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Abstract

Sensitivity analysis for relaxed cocoercive variational inclusions based on the
generalized resolvent operator technique is discussed The obtained results are
general in nature.
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In [8] the author studied sensitivity analysis for quasivariational inclusions us-
ing the resolvent operator technique. Resolvent operator techniques have been
frequently applied to a broad range of problems arising from several fields, in-
cluding equilibria problems in economics, optimization and control theory, op-
erations research, and mathematical programming. In this paper we intend to
present the sensitivity analysis fof, ) —monotone quasivariational inclusions
mvolvmg relaxed cocoercive mappings. The notlomﬂfn)—monotonlcny Bl Generalized (A, 7)— Resolvent
generalizes the notion of— monotonicity in [L7]. The obtained results gen- Operator Technique and
eralize a wide range of results on the sensitivity analysis for quasivariational Senstvity Analysie for Relaxed
inclusions, includingf] — [5] and others. For more details on nonlinear varia- Inclusions

tional inclusions and related resolvent operator techniques, we recommend the

reader []—[17].
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In this section we explore some basic properties derived from the notion of
(A, n)—monotonicity.Letn : X x X — X be(r)—Lipschitz continuous, that
is, there exists a positive constant- 0 such that

In(u,v)|| < 7lju— v Vu,ve X.

Definition 2.1. Letn : X x X — X be a single-valued mapping, and let
M : X — 2% be a multivalued mapping ol. The map)/ is said to be: Generalized (A, 7)— Resolvent

Operator Technique and
Sensitivity Analysis for Relaxed

0] (T, n)-strongly monotone if Cocoercive Variational
Inclusions

(' =" () = rlu—of® V(wu), (v,0%) € Graph(M).

Ram U. Verma

(i) (r,n)-strongly pseudomonotone if

Title Page
<U ,n(u,v)} =0 Contents
implies <« >
<u*an<u7v)> Z THU_U”Q V<U7U*)7(U7U*) € GT’(Iph(M) < 4
) Go Back
(iii) (n)-pseudomonotone if
(v*, 7(u,v)) >0 Close
implies Qi
Page 4 of 17

(u*,n(u,v)) >0 V(u,u"), (v,v*) € Graph(M).
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(iii) (m,n)-relaxed monotone if there exists a positive constarsuch that

(w* — v, n(u,v)) > (=m)|ju — v|? V(u,u"), (v,v*) € Graph(M).

Definition 2.2. A mappingM : X — 2% is said to be maximalmn, n)-relaxed
monotone if

(i) M is (m,n)-relaxed monotone,
(i) For (u,u*) € X x X, and

(u* — v, n(u,v)) > (—m)|ju —v|? V(v,v*) € Graph(M),
we haveu* € M (u).

Definition 2.3. Let A : X — X andn : X x X — X be two single-valued
mappings. The map/ : X — 2% is said to bg( A, n)-monotone if

(i) M is (m,n)-relaxed monotone
(i) R(A+ pM) = X forp> 0.
Alternatively, we have

Definition 2.4. Let A : X — X andn : X x X — X be two single-valued
mappings. The map/ : X — 2% is said to bg( A, n)-monotone if

(i) M is (m,n)-relaxed monotone

(i) A+ pM is (n)-pseudomonotone for> 0.

Generalized (A,n)— Resolvent
Operator Technique and
Sensitivity Analysis for Relaxed
Cocoercive Variational
Inclusions

Ram U. Verma

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 5 of 17

J. Ineq. Pure and Appl. Math. 7(3) Art. 83, 2006

httn/itinarm viit addi a1


http://jipam.vu.edu.au/
mailto:verma99@msn.com
http://jipam.vu.edu.au/

Proposition 2.1. Let A : X — X be an(r, n)-strongly monotone single-valued
mapping and let\/ : X — 2% be an(A),n)-monotone mapping. TheW is
maximal(m, n)-relaxed monotone fdr < p < =.

Proposition 2.2. Let A : X — X be an(r, n)-strongly monotone single-valued
mapping and lefi/ : X — 2% be an(4, n)-monotone mapping. Theér+pM )
is maximal(n)-monotone fob < p < =.

Proof. Since A is (r, n)-stronglymonotone andV/ is (A, n)-monotonejt im-

plies thatA + pM is (r — pm,n)-stronglymonotone. This in turn implies that Generalized (A, 7)— Resolvent
A+ pM is (n)-pseudomonotonend henceld + pM is maximal(n)-monotone Seniﬁf.{i“/i%l@‘;l” Ifglrjiegged
under the given conditions. O Cocoercive Variational

Inclusions
Proposition 2.3. Let A : X — X be an(r,n)-strongly monotone mapping
and letM : X — 2% be an(4,n)-monotone mapping. Then the operator
(A+ pM)~!is single-valued.

Ram U. Verma

Title Page
Definition 2.5. Let A : X — X be an(r, n)-strongly monotone mapping and let p——
M : X — 2% be an(A, n)-monotone mapping. Then the generalized resolvent
operator./), : X — X is defined by <« >
M -1 | >
T (u) = (A + pM) ™ (w).
Go Back
Furthermore, we upgrade the notions of the monotonicity as well as strong Close

monotonicity in the context of sensitivity analysis for nonlinear variational in-
clusion problems. Quit
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(i) Monotone with respect td in the first argument if

V(z,y,u,A\) € X x X x X x L.

(i) (r)-strongly monotone with respect tbin the first argument if there exists
a positive constant such that

(T(,u,\) = T(y,u, A), A(z) — A(y)) = (r)llx — y|”
V(z,y,u,A\) € X x X x X x L.

(iii) (v, «)-relaxed cocoercive with respect tbin the first argument if there
exist positive constantsanda such that

(T(z,u, \) =T(y,u, \), A(x) = A(y)) > || T(z) = T(y)|* +allz —y|?
V(z,y,u,\) € X x X x X X L.

(iv) ()-relaxed cocoercive with respecttoin the first argument if there exists
a positive constant such that

(T(x,u,\) = T(y,u,\), A(x) — A(y)) = =T (x) = T(y)II*

V(z,y,u,A\) € X x X x X x L.

Generalized (A,n)— Resolvent
Operator Technique and
Sensitivity Analysis for Relaxed
Cocoercive Variational
Inclusions
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Let X denote a real Hilbert space with the noffa| and inner product;, -) . Let
N : X x X x L — X be anonlinear mapping arld : X x X x L — 2% be an
A-monotonanapping with respect to the first variable, whérés a nonempty
open subset oK. Furthermore, let) : X x X — X be a nonlinear mapping.
Then the problem of finding an element X for a given elemenf € X such
that

Generalized (A, n)— Resol
(3.1) f € N(u,u, N) + M(u,u, A),  Operator Toohmaueand
Sensitivity An_alysis f‘or‘ReIaxed
where\ € L is the perturbation parameter, is called a class of generalized Cocoe[ﬁzﬁs‘i’ggf“ona'
strongly monotone mixed quasivariational inclusion (abbreviated SMMQVI)
problemS. Ram U. Verma
The solvability of theSM M QV I problem(3.1) depends on the equivalence
between(3.1) and the problem of finding the fixed point of the associated gen- Title Page
eralized resolvent operator. FES—
Note that if M is (A, n)-monotonethen the corresponding generalized re-
solvent operator)’, in first argument is defined by 4 dd

, < 4
(3.2) Ty w) = (A+pM(,y) (W) Vue X,

’ Go Back
wherep > 0 and A is an(r, n)-stronglymonotone mapping. Close
Lemma 3.1. Let X be a real Hilbert space, and let: X x X — X be a(r)- Quit
Lipschitz continuous nonlinear mapping. Lét: X — X be (r, n)-strongly Page 8 of 17
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variable. Then the generalized resolvent operator associated Withy, \)

for a fixedy € X and defined by

To " () = (A4 pM(y, V) M) Vue X,

P

r

is (;=;)-Lipschitz continuous.

Proof. By the definition of the generalized resolvent operator, we have

J (= A Q) 0 (),

and

1 (U 4 (J;‘ﬁ*y’”(v)» eM (JfA(wy,/\) (v))

Vu,ve X.
i

Given M is (m, n)-relaxed monotone, we find

1 <u o (A <JFJ)\’4A(~,y,>\) (u)) — A <J%§”y’)\) (v))) )

p
M(-y,\ M(-y,\
n (I ), Y )
2
M(-y,\ M-y,
> (=m) | AV ) = AV o)
Therefore,
M(-y,\ M(-y,\
llu = oll |73V @) = SV )|

Generalized (A,n)— Resolvent
Operator Technique and
Sensitivity Analysis for Relaxed
Cocoercive Variational
Inclusions
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> (u=v,n (LU @, LAV ) )

> (AR w) = A (LAY @) o0 (S ), SV W) )

2
= (om) | A"V () = LAV )|
2
M (- y,A M (- y,A
> (r = pm) |5V ) = AV @)
This completes the proof. m

Lemma 3.2.Let X be areal Hilbert space, lett : X — X be(r,n)—strongly
monotone, and led/ : X x X x L — 2% be (A),p—monotone in the first
variable. Letn : X x X — X be a(r) — Lipschitz continuous nonlinear
mapping. Then the following statements are mutually equivalent:

(i) Anelement: € X is a solution to(3.1).
(i) Themaps : X x L — X defined by

Glu,N) = J5 "V (A(u) = pN(u,u, ) + pf)

p

has a fixed point.

Theorem 3.3.Let X be a real Hilbert space, and let: X x X — X be a(r)-
Lipschitz continuous nonlinear mapping. Lét: X — X be (r, n)-strongly
monotone ands)-Lipschitz continuous, and le¥/ : X x X x L — 2% be
(A, n)-monotone in the first variable. LéY : X x X x L — X be (v, a)-
relaxed cocoercive (with respect #) and (/3)-Lipschitz continuous in the first
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variable, and letN be (u)-Lipschitz continuous in the second variable. If, in
addition,

(3.3) HJM< N () — Jjﬁ'v“’”(w)H <Sllu—v|  V(u,u,\) € Xx X xL,
then

(3.4) ||G(u,A) — G(v,N)| < 8||lu— v V(u,v,A) € X x X x L,
where

0= [\/32—2pa+2p527+p2ﬁ2+pu] +0 <1,

r—pm

(o= BT = rlpr +m(1 = 8))(1 - 4) ‘
G2 — (pr +m(1—0))?
VIla =37 —r{ur + m( =) —n)P — B
52_(’u7__m(1_5))2 )
B =[3*— (ur + m(1 —0))*(s*7* — r*(1 — 6)?),

<

for
ala —vBH)72 > r(pr +m(1 — ) (1 —6) + \/E,
B>pur+m(l—190),0<d<1.

Consequently, for each € L, the mappingG(u, A) in light of (3.4) has a
unique fixed point(\). Hence, in light of Lemma 2, z(\) is a unique solution
to (3.1). Thus, we have

Generalized (A,n)— Resolvent
Operator Technique and
Sensitivity Analysis for Relaxed
Cocoercive Variational
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Proof. For any elementu, v, \) € X x X x L, we have

Glu, A) = T "V (A(w) = pN (u,u, ) + pf),
G, \) = L3V (A(v) = pN (v, v, 0) + pf ).
It follows that
|G, A) = Gw, V)|
= HJpA “V(Aw) = pN(u,N) + pf) = IV (A@w) = pN (.0, 2) + o)
M(A®w) = pN (i, A) + pf) = TV AE) = pN (0,0,0) + o )|
+\ M (A@) = pN (0,0, 0) + pf) = “”<A<v> — PN (v,0,3) + pf)|
<- _TpmnA(u) — A(v) = p(N(, 0, A) = N(v, 0, )| + dllu = v]
< A = A@) = p(N (0, 3) = N(w,u 2) |
(N (0,1, ) = N(w,0, 1) ] + éllu = v

The (v, a)-relaxed cocoercivity and3)-Lipschitzcontinuity of V in the first
argument imply that

[A(u) = A(v) = p(N (u,u, X) = N (v, u, \))|?

= [[A(u) = A()[1* = 2p(N (u,u, \) = N(v,u,A), A(u) — A(v))
+ %N (u, u, \) — N (v, u, \)||?

< (s* = 2pa+2p5%y + p* %) |lu — v|*.
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On the other hand, thg.)-Lipschitz continuity of N in the second argument
results
||(N(U7 U, )‘)) - N(“a v, )‘))H < ILLHU - UH

In light of above arguments, we infer that

(3.5) 1G(u, ) = G, \)|| < 0f|lu— o],
where
0= B — [\/82 —2pa 4+ 2pB32y + p? 5% + pu| + 9 < 1. Generalized (A,7)— Resolvent
(7“ - pm) Operator Technique and
] . Sensitivity Analysis for Relaxed
Sincef < 1, it concludes the proof. [ Cocoercive Variational

Inclusions
Theorem 3.4.Let X be areal Hilbert space, letl : X — X be(r,n)-strongly
monotone ands)-Lipschitz continuous, and le¥/ : X x X x L — 2% be
(A, n)-monotone in the first variable. L&t : X x X x L. — X be(~, «)-relaxed

Ram U. Verma

cocoercive (with respect td) and(3)-Lipschitz continuous in the first variable, Title Page
and letV be (y)-Lipschitz continuous in the second variable. Furthermore, let Contents
n: X x X — X be(r)-Lipschitz continuous. In addition, if
4 44
M (- u,A M(- v\

’ Jp,A( )(w>_<]p,A( )(w)H §5||U—UH V(U,U,)\) e X ><AXV><L7 < >
fhen Go Back
(3.6) [|G(u,\) — G, N <Ollu—nv||  Y(u,v,\) € X xX xL, Close
where S

13 of 17
9: T_Tpm |:\/$2—2pa+2p527+p252+p1u +5< 1’ Page 3 of
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(@ 9B)7 —rfur + m(1 = )1 - )
5~ (ur = m(1-0)
Vlla =27 = r(pr + m(1 = )L~ n) - B
7= (ur —m(1-0)) |

(ur +m(1 = 8))*)(s*r* —r*(1 = §)?),

<

B =[5 -

for

(a — 872 > r(ur +m(1 —68))(1 —6) + VB,
B>pr+m(l—0),0<0<1.
If the mappings\ — N(u,v,\) and\ — J ( ) both are continu-

ous (or Lipschitz continuous) from to X, then the solutlonz( ) of (3.1) is
continuous (or Lipschitz continuous) fromto X.

Proof. From the hypotheses of the theorem, for any* € L, we have

12(A) = 2(A)l
= [1G(2(A), A) = G(z(X"), A)|
<NGEA),A) = G, M+ 1G((A7), A) = G(z(A), A)|

< Ol[2(A) = 2(A)[| + [|G(2(A7), A) = G(=(A"), A9)].
It follows that

IG(2(A"), A) = G(z(A"), A)|
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TMEFOIN(A(Z(NF)) = pN (2(A7), 2(A), N))

P

< [BEA OV AEOD) = PN ), 20, )

— IO A ) = pN (), (0, 0)|

P

pT
T — pm

|

<

THEEOIN () = pN(2(A), 2(A%), A"))

= DRI = pN ), 20, X))

Hence, we have

* PT * * * N
o)== < S IN GO, 20, )= N ), 200, X))
s [ OON E0) — N 0), 200), 1)

= PRI = N ), 20, X))

This completes the proof. O
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