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1. INTRODUCTION

In [8] the author studied sensitivity analysis for quasivariational inclusions using the resol-
vent operator technique. Resolvent operator techniques have been frequently applied to a broad
range of problems arising from several fields, including equilibria problems in economics, opti-
mization and control theory, operations research, and mathematical programming. In this paper
we intend to present the sensitivity analysis fdr, 7)—monotone quasivariational inclusions
involving relaxed cocoercive mappings. The notior 4f»)—monotonicity [8] generalizes the
notion of A— monotonicity in [12]. The obtained results generalize a wide range of results
on the sensitivity analysis for quasivariational inclusions, including [2] — [5] and others. For
more details on nonlinear variational inclusions and related resolvent operator techniques, we
recommend the reader [1] =]12].

2. (A,n)-MONOTONICITY

In this section we explore some basic properties derived from the not{eh gj —monotonicity.
Letn : X x X — X be(7)—Lipschitz continuous, that is, there exists a positive constan
such that

In(u,v)|| < 7ljlu— | Vu,veX.
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2 RAM U. VERMA

Definition 2.1. Letn : X x X — X be a single-valued mapping, and et : X — 2% be a
multivalued mapping oX. The map)/ is said to be:

() (r,n)-stronglymonotone if
(w* —v*, n(u,v)) > rllu—v|? V(u,u*), (v,v*) € Graph(M).
(i) (r,n)-stronglypseudomonotone if
(v, n(u,v)) =0
implies
(w*,n(u,v)) > r|lu—v|? V(u,u"), (v,v*) € Graph(M).
(iii) (n)-pseudomonotonié
(v*, 7(u,v)) >0
implies
(u*,n(u,v)) >0 V(u,u"), (v,v*) € Graph(M).
(iii) (m,n)-relaxedmonotone if there exists a positive constansuch that
(w* —v*,n(u,v)) > (—m)|ju —v|? V(u,u"), (v,v*) € Graph(M).

Definition 2.2. A mappingM : X — 2% is said to be maximalmn, n)-relaxedmonotone if

(i) M is (m,n)-relaxedmonotone,

(i) For (u,u*) € X x X, and

(' = v n(u,v)) = (=m)llu—v|*  ¥(v,v") € Graph(M),
we haveu* € M (u).

Definition 2.3. Let A : X — X andn : X x X — X be two single-valued mappings. The
mapM : X — 2% is said to bg A, n)-monotonef

(i) M is (m,n)-relaxedmonotone

(i) R(A+pM)= X forp>0.

Alternatively, we have

Definition 2.4. Let A : X — X andn : X x X — X be two single-valued mappings. The
mapM : X — 2% is said to bg A, n)-monotonef

(i) M is (m,n)-relaxedmonotone

(i) A+ pM is (n)-pseudomonotorfer p > 0.

Proposition 2.1.Let A : X — X be an(r, n)-strongly monotone single-valued mapping and let
M : X — 2% be an(A),n)-monotone mapping. TheW is maximal(m, n)-relaxed monotone
for0 <p< .

Proposition 2.2. Let A : X — X be an(r, n)-strongly monotone single-valued mapping and
let M : X — 2% be an(A4,n)-monotone mapping. Thenl + pM ) is maximal(n)-monotone
for0 <p< .

Proof. SinceA is (r, n)-stronglymonotone and/ is (A, n)-monotoneijt implies thatA + pM
is (r — pm,n)-stronglymonotone. This in turn implies that + pM is (n)-pseudomonotone,
and hencel + pM is maximal(n)-monotonaunder the given conditions. O

Proposition 2.3.LetA : X — X be an(r, n)-strongly monotone mapping and et : X — 2%
be an(A, n)-monotone mapping. Then the operatar+ pM )~ is single-valued.
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Definition 2.5. Let A : X — X be an(r, n)-stronglymonotone mapping and I8t : X — 2%
be an(A, n)-monotonemapping. Then the generalized resolvent operdﬁé{ X - Xis
defined by
Tpia(u) = (A+ pM) ™ (u).
Furthermore, we upgrade the notions of the monotonicity as well as strong monotonicity in
the context of sensitivity analysis for nonlinear variational inclusion problems.
Definition 2.6. The mapl’ : X x X x L — X is said to be:
() Monotone with respect tal in the first argument if

(T(x,u, \) — T(y,u,\), A(x) — A(y)) >0 V(z,y,u,\) € X x X x X x L.
(i) (r)-stronglymonotone with respect td in the first argument if there exists a positive
constant- such that
(T(x,u,\) — T(y,u,\), A(x) — A(y)) > (r)||z — y|? V(z,y,u,A\) € X x X x X x L.

(iii) (v, «)-relaxed cocoercive with respect tin the first argument if there exist positive
constantsy anda such that

(T(z,u,\) = T(y,u,A), Alx) = A(y)) = =T (2) = TW)II* + allz — y]*

V(z,y,u,\) € X x X x X x L.
(iv) (v)-relaxed cocoercive with respect tbin the first argument if there exists a positive
constanty such that

(T(w,u,A) = T(y,u, \), A(z) — A(y)) > —[|IT(z) = T(y)|*
V(z,y,u,\) € X x X x X x L.

3. RESULTS ON SENSITIVITY ANALYSIS

Let X denote a real Hilbert space with the nofm || and inner product:,-). Let N :
X x X x L — X be anonlinear mapping aid : X x X x L — 2% be anA-monotonanapping
with respect to the first variable, whefeis a nonempty open subset &f. Furthermore, let
n: X x X — X be anonlinear mapping. Then the problem of finding an elementX for a
given elemenff € X such that

(3.1) f € N(u,u, \) + M (u,u, \),

where\ € L is the perturbation parameter, is called a class of generalized strongly monotone
mixed quasivariational inclusion (abbreviated SMMQV]1) problems.
The solvability of theSM M QV I problem(3.1]) depends on the equivalence betwégn))
and the problem of finding the fixed point of the associated generalized resolvent operator.
Note that if M is (A, n)-monotonethen the corresponding generalized resolvent operator
J)% in first argument is defined by

(3.2) TV (W) = (A4 pM () (W) Vue X,
wherep > 0 and A is an(r, n)-stronglymonotone mapping.

Lemma 3.1. Let X be a real Hilbert space, and lef : X x X — X be a(r)-Lipschitz
continuous nonlinear mapping. Let : X — X be (r,n)-strongly monotone, and le¥/ :

X x X x L — 2% be(A,n)-monotone in the first variable. Then the generalized resolvent
operator associated with/ (-, y, ) for a fixedy € X and defined by

T ") = (A4 pM (g N) M) Vue X,
is (—=)-Lipschitz continuous.

r—pm
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Proof. By the definition of the generalized resolvent operator, we have

J (A w)) €3 (),

and

s

Lo A (B@)) €M (B500) vavex

Given M is (m, n)-relaxed monotone, we find

1 , ' ' .
; <u -V — (A (J;])\,/[A( YA) (u)) — A <Jé\,/[A( YsA) (U))) .1 <Jé\,/[A( Y5\ (U), J;\?A( YsA) (U)>>
2
> (=m) || 724V w) = V)|
Therefore,
é yx)( ) — Jé\/[A( y)\)(U>H
> <u_v 77( JM( yx) ), pA( y)\)(v))>
> (A (RE0 @) = A (2 @) o (B w), SV @)
2
_ (pm) ’ ‘];\,/{4( vy,A)(u) . Jé\ﬁ ,y,)\)(v)H
2
> (= pm) | 25 () = 7 )
This completes the proof. B

Lemma 3.2. Let X be areal Hilbert space, lett : X — X be(r,n) — strongly monotone, and
let M : X x X x L — 2% be(A),n—monotone in the first variable. Let: X x X — X be

a (1) — Lipschitz continuous nonlinear mapping. Then the following statements are mutually
equivalent:

(i) Anelement: € X is a solution to(3.1)).
(i) The map& : X x L — X defined by

G(u,\) = IV (A(u) — pN (u,u, A) + pf)
has a fixed point.

Theorem 3.3. Let X be a real Hilbert space, and lef : X x X — X be a(7)-Lipschitz
continuous nonlinear mapping. Let: X — X be(r, n)-strongly monotone angk)-Lipschitz
continuous, and lef/ : X x X x L — 2% be (A,n)-monotone in the first variable. Let
N : X x X x L — X be(v,a)-relaxed cocoercive (with respect t) and (3)-Lipschitz
continuous in the first variable, and I&f be (u:)-Lipschitz continuous in the second variable.
If, in addition,

@3) |V w) = D) < ollu—oll Vo) € X x X x L,
then
(3.4) |G (u, \) — G(v, )| < 0|lu— v V(u,v,\) € X x X x L,
where

0= p—— [\/32—2pa+2pﬁ27+p2ﬁ2+pu +d<1,
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_(a=yB)r? —rlpr +m(1 = 8)](1 - )
P = (ur+m(I =)

Vi@ =7 = r(ur + m(1 —0)(1 — )2 - B
32— (ur —m(1 —9))?
B = [3* — (ur +m(1 — 6))})(s*r* — r2(1 - §)?),

<

9

for
ala =87 > r(pr +m(1 = 6))(1-6) + VB,
B>ur+m(l—95),0<d<1.

Consequently, for each € L, the mapping&(u, A) in light of has a unique fixed point
z(A). Hence, in light of Lemn{a3.2(\) is a unique solution t@3.1). Thus, we have

G(z(M\),\) = z(N).
Proof. For any elementu, v, \) € X x X x L, we have
Glu,A) = T4 "V (A(u) = pN(u,u, ) + pf ),
G(v,A) = L4V (A() = pN(v,v,\) + pf).
It follows that
|G (u, A) = G(v, A

= | A ) = pN (s, )+ pf) = TV (AW) = pN (00,0 + )|

< [V Af) = pN G X) + o) = TV (A) = pN (0,0, 0) + pf)|

[ RE N AW) = pN (.0 X) + pf) = LKV AW) = pN (0,0 0) + )|
< oA Gw) = AG) = p(N (. 2) = N(osw )|+ O = o]
< o A — AQ) = p(N (s X) = N(w, 0, )]

+ lp(N (v, u, A) = N (v, 0, ))[] + 6f[u = w].

The (v, a)-relaxed cocoercivity angl3)-Lipschitzcontinuity of N in the first argument imply
that

[A(u) = A(v) = p(N(u,u, A) = N (v, u, \))|?
= || A(u) = A()[I* = 2p(N (u, u, ) = N (v, u, A), A(u) — A(v))
+ p? [N (u, u, \) = N(v,u, A
< (s* = 2p0+ 2p3%y + p° ) [Ju — o]
On the other hand, thig:)-Lipschitz continuity of N in the second argument results
(N (v, u, A)) = N(v,0, )| < plfu —vl|.
In light of above arguments, we infer that

(3.5) |G (u, A) = G(v, M) < Oflu— o],
where
-
0= ———— [\/52—2p0z+2p627+p262+pu +0<1.
(r—pm)
Sinced < 1, it concludes the proof. O
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Theorem 3.4.Let X be a real Hilbert space, lefl : X — X be (r, n)-strongly monotone and
(s)-Lipschitz continuous, and I8t/ : X x X x L — 2% be(A, n)-monotone in the first variable.
LetV : X x X x L — X be(y, «a)-relaxed cocoercive (with respect &) and (/3)-Lipschitz
continuous in the first variable, and I&f be (1:)-Lipschitz continuous in the second variable.
Furthermore, let) : X x X — X be(r)-Lipschitz continuous. In addition, if

|

IV w) = D )| < 8=l Ve A) € X x X x L,

then
(3.6) |G (u, A) = G(v, N)|| < 0llu— v Y(u,v,\) € X x X x L,
where
— [\/32—2p&+2pﬁ2’y+p2ﬁ2+pu +0 <1,
T —pm
(=97 — rlpT + m(1 - §)](1 - 9) ’
B (pr +m(1 = 0)
_ Ve =872 —r(pr +m(1 = 0)(1 — )]’ — B
52 = (ur = m(1 = 0))? |
B =8 = (47 +m(1 = 8))’)(s’r* = r*(1 = 5)?),
for

(a0 — B 7% > r(ur +m(1 —0))(1 —6) + VB,
B>pur+m(l—10),0<d<L.
If the mappings\ — N(u,v,\) and\ — Jé‘ﬁ"“’”(w) both are continuous (or Lipschitz
continuous) fron to X, then the solutiorr(\) of (3.1]) is continuous (or Lipschitz continuous)
from L to X.

Proof. From the hypotheses of the theorem, for any* € L, we have
[2(A) = 2(A) || = [|G(2(A), A) = G(=(X%), A) |
< [G(2(A), A) = G(A), M + 1G(2(A7), A) = G(=(A7), A7)
< Oll2(A) = 2(A)] + 1G(2(A7), A) = G(z(A7), ).
It follows that
[G(2(A7), A) = G(z(A"), M)
T OV AGEO) = pN(2(X), 2(X7), )

P

P

— IO AEN) = PN (), 20, X))

IN

YOOV (A(A) = pN (2(A*), 2(X7), \)

ICFOINAL ) = pN ), 200, X))
[TV AGO) — pN (), 20, 2|

= TN A = pN (), 20, 0)|
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T * * * * *
< INGO),2(0), 4) = N, 2(0), X
TN ) — gV (), 20, 4
= IPINI GO0 = pN (), 20, 3|
Hence, we have
* T * * * * *
200 = 20| £ (S IVE), 200, 4) = NGO, 200, 1))
1 S Z(A* * * * *
1 ||V O = pN ), 20, )
= D) = pN (), 20, X)) |
This completes the proof. O
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