
Volume 8 (2007), Issue 2, Article 63, 17 pp.

PIECEWISE SOLUTIONS OF EVOLUTIONARY VARIATIONAL INEQUALITIES.
APPLICATION TO DOUBLE-LAYERED DYNAMICS MODELLING OF

EQUILIBRIUM PROBLEMS

MONICA-GABRIELA COJOCARU

DEPARTMENT OFMATHEMATICS & STATISTICS

UNIVERSITY OF GUELPH

GUELPH, ONTARIO N1G 2W1, CANADA

mcojocar@uoguelph.ca
URL: http://www.uoguelph.ca/ mcojocar

Received 12 January, 2007; accepted 13 March, 2007
Communicated by L.-E. Persson

ABSTRACT. This paper presents novel results about the structure of solutions for certain evo-
lutionary variational inequality problems. We show that existence of piecewise solutions is de-
pendant upon the form of the constraint set underlying the evolutionary variational inequality
problem considered. We discuss our results in the context of double-layered dynamics theory
and we apply them to the modelling of traffic network equilibrium problems, in particular to the
study of the evolution of such problems in a neighbourhood of a steady state.
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1. I NTRODUCTION

This paper presents results concerning solution classes for certain evolutionary variational
inequality (EVI) problems. The results are then used in the context of the double-layered dy-
namics (DLD) modelling of certain traffic network problems. The novelty of the results in the
first part of the paper resides in showing how the structure of solutions of certain types of EVI is
a direct consequence of the type of constraint sets involved in their formulation. In the second
part, we use this information in the study of the evolution, in finite-time, from disequilibrium
to equilibrium, of an applied equilibrium problem whose steady states are modelled by an EVI.
Such a study, started in [7], is made possible by the recently introduced theory of double-layered
dynamics. The question of finite-time dynamics is extended here by introducing the concept of
r-strongly pseudo-monotone mappings. The paper contains novel illustrative examples and an
application to traffic network problems which is more detailed than the one in [7].

Evolutionary variational inequalities were first introduced in the 1960’s ([4, 26, 32]), and have
been used in the study of partial differential equations and boundary value problems. They are
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2 MONICA-GABRIELA COJOCARU

part of general variational inequalities theory, a large area of research with important applica-
tions in control theory, optimization, operations research, economics theory and transportation
science (see for example [2, 11, 12, 13, 14, 16, 17, 19, 20, 22, 25, 28, 30] and the references
therein). The form of EVI problems we consider in the present paper represents a unified formu-
lation coming from applied problems in traffic, spatial price and financial equilibrium problems
[11, 12, 13, 14] and were introduced first in [6]. The existence and uniqueness theory for EVI
problems has been studied in many contexts; here we use the result in [13]. In [8] the authors
give a refinement of this existence result showing under what conditions continuous solutions
exist. In [3, 7] the authors present computational procedures for obtaining approximate solu-
tions of an EVI problem of the type considered here.

Building upon the existence results of [13, 8] we show under what conditions solutions to
EVI problems are expected to be piecewise functions. This depends directly upon the form of
the constraint set we work with; in particular, we consider various forms of demand constraints
(piecewise continuous functions, step functions) and draw new conclusions about the type of
solutions in each case.

In [6, 7] the authors introduce double-layered dynamics theory as the natural combination
of the theories of EVI and projected dynamical systems (PDS). PDS theory has started to de-
velop in the context of differential inclusions [18, 10, 1], but was first formalized in [16] on the
Euclidean space and in [20, 5] on arbitrary Hilbert spaces. In essence, DLD consists of associ-
ating to an EVI on the Hilbert spaceL2([0, T ], Rq), an infinite-dimensional PDS, whose critical
points coincide exactly with the solutions of the EVI problem and vice versa. In this paper we
use DLD theory to study the structure of EVI solutions for particular (step) demand functions.
DLD is further used to show how some equilibrium states can be reached in finite time under
suitable conditions.

We recall that variational inequalities theory has been used to formulate, qualitatively an-
alyze, and solve a number of network equilibrium problems [14, 27, 28, 29, 30]. However
DLD theory is also attractive for the modelling and analysis of equilibrium problems because
it allows the study of applications involving two types of time dependency: one represented by
the time-dependent equilibria (that can be predicted for a given problem via EVI theory), and
the other represented by the time-dependent behavior of the application around the predicted
equilibrium curve (obtained via PDS theory). The interpretation of the two timescales in DLD
theory was discussed in [7] and it is further deepened in this paper with the help of what we call
the prediction timescaleandthe adjustment timescale.

The structure of the paper is as follows: in Section 2 we present our results about piecewise
solutions of EVI in the generic context ofLp-spaces and a theoretical example. In Section 3
we give brief introductions to PDS and DLD, and show that step function solutions for EVI are
possible. In Section 4 we discuss the relation between the prediction and adjustment timescales
in DLD theory. We introduce here the concept ofr-strong pseudo-monotonicity with degree
α (which is similar but more general than that of strong pseudo-monotonicity with degreeα
[24, 28, 20]) and we show how this concept is useful in determining when an EVI solution can
be reached in finite-time. Section 5 presents a dynamic traffic equilibrium example following a
computational procedure as in [6] (using an original MAPLE 8 code), illustrating the theoretical
results of the previous sections and their possible consequences for traffic control. We close with
conclusions and acknowledgements in Section 6.

2. PIECEWISE SOLUTIONS OF EVOLUTIONARY VARIATIONAL I NEQUALITIES

Evolutionary variational inequalities were originally introduced by Lions and Stampacchia
[26] and Brezis [4]. In this paper we use an EVI in the form initially proposed in [13] but using
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PIECEWISESOLUTIONS OFEVI A PPLICATION TO DLD M ODELLING 3

the unified framework proposed first in [6, 7]. These EVI come from traffic network problems
and economic equilibrium problems (see [6, 11, 12, 13]) and are presented next. We consider
a nonempty, convex, closed, bounded subset of the reflexive Banach spaceLp([0, T ], Rq) given
by:

(2.1) K =

{
u ∈ Lp([0, T ], Rq) |λ(t) ≤ u(t) ≤ µ(t) a.e. in[0, T ];

q∑
i=1

ξjiui(t) = ρj(t) a.e. in[0, T ], ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}

}
.

Recall that

〈〈φ, u〉〉 :=
∫ T

0

〈φ(u)(t), u(t)〉dt

is the duality mapping onLp([0, T ], Rq), whereφ ∈ (Lp([0, T ], R2q))∗ andu ∈ Lp([0, T ], Rq).
Let F : K → (Lp([0, T ], Rq))∗; the standard form of the EVI we work with is therefore:

(2.2) findu ∈ K such that〈〈F (u), v − u〉〉 ≥ 0, ∀v ∈ K.

Theorem 2.1. If F in (2.2) satisfies either of the following conditions:

(1) F is hemicontinuous with respect to the strong topology onK, and there existA ⊆ K
nonempty, compact, andB ⊆ K compact such that, for everyv ∈ K \ A, there exists
u ∈ B with 〈〈F (u), v − u〉〉 < 0;

(2) F is hemicontinuous with respect to the weak topology onK;
(3) F is pseudo-monotone and hemicontinuous along line segments,

then the EVI problem (2.2) admits a solution over the constraint setK.

For a proof, see [13]. IfF is strictly monotone, then the solution of (2.2) is unique. Another
result about uniqueness of solutions to (2.2) can be found in [7] and we recall it in the next
section.

Remark 2.2. Theorem 2.1 simply states that a measurable solution can be found for an EVI
problem of type (2.2). We show next that this problem admits a piecewise solution, provided
the constraint functionsλ, µ, ρ, satisfyλ, µ ∈ Lp([0, T ], Rq) andρj(t), j ∈ {1, . . . , l}, are
piecewise functions as presented below.

We consider sets

(2.3) K =

{
u ∈ Lp([0, T ], Rq) |λ(t) ≤ u(t) ≤ µ(t) a.e. in[0, T ];

q∑
i=1

ξjiui(t) = ρj(t) a.e. in[0, T ], ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}

}
,

whereρj are given by

ρj(t) =


c1(t), if 0 ≤ t ≤ t1
c2(t), if t1 < t ≤ t2
· · · · · ·
ckj

(t), if tkj−1 < t ≤ tkj
= T

,

cj
n ∈ Lp([tn−1, tn], Rq), for anyn ∈ {1, . . . , kj}
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4 MONICA-GABRIELA COJOCARU

Remark 2.3. Without loss of generality, we can consider that allρj(t) partition the interval
[0, T ] in the same number of subintervals. Otherwise, we consider the set

∆ :=
l⋃

j=1

{0, t1, t2, , tkj−1, T}

and we partition[0, T ] according to the division set∆, possibly rewriting the functionsρj(t).
Therefore, we consider setsK as in (2.3) with

ρj(t) =


c1(t), if 0 ≤ t ≤ t1

c2(t), if t1 < t ≤ t2

· · · · · ·
ck(t), if tk−1 < t ≤ tk = T

,

cj
n ∈ Lp([tn−1, tn], Rq), for anyn ∈ {1, . . . , k}.

Theorem 2.4. AssumeK is of the form (2.3) and assume thatF : K → Lp([0, T ], Rq)∗ is
strictly monotone and continuous. Then EVI (2.2) admits a unique piecewise solution.

Proof. We first prove the result for the case of setsK as in (2.3) wherej := 1. These are
therefore of the form

(2.4) K =

{
u ∈ Lp([0, T ], Rq) |λ(t) ≤ u(t) ≤ µ(t)

and
q∑

i=1

ξ1iui(t) = ρ1(t) a.e. on[0, T ]

}
,

whereξ1i ∈ {0, 1} andρ1 is given by

ρ1(t) =


c1(t), if 0 ≤ t ≤ t1

c2(t), if t1 < t ≤ t2

· · · · · ·
ck(t), if tk−1 < t ≤ tk = T

,

cn ∈ Lp([tn−1, tn], Rq), for anyn ∈ {1, . . . , k}.

For eachn ∈ {1, . . . , k} we consider the following set

Kn := {u |[tn−1,tn]| u ∈ K} which has the property that

Kn ⊆

{
z ∈ Lp([tn−1, tn], Rq) | λ(t) ≤ z(t) ≤ µ(t)

and
q∑

i=1

ξ1izi(t) = cn(t) a.a.t ∈ [tn−1, tn]

}
.

We also consider the evolutionary variational inequalityEV In on the setKn, namely

find u ∈ Kn s.t.
∫ tn

tn−1

〈F (u)(t), v(t)− u(t)〉dt ≥ 0, ∀v ∈ Kn.
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Each of the setsKn is closed, convex and bounded, and the mappingF satisfies Theorem 2.1(3)
onKn. According to this theorem eachEV In has a unique measurable solution. Let us denote
it by u∗n. We then consider the mappingu∗ : [0, T ] → Rq given by:

(2.5) u∗(t) =


u∗1(t), if 0 ≤ t ≤ t1

u∗2(t), if t1 < t ≤ t2

· · · · · ·
u∗k(t), if tk−1 < t ≤ tk = T

.

We show thatu∗ ∈ K. By the definition ofu∗ we see thatλ(t) ≤ u∗(t) ≤ µ(t), and
q∑

i=1

ξ1iu
∗
i (t) = ρ1(t) a.e. on [0, T ].

It remains to show thatu∗ ∈ Lp([0, T ], Rq). This follows from the fact that

µ ∈ Lp([0, T ], Rq) and ||u∗(t)||p ≤ ||µ(t)||p < ∞,

thusu∗ ∈ K.
Suppose now thatu∗ is not a solution of the EVI problem (2.2). Then there existsv ∈ K so

that

〈〈F (u∗), v − u∗〉〉 < 0 ⇐⇒
∫ T

0

〈F (u∗)(t), v(t)− u∗(t)〉dt < 0.

This is further equivalent to

k∑
n=1

∫ tn

tn−1

〈F (u∗n)(t), v(t)− u∗n(t)〉dt < 0.

Let wn := v |[tn−1,tn]; we subsequently get

(2.6)
k∑

n=1

∫ tn

tn−1

〈F (u∗n)(t), wn(t)− u∗n(t)〉dt < 0.

But on each setKn we have thatEV In is solvable and so

(2.7) 〈〈F (u∗n), z − u∗n〉〉 ≥ 0, ∀z ∈ Kn

⇐⇒
∫ tn

tn−1

〈F (u∗n)(t), z(t)− u∗n(t))〉dt ≥ 0, ∀z ∈ Kn.

We note thatwn defined above is an element ofKn, so letz := wn in (2.7). Since we can do
this for eachn ∈ {1, . . . , k}, we get that

(2.8)
k∑

n=1

∫ tn

tn−1

〈F (u∗n)(t), wn(t)− u∗n(t))〉dt ≥ 0, ∀n ∈ {1, . . . , k}.

We see now that (2.6) and (2.8) lead to a contradiction. Henceu∗ ∈ K is a piecewise solution
of EVI (2.2).

Keeping in mind Remark 2.3, the casej > 1 can be shown in a similar manner, by defining,
for eachn ∈ {1, . . . , k}, the set

Kn := {u |[tn−1,tn]| u ∈ K} where
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Kn ⊆

{
z ∈ Lp([tn−1, tn], Rq) | λ ≤ z ≤ µ

and
q∑

i=1

ξjizi(t) = cj
n(t) a.a.t ∈ [tn−1, tn], j ∈ {1, . . . , l}

}
.

�

Next we prove more about the structure of the solutions of an EVI problem (2.2) for the case
of L2([0, T ], Rq).

Corollary 2.5. Assume the hypotheses of Theorem 2.4, wherep := 2, λ, µ are continuous
functions,ρj are piecewise continuous andF is given byF (u)(t) = A(t)u(t) + B(t), where
A(t) is a positive definite matrix for eacht ∈ [0, T ] andA, B are continuous. Then EVI (2.2)
admits a piecewise continuous solution.

Proof. EachEV In has, under the present hypotheses, a continuous solutionu∗n(t). This follows
from [3]. Then by Theorem 2.4 the solution of the EVI (2.2) is piecewise continuous. �

Corollary 2.5 is also important from a computational point of view. We obtain the solution
u∗(t) by computing the piecewise componentsu∗n(t), as shown in [8], or using the computa-
tional procedure in [6].

Example 2.1. Let p := 2, q := 4, T := 90, j := 2 andξji := 1 for i, j ∈ {1, 2}. We set
λ(t) = (0, 0, 0, 0) andµ(t) = (100, 100, 100, 100) for t in [0, 90], hence

K =

{
u ∈ L2([0, 90], R4)|0 ≤ uj

i (t) ≤ 100

a.e. in [0, 90], i ∈ {1, 2}, j ∈ {1, 2}

and
2∑

i=1

uj
i (t) = ρj(t) a.e. in[0, 90], j ∈ {1, 2}

}
,

where

ρ1(t) =

{
2t, if 0 ≤ t ≤ 30

−2t + 220, if 30 < t ≤ 90
, ρ2(t) =

{
t2, if 0 ≤ t ≤ 30

t, if 30 < t ≤ 90
.

We consider:

F
(
u1

1, u
1
2, u

2
1, u

2
2

)
(t)

= (u1
1(t)− 120, u1

2(t)− 120, 2u2
1(t) + u2

2(t)− 330, u2
1(t) + 2u2

2(t)− 330),

F : K → L2([0, 90], R4) and the following EVI:

〈〈F (u), v − u〉〉 ≥ 0, ∀v ∈ K.

We remark thatF : K → L2([0, 90], R4) satisfies the hypotheses of Corollary 2.5. Using a
computational procedure as in [6], we obtain that the unique equilibrium curve of this problem
is given by the piecewise continuous function

u∗(t) =


(
t, t, t2

2
, t2

2

)
, if 0 ≤ t ≤ 30(

−t + 110,−t + 110, t
2
, t

2

)
, if 30 < t ≤ 90.

In the next section we further refine our results by studying the structure of solutions to EVI
(2.2) in the context of double-layered dynamics theory.

J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 63, 17 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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3. DOUBLE -LAYERED DYNAMICS

In essence, EVI problems of the type considered in this paper can be viewed as a 1-parameter
family of a static variational inequality, with parametert. From here on, we consider that
our EVI (2.2) represents the model of an equilibrium problem (as, for example, in [14]). In
this context, the parametert will be taken to mean physical time. Ast varies over[0, T ],
the constraints of the equilibrium problem change, and so the static states describe a curve of
equilibria. Such an equilibrium curve can be of the form (2.5), as in Theorem 2.4. DLD was
introduced in [6, 7] as a unifying tool for deepening the study of an EVI problem with constraint
setsK ⊆ L2([0, T ], Rq).

3.1. PDS. A thorough introduction to both theories and applications of EVI and PDS can be
found in [6]. DLD theory is presented in detail in [7]. In this section we outline only the
necessary theoretical facts in order to insure a self-contained presentation of this work. LetX
be a Hilbert space of arbitrary (finite or infinite) dimension and letK ⊂ X be a non-empty,
closed, convex subset. We assume that the reader is familiar with the concepts oftangent and
normal cones toK at x ∈ K (TK(x), respectivelyNK(x)), andthe projection operator ofX
ontoK, PK : X → K given by||PK(z)− z|| = inf

x∈K
||x− z||.

The properties of projection operators on Hilbert spaces are well-known (see for instance
[33]). The directional Gateaux derivative of the operatorPK is defined, for anyx ∈ K and any
elementv ∈ X, as the limit (for a proof see [33]):

ΠK(x, v) := lim
δ→0+

PK(x + δv)− x

δ
; moreover, ΠK(x, v) = PTK(x)(v).

Let ΠK : K ×X → X be the operator given by(x, v) 7→ ΠK(x, v). Note thatΠK is discontin-
uous on the boundary of the setK. In [15, 21], several characterizations ofΠK are given.

Theorem 3.1. Let X be a Hilbert space andK be a non-empty, closed, convex subset. Let
F : K → X be a Lipschitz continuous vector field andx0 ∈ K. Then the initial value problem

(3.1)
dx(τ)

dτ
= ΠK(x(τ),−F (x(τ)), x(0) = x0 ∈ K

has a unique absolutely continuous solution on the interval[0,∞).

For a proof, see [9, 5]. This result is a generalization of the one in [16], whereX := Rn, K
was a convex polyhedron andF had linear growth.

Definition 3.1. A projected dynamical systemis given by a mappingφ : R+ ×K → K which
solves the initial value problem:

φ̇(τ, x) = ΠK(φ(τ, x),−F (φ(τ, x))), φ(0, x) = x0 ∈ K.

3.2. DLD. Double-layer dynamics consists of intertwining an EVI problem and a PDS as fol-
lows: we letp := 2, X := L2([0, T ], Rq) and we consider setsK ⊆ L2([0, T ], Rq), as given by
(2.1). Further, we consider the infinite-dimensional PDS defined onK by

(3.2)
du(·, τ)

dτ
= ΠK(u(·, τ),−F (u)(·, τ)), u(·, 0) = u(·) ∈ K,

where we assume the following hypothesis:F : K → L2([0, T ], Rq) is strictly pseudo-monotone
and Lipschitz continuous. Note that this hypothesis is in the scope of both Theorems 2.1 and
2.4. The following results hold (see [8] for a proof of the first and see [6] for a proof of the
second):
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Theorem 3.2.
(1) Assuming thatF is strictly pseudo-monotone and Lipschitz continuous, the solutions of

the EVI problem (2.2) are the same as the critical points of PDS (3.2). The converse is
also true.

(2) EVI (2.2) has a unique solution.

DLD theory helps establish the long time behaviour of the applied problem with respect to its
curve of equilibria. This has been done in [7], where infinite-dimensional PDS theory was used
to draw conclusions about the stability of such a curve. Next we use a DLD setting to prove a
new result about the solution structure of an EVI problem.

Theorem 3.3. Assume a setK is as in (2.4), wherep = 2, λ(t) := λ, µ(t) := µ are constant
functions, andρj(t) are step functions. LetF : K → L2([0, T ], R), F (u)(t) = Au(t) + B be
strictly pseudo-monotone and Lipschitz continuous onK. Then the unique solution of EVI (2.2)
is a step function.

Proof. From Corollary 2.5 and Theorem 3.2(2), we have that the unique solution of the EVI
problem (2.2) is of the form:

u∗(t) =



u∗1(t), if 0 ≤ t ≤ t1

u∗2(t), if t1 < t ≤ t2

· · · · · ·

u∗k(t), if tk−1 < t ≤ tk = T

, where eachu∗n is continuous,n ∈ {1, . . . , k}.

From Theorem 3.2(1), we have that this solution curve constitutes the unique equilibrium of
PDS (3.2). Let us now arbitrarily fixn ∈ {1, 2, . . . , k} andt ∈ (tn−1, tn]. We denote byPDSt

the finite-dimensional projected dynamical system given by the flow of the equation:

(3.3)
dw(τ)

dτ
= ΠK(t)(w(τ),−Ft(w(τ))),

where

K(t) :=

{
w := u(t) ∈ Rq | λ ≤ w ≤ µ, and

k∑
i=1

ξjiwi = cj
n, j ∈ {1, . . . , l}

}
and

Ft : K(t) → Rq, given byFt(w) := Aw + B.

DLD theory implies that the unique equilibrium point of this system isu∗n(t). Similarly, choos-
ing t′ ∈ (tn−1, tn] andt 6= t′, the unique equilibrium point ofPDSt′ is u∗n(t′). However, the
constraint setsK(t) andK(t′) coincide, and the mappingsFt andFt′ are the same, hencePDSt

andPDSt′ are given by the same differential equation (3.3). Thereforeu∗n(t) = u∗n(t′). Since
t, t′ were arbitrarily chosen on(tn−1, tn], thenu∗n(t) =constant=: u∗n on the interval(tn−1, tn].
Sincen was also arbitrarily chosen in{1, . . . , k}, the solutionu∗ is a step function. �

4. ADJUSTMENT TO EQUILIBRIA IN DOUBLE -L AYERED DYNAMICS

Recall that we consider an EVI (2.2) as the model of an equilibrium problem. The solution of
this EVI is interpreted as a curve of equilibrium states of the underlying problem over the time
interval [0, T ]. These are all thepotentialequilibrium states the problem can reach. Therefore
we call[0, T ] the prediction timescale.

We further associate to EVI (2.2) a PDS (3.2). By Theorem 3.2, the equilibrium curve is
stationary in the projected dynamics (3.2), henceτ ∈ [0,∞) represents the evolution time of
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the problem from disequilibrium to equilibrium. Therefore we call[0,∞) the adjustment scale.
Our DLD models include the following assumptions:

(1) t, τ represent physical time;
(2) time unit is the same;
(3) time flows forward.

The modelling questions we want to answer here are of the following type: does an equi-
librium problem modelled via DLD reach one of its predicted equilibrium statesin finite time,
starting from an observed initial stateu(t0), at somet0 ∈ [0, T ]?

A first answer to this question was given in [7] (Theorem 4.2), where it is shown that for a
fixed t0, under strong pseudo-monotonicity with degreeα < 2 of Ft0, thePDSt0 (as defined in
(3.3) above) admits a finite-time attractor, namelyu∗(t0). An estimate for the time necessary for
a trajectory of thePDSt0 to reachu∗(t0) is given and is denoted bylt0. In [7], lt0 is interpreted
as an instantaneous adjustment of the dynamics at timet0 to its corresponding equilibrium att0.
This kind of interpretation may be applicable to problems where the adjustment dynamics take
place very rapidly, for example internet traffic problems. Here, in the first subsection below, we
give a new more general time estimate, more readily applicable to the modelling of equilibrium
problems. In the second subsection we use this estimate in the context of the two timescales
(prediction and adjustment).

In this part of the paper we prove a generalization of our result in [7] (see Lemma 4.2 below).
In order to do so, we need to introduce first a new concept, that ofr-strong pseudo-monotonicity
as follows:

Definition 4.1. Let K ⊆ X be closed, convex, whereX is a generic Hilbert space. Let〈〈·, ·〉〉
be the inner product onX andf : K → X a mapping. Then:

(1) f is calledlocally r-strongly pseudo-monotone with degreeα at x∗ ∈ K if, for a given
r > 0, there exists a neighbourhoodN(x∗) ⊂ K of the pointx∗ with the property that
for any pointx ∈ N(x∗)\B[x∗, r], there exists a positive scalarη(r) > 0 so that

〈〈f(x∗), x− x∗〉〉 ≥ 0 =⇒ 〈〈f(x), x− x∗〉〉 ≥ η(r)||x− x∗||α.

(2) f is calledr-strongly pseudo-monotone with degreeα at x∗ ∈ K if the above holds for
all x ∈ K\B[x∗, r].

Remark 4.1.
(1) Definition 4.1 is a generalization of strong pseudo-monotonicity with degreeα at x∗

(first introduced in [20]); strong pseudo-monotonicity with degreeα is itself a general-
ization of the notions of local and global strong monotonicity with degreeα introduced
in [24, 28].

(2) Definition 4.1 is not vacuous; note that any (locally) strongly pseudo-monotone map-
pingf with degreeα atx∗ satisfies Definition 4.1.

(3) There exist mappings satisfyingr-strong pseudo-monotonicity withα at x∗, but which
do not satisfy strong pseudo-monotonicity withα at that point (see our example in
Section 5 and the justification in the Appendix).

We are ready to prove the following:

Lemma 4.2. Assume thatf : K → X satisfies condition (1) (respectively (2)) of Definition 4.1
with degree0 < α < 2, is Lipschitz continuous, and thatx∗ is a critical point of the projected
dynamical system given by−f onK:

dx(τ)

dτ
= ΠK(x(τ),−f(x(τ))).
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Given an initial statex(0) ∈ N(x∗)\B[x∗, r] (respectivelyx(0) ∈ K\B[x∗, r]), the unique
trajectory of the projected system starting atx(0) reaches∂B[x∗, r] after

τ :=
||x(0)− x∗||2−α

X − r2−α

η(r)(2− α)
units of time.

Proof. Assumef to be locallyr-strongly pseudo-monotone with degreeα < 2 atx∗ ∈ K; there
exists a neighbourhoodN(x∗) andη(r) ≥ 0 so that

〈〈f(x∗), x− x∗〉〉 ≥ 0 =⇒ 〈〈f(x), x− x∗〉〉 η(r)||x− x∗||α.

Let x(0) ∈ N(x∗)\B[x∗, r] andx(τ) the unique trajectory of PDS starting atx(0). Assume that

(4.1) ‖x(τ)− x∗‖ − r > 0, ∀τ ≥ 0 =⇒ ‖x(τ)− x∗‖ > r > 0.

This implies that

D(τ) :=
1

2
||x(τ)− x∗||2 > 0, ∀τ > 0.

We have

d

dτ
D(τ) =

〈〈
d

dτ
(x(τ)− x∗), x(τ)− x∗

〉〉
= 〈〈ΠK(x(τ),−f(x(τ))), x(τ)− x∗〉〉
≤ − 〈〈f(x(τ)), x(τ)− x∗〉〉 .

Sincex∗ is an equilibrium point, thenΠK(x∗,−f(x∗)) = 0 ⇔ −f(x∗) ∈ NK(x∗), hence

(4.2) −〈〈f(x∗), x(τ)− x∗〉〉 ≤ 0.

Based on (4.2), from the hypothesis we have that

(4.3) −〈〈f(x(τ)), x(τ)− x∗〉〉 ≤ −η(r)||x(τ)− x∗||α

and so from (4.2) and (4.3) we have that

d

dτ
D(τ) ≤ −η(r)||x(τ)− x∗||α ≤ 0 =⇒ τ 7→ ‖x(τ)− x∗‖ is decreasing.

Following a similar computation as in [7] (proof of Theorem 4.2), integrating from 0 toτ , we
obtain

‖x(τ)− x∗‖2−α ≤ ‖x(0)− x∗‖2−α − τη(r)[2− α].

The last inequality is equivalent to

‖x(τ)− x∗‖ − r ≤
[
‖x(0)− x∗‖2−α − τη(r)[2− α]

] 1
2−α − r,

and we see that our assumption (4.1) is contradicted because we can find a momentτ > 0,
(which we will denote from now on bylr0 to keep a notation consistency with [7]) so that

‖x(τ)− x∗‖ − r ≤ 0,

namely

(4.4) lr0 :=
‖x(0)− x∗‖2−α

X − r2−α

η(r)[2− α]
.

�
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Remark 4.3. The result of Lemma 4.2 is a generalization of the one in Theorem 4.1 in [7]. In
that case, we simply haver = 0 and a strong pseudo-monotone mapping withα < 2, thusx∗ is
a finite-time attractor and the adjustment time of the dynamics from the initial statex(0) to the
equilibriumx∗ is given by

(4.5) l0 :=
||x(0)− x∗||2−α

Rq

(2− α)η
.

We return now to the study of an equilibrium problem modelled with DLD. We assume that
we start observing the problem at somet0 ∈ [0, T ], with initial datau(t0, 0) ∈ K(t0), where

K(t0) =

{
w := u(t0) ∈ Rq | λ(t0) ≤ w ≤ µ(t0),

q∑
i=1

ξjiwi = ρj(t0), j ∈ {1, . . . , l}

}
.

We considerPDSt0 andFt0 : K(t0) → Rq as in (3.3); according to DLD theory, its unique
equilibrium isu∗(t0). Let w(τ) := u(t0, τ) be the solution of thePDSt0 starting atu(t0, 0).
Then Lemma 4.2 implies that: wheneverFt0 is r-strongly pseudo-monotone with degreeα < 2
atu∗(t0), then by (4.4) we have that

(4.6) ‖u(t0, l
r
t0
)− u∗(t0)‖ = r.

However, time passes uniformly on both prediction and adjustment scales. Formula (4.6) indi-
cates thatlrt0 units have passed on the adjustment scale, but none have passed on the prediction
scale. Thus (4.6) makes sense only if there exists∆t > 0 so that

u∗(t0) = u∗(t0 + ∆t) and∆t = lrt0 .

The last formula gives us the following interpretation:

ther-neighbourood of the equilibriumu∗(t0 + ∆t) is reached in finite time starting from the
disequilibrium stateu∗(t0, 0), if lrt0 = ∆t.

Remark 4.4. In the more particular case of a mappingF which is strongly pseudo-monotone
with degreeα < 2 at x∗, keeping in mind (4.5), we have that the equilibriumu∗(t0 + ∆t) is
reached in finite time starting from the disequilibrium stateu∗(t0, 0), if lt0 = ∆t.

In the next section we present a novel traffic network example to illustrate our results.

5. APPLICATION TO TRAFFIC NETWORK EQUILIBRIUM PROBLEMS

In the example below we consider that the demandρ on the network is a piecewise contin-
uous function oft and we illustrate our interpretation of adjustment to the neighbourhood of a
predicted equilibrium state of the network. Such an example represents a novelty for the DLD
applications present in the literature so far. Moreover, in this example we present a new use
of formula (4.6) as follows: if an equilibrium state takes place twice in the time interval[0, T ],
namely in our previous notationu∗(t0) = u∗(t0 + ∆t), then we can determine for which initial
statesu(t0), formula (4.6) takes place. In other words, we can determine from which initial
disequilibrium states the traffic will adjust to (a neighbourhood of) the equilibriumu∗(t0 +∆t).

We consider a traffic network with one origin destination pair having two links (as depicted
in Figure 1) and the following constraint set corresponding to this network configuration

K := {u ∈ L2([0, 110], R2) | 0 ≤ u(t) ≤ 120, u1(t) + u2(t) = ρ1(t) a.a.t ∈ [0, 110]},
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A

B

u1
u2

Figure 1

Figure 2

where

ρ1(t) =



4t, t ∈ [0, 15],

60, t ∈ (15, 20],

3t, t ∈ (20, 40],

120, t ∈ (40, 91],

−t + 211, t ∈ (91, 110].

We consider the time unit to be a minute and the time interval[0, 110] to correspond to 6:30
am - 8:20 am during a weekday. Let the flows on each link be denoted byu1, u2 and the demand
by ρ1 (Figure 2 depicts the demand). We see that during the hight of rush hour, 7:10-8:00 am
(i.e., t ∈ (40, 91]) the demand is highest.

Let us also consider the cost on each link to be given by the mapping

F : K → L2([0, 110], R2), F ((u1, u2)) = (u1 + 151, u2 + 60).

The dynamic equilibria for such a problem are given by the EVI (see also [14, 7])∫ 110

0

〈F (u)(t), v(t)− u(t)〉 dt ≥ 0, ∀v ∈ K.

The mappingF is Lipschitz continuous with constant1 andF (u) := Au + B with A posi-
tive definite; by Corollary 2.5, the unique solution of the above EVI is piecewise continuous;
moreover, by Theorem 3.3, the solution has a constant value over the intervals[15, 20] and
[40, 91]. By the method proposed in [6], implemented with a MAPLE 8 code, we compute an
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Figure 3

approximate solution to be

u∗(t) =



(0, 4t), t ∈ [0, 15],

(0, 60), t ∈ (15, 20],

(0, 3t), t ∈
(
20, 91

3

]
,(

3t−91
2

, 3t+91
2

)
, t ∈

(
91
3
, 40

]
,

(14.5, 105.5), t ∈ (40, 91],(−t+120
2

, −t+302
2

)
, t ∈ (91, 110].

The graph of this solution is presented in Figure 3. We note that the Wardrop equilibrium
conditions are satisfied for this solution, namely all paths with positive flow in equilibrium have
equal minimal costs, as can be seen below:

F (u∗)(t) =



(151, 4t + 60), t ∈ [0, 15],

(151, 120), t ∈ (15, 20],

(151, 3t + 60), t ∈
(
20, 91

3

]
,(

3t+211
2

, 3t+211
2

)
, t ∈

(
91
3
, 40

]
,

(165.5, 165.5), t ∈ (40, 91],(−t+422
2

, −t+422
2

)
, t ∈ (91, 110].

We see here that users prefer the second road to the first, however, during the rush hour peak,
they will use both routes, as they become equally expensive.

So far, the EVI model of this problem has provided the approximate equilibrium curve for the
traffic, given a certain structure of the demand function. In general however, the traffic may be
in disequilibrium, in which case we want to know if/how it will evolve towards a steady state.
This type of question is answered via the DLD model of this network, namely considering the
PDS:

u(t, τ)

dτ
= ΠK(u(t, τ),−F (u)(t, τ)).
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Let t0 ∈ [0, 110] be fixed and consider the projected dynamics att0, PDSt0, given by

dw(τ)

dτ
= ΠK(t0)(w(τ),−Ft0(w(τ))),

where

K(t0) = {u(t) := w ∈ R2 | (0, 0) ≤ (w1, w2) ≤ (120, 120), w1 + w2 = ρ1(t)},

andFt0 : K(t) → R2, Ft0(w) = (w1 + 151, w2 + 60).
We can study whether the traffic approaches a small given neighbourhood of a steady state.

Moreover, as we show below, this has consequences for traffic control, as one could find a flow
distribution at the initial timet0 so that at a later time the traffic will adjust "close enough" to
an equilibrium.

Let t0 := 35 (i.e. 7:05 am) and we have thatu∗(35) = (7, 98) cars/min; but we also note that
there exists∆t := 71 min with the property that

u∗(35) = u∗(35 + ∆t) = u∗(106) = (7, 98).

The mappingFt0=35 is 1-strongly pseudo-monotone with degreeα := 1 andη :=
√

2 atu∗(35)
(see Appendix for a proof). Using formula (4.4), we can find a flow distribution att0 = 35 so
that

l135 = ∆t ⇔ ‖u(35, 0)− u∗(35)‖ − 1√
2

= 71 min =⇒ ‖u(35, 0)− u∗(35)‖ ≈ 71.7.

This means that if att0 = 35 the flow distribution is, for example,u(35, 0) = (79, 26) cars/min,
the traffic could adjust close tou∗(35 + ∆t) = u∗(106) = (7, 98) cars/min after approximately
71 minutes.

5.1. Appendix. We remark that for the setK in our application the following holds: for any
u 6= v ∈ K with u := (u1, u2) andv := (v1, v2), it is always the case thatu1(t) + u2(t) =
v1(t) + v2(t) = ρ1(t). This implies that

(5.1) u1(t)− v1(t) = −(u2(t)− v2(t)), for a.a.t ∈ [0, 110].

This further implies that a pairu 6= v ∈ K satisfiesu1 6= v1 andu2 6= v2 a.a. on[0, 110].

1. We show first thatFt(w) = (w1 + 151, w2 + 60) is strongly pseudo-monotone withα := 1
andη := 1√

2
wheneverw2 ≤ 90, for a.a.t ∈ [0, 91

3
]. Let w, v ∈ K(t) and we evaluate

〈Ft(v), w − v〉 = (v1 + 151)(w1 − v1) + (v2 + 60)(w2 − v2)
by (5.1)

= (v1 − v2 + 91)(w1 − v1).

Then(v1 − v2 + 91)(w1 − v1) ≥ 0 if and only if v1 − v2 + 91 ≥ 0 andw1 − v1 ≥ 0. Now, we
evaluate

〈Ft(w), w − v〉 by (5.1)
= (w1 − w2 + 91)(w1 − v1).

We takeα = 1 and want to findη > 0 so that

(w1 − w2 + 91)(w1 − v1) ≥ η
√

(w1 − v1)2 + (w2 − v2)2
by (5.1)

=
√

2η|w1 − v1|.

Sincew1 ≥ v1 andw 6= v, we can divide the last inequality byw1 − v1 and so

(w1 − w2 + 91) ≥
√

2η.

But w1 ≥ 0 from the hypothesis, so ifw2 ≤ 90 =⇒ −w2 ≥ −90, then we findη := 1√
2
.
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2. Here we show that choosingr = 1, Ft=35(w) := (w1 + 151, w2 + 60) is 1-strongly pseudo-
monotone with degreeα = 1 andη(1) =

√
2 atu∗(35) = (7, 98). We have that

〈Ft((7, 98)), (w1 − 7, w2 − 98)〉

= 〈(158, 158), (w1 − 7, w2 − 98)〉 by (5.1)
= 0 : Ft (7, 98) , (w1 − 7, w2 − 98) ,

therefore

〈Ft(w), (w1 − 7, w2 − 98)〉 by (5.1)
= (w1 − w2 + 91)(w1 − 7)

w1+w2=105
= 2(w1 − 7)2.

We findη(1) > 0 so that

2|w1 − 7|2 ≥
√

2η(1)|w1 − 7| =⇒ η(1) := min
{√

2|w1 − 7|
}

=
√

2r =
√

2.

Note thatF35 is not strongly pseudo-monotone withα < 2 atu∗(35).

6. CONCLUSIONS AND ACKNOWLEDGEMENTS

In this paper we presented new results about the solution form of an EVI (2.2) subject to
various types of constraint sets. These results have consequences for the study and modelling
of equilibrium problems, in particular here, traffic network equilibrium problems. We have
further demonstrated how the recently developed theory of double-layered dynamics, which
combines evolutionary variational inequalities and projected dynamical systems over a unified
constraint set, can be used for the modelling, analysis, and computation of solutions to time-
dependent equilibrium problems; concretely, we presented here a novel interpretation of the
timescales present in a DLD model of an equilibrium problem, more general than the one in
[7]. We also answered questions regarding the finite-time adjustment to equilibrium states for
traffic network problems by the introduction of a new type of monotonicity. This type, called
r-strong pseudo-monotonicity, implies a stability property of a small neighbourhood around an
equilibrium of a projected dynamical system.
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