

0 ≤ ∆(∆n−3y(k)) = ∆n−3y(k + 1)−∆n−3y(k) ≤ c.

Then one has

0 ≤ ∆n−3y(1)−∆n−3y(0) ≤ c,

0 ≤ ∆n−3y(2)−∆n−3y(1) ≤ c,

...

0 ≤ ∆n−3y(k)−∆n−3y(k − 1) ≤ c.

We sum the above inequalities to obtain

0 ≤ ∆n−3y(k) ≤ kc, k ∈ NT+2.

Similarly, we have

0 ≤ ∆n−4y(k) ≤

(
k∑

i=1

i

)
c =

k(k + 1)

2!
c, k ∈ NT+3.
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By using the induction method, one has

0 ≤ y(k) ≤ k(k + 1) · · · (k + n− 3)

(n− 2)!
c, k ∈ NT+n−1.

Then

0 ≤ y(k) ≤ (T + n− 1)(T + n) · · · (T + 2n− 4)

(n− 2)!
c = qc, k ∈ NT+n−1.

Theorem 3.1. Assume that there exist constantsa, b, c such that0 < a < b <
c ·min

{
σ, m

M

}
and satisfy

(H3) f(k, y) ≤ c
M

, (k, y) ∈ [0, T + n− 1]× [0, qc],

(H4) f(k, y) < a
M

, (k, y) ∈ [0, T + n− 1]× [0, qa],

(H5) There exists somel0 ∈ [n−2, T +n−1], such thatf(k, y) ≥ b
m0

, (k, y) ∈
[n− 2, T + n− 1]×

[
b, qb

σ

]
, wherem0 = min

k,l∈NT

g(k, l) > 0.

Then BVP (1.1) – (1.2) has at least three positive solutionsy1, y2 and y3,
such that

(3.1) ‖y1‖ < a, h(y2) > b,

and

(3.2) ‖y3‖ > a with h(y3) < b.

Proof. Let the operatorS : K −→ E be defined by

(Sy)(k) =
T∑

l=1

G(k, l)f(l, y(l)), k ∈ NT+n−1.
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It follows that

(3.3) ∆n−2(Sy)(k) =
T∑

l=1

g(k, l)f(l, y(l)), for k ∈ NT+1.

We shall now show that the operatorS mapsK into itself. For this, lety ∈ K,
from (H1), (H2), one has

(3.4) ∆n−2(Sy)(k) =
T∑

l=1

g(k, l)f(l, y(l)) ≥ 0, for k ∈ NT+1,

and

∆n−2(Sy)(k) =
T∑

l=1

g(k, l)f(l, y(l))

≤ M2

T∑
l=1

g(k, k)f(l, y(l))

≤ M2M̃
T∑

l=1

f(l, y(l)), for k ∈ NT+1.

Thus

‖Sy‖ ≤ M2M̃
T∑

l=1

f(l, y(l)).

From(H1), (H2), and (3.3), for k ∈ Nξ,T , we have

∆n−2(Sy)(k) ≥ M1

T∑
l=1

g(k, k)f(l, y(l))

≥ M1m̃
T∑

l=1

f(l, y(l)) ≥ M1m̃

M2M̃
‖Sy‖ = σ‖Sy‖.
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Subsequently

(3.5) min
k∈Nξ,T

∆n−2(Sy)(k) ≥ σ‖Sy‖.

From (3.4) and (3.5), we obtainSy ∈ K. HenceS(K) ⊆ K. Also standard
arguments yield thatS : K −→ K is completely continuous.

We now show that all of the conditions of Theorem2.1are fulfilled. For all
y ∈ Kc, we have‖y‖ ≤ c. From assumption(H3), we get

‖Sy‖ = max
k∈NT+1

|∆n−2(Sy)(k)|

= max
k∈NT+1

∣∣∣∣∣
T∑

l=1

g(k, l)f(l, y(l))

∣∣∣∣∣
≤ c

M
max

k∈NT+1

T∑
l=1

g(k, l) = c.

HenceS : Kc −→ Kc.
Similarly, if y ∈ Ka, then assumption(H4) yields f(k, y) < a

M
, for k ∈

NT+1. As in the argument above, we can showS : Ka −→ Ka. Therefore,
condition(A2) of Theorem2.1 is satisfied.

Now we prove that condition(A1) of Theorem2.1holds. Let

y∗(k) =
k(k + 1) · · · (k + n− 3)b

(n− 2)!σ
, for k ∈ Nξ,T .
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Then we can show thaty∗ ∈ K
(
h, b, qb

σ

)
andh(y∗) ≥ b

σ
> b. So{

y ∈ K

(
h, b,

b

σ

)
: h(y) > b

}
6= ∅.

From assumptions(H2) and(H5), one has

h(Sy) = min
k∈Nξ,T

T∑
l=1

g(k, l)f(l, y(l))

> min
k∈Nξ,T

T∑
l=ξ

g(k, l)f(l, y(l))

≥ min
k∈Nξ,T

g(k, l0)f(l0, y(l0))

≥ b

m0

min
k∈Nξ,T

g(k, l) ≥ b.

This shows that condition(A1) of Theorem2.1 is satisfied.
Finally, suppose thaty ∈ K(h, b, c) with ‖Sy‖ > b

σ
, then

h(Sy) = min
k∈Nξ,T

∆n−2(Sy)(k) ≥ σ‖Sy‖ > b.

Thus, condition(A3) of Theorem2.1 is also satisfied. Therefore, Theorem
2.1 implies that BVP (1.1) – (1.2) has at least three positive solutionsy1, y2, y3

described by (3.1) and (3.2).
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Corollary 3.2. Suppose that there exist constants

0 < a1 < b1 < c1 ·min
{

σ,
m

M

}
< a2 < b2 < c2 ·min

{
σ,

m

M

}
< · · · < ap,

p is a positive integer, such that the following conditions are satisfied:

(H7) f(k, y) < ai

M
, (k, y) ∈ [0, T + n− 1]× [0, qai], i ∈ N1,p;

(H8) There existli0 ∈ [n − 2, T + n − 1], such thatf(k, y) ≥ qbi

m0
, (k, y) ∈

[n− 2, T + n− 1]× [bi,
qbi

σ
], i ∈ N1,p−1.

Then BVP (1.1) – (1.2) has at least2p− 1 positive solutions.

Proof. Whenp = 1, from condition(H7), we showS : Ka1 −→ Ka1 ⊆ Ka1.
By using the Schauder fixed point theorem, we show that BVP (1.1) – (1.2) has
at least one fixed pointy1 ∈ Ka1. Whenp = 2, it is clear that Theorem3.1holds
( with c1 = a2). Then we can obtain BVP (1.1) – (1.2) has at least three positive
solutionsy1, y2 and y3, such that‖y1‖ < a1, h(y2) > b1, ‖y3‖ > a1, with
h(y3) < b1. Following this way, we finish the proof by the induction method.
The proof is completed.

If the casen = 2, similar to the proof of Theorem3.1, we obtain the follow-
ing result.

Corollary 3.3. Assume that there exist constantsa, b, c such that0 < a < b <
c ·min

{
σ, m

M

}
and satisfy

(H9) f(k, y) ≤ c
M

, (k, y) ∈ [0, T + n− 1]× [0, c],
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(H10) f(k, y) < a
M

, (k, y) ∈ [0, T + n− 1]× [0, a],

(H11) f(k, y) ≥ b
m

, (k, y) ∈ [ξ, T + n− 1]× [b, b
σ
].

Then BVP (1.1) – (1.2) has at least three positive solutionsy1, y2 and y3,
satisfying (3.1) and (3.2).

Finally, we give an example to illustrate our main result.

Example 3.1. Consider the following second order third point boundary value
problem

(3.6) ∆2y(k − 1) + f(k, y) = 0, k ∈ N1,6,

(3.7) y(0) = 0, y(7) =
7

9
y(3),

wheref(k, y) = 100
k+100

a(y), and

a(y) =


1

720
+ sin8 y, if y ∈

[
0, 1

30

]
;

1
720

+ 6
(
y − 1

30

)
+ sin8 y, if y ∈

[
1
30

, 3
]
;

1
720

+ 89
5

+ sin2(y−3)
2

+ sin8 y, if y ∈ [3, 360].

ThenT = 6, n = 3, α = 7
9

< 1, T + 1 − αn = 14
3

> 0. Then the conditions
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(H1), (H2) are satisfied, and the function

G(k, l) =
3

14



l(42−2k)
9

, l ∈ N1,k−1

⋂
N1,2;

3l(7−k)+7(k−l)
3

, l ∈ N3,k−1;

k(42−2l)
9

, l ∈ Nk,2;

k(7− l), l ∈ Nk,6

⋂
N3,6,

is the Green’s function of the problem−∆2y(k − 1) = 0, k ∈ N1,6 with (3.7).

Thus we can computem = 27
2
, M = 18, m̃ = 9

7
, M̃ = 18

7
, M1 = 2

9
, M2 = 9,

σ = 1
81

< m
M

= 3
4
. We choose thata = 1

35
, b = 1

10
, c = 360, consequently,

f(k, y) =
100

k + 100
a(y)

≤ a(y) ≤


1

720
+ 1 < 20 = c

M
, (k, y) ∈ [0, 7]×

[
0, 1

30

]
;

1
720

+ 6
(
3− 1

30

)
+ 1 < 20 = c

M
, (k, y) ∈ [0, 7]×

[
1
30

, 3
]
;

1
720

+ 89
5

+ 3
2

< 20 = c
M

, (k, y) ∈ [0, 7]× [3, 360].

Thus
f(k, y) ≤ c

M
, (k, y) ∈ [0, 7]× [0, 360];

and

f(k, y) ≤ 1

720
+ sin8 y <

1

630
=

a

M
, (k, y) ∈ [0, 7]×

[
0,

1

35

]
;
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f(k, y) ≥ 100

107

[
1

720
+ 6

(
1

10
− 1

30

)
+ sin8 y

]
≥ 1

135
=

b

m
,

(k, y) ∈ [3, 7]×
[

1

27
, 3

]
.

That is to say, all the conditions of Corollary3.3are satisfied. Then the bound-
ary value problem (3.6), (3.7) has at least three positive solutionsy1, y2 andy3,
such that

y1(k) <
1

35
, for k ∈ N7, y2(k) >

1

27
, for k ∈ N3,7,

and

max
k∈N1,7

y3(k) >
1

35
, for k ∈ N7 with min

k∈N3,7

y3(k) <
1

27
.
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