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ABSTRACT. This paper presents novel results about the structure of solutions for certain evo-
lutionary variational inequality problems. We show that existence of piecewise solutions is de-
pendant upon the form of the constraint set underlying the evolutionary variational inequality
problem considered. We discuss our results in the context of double-layered dynamics theory
and we apply them to the modelling of traffic network equilibrium problems, in particular to the
study of the evolution of such problems in a neighbourhood of a steady state.
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1. INTRODUCTION

This paper presents results concerning solution classes for certain evolutionary variational
inequality (EVI) problems. The results are then used in the context of the double-layered dy-
namics (DLD) modelling of certain traffic network problems. The novelty of the results in the
first part of the paper resides in showing how the structure of solutions of certain types of EVI is
a direct consequence of the type of constraint sets involved in their formulation. In the second
part, we use this information in the study of the evolution, in finite-time, from disequilibrium
to equilibrium, of an applied equilibrium problem whose steady states are modelled by an EVI.
Such a study, started inl[7], is made possible by the recently introduced theory of double-layered
dynamics. The question of finite-time dynamics is extended here by introducing the concept of
r-strongly pseudo-monotone mappings. The paper contains novel illustrative examples and an
application to traffic network problems which is more detailed than the oné in [7].

Evolutionary variational inequalities were firstintroduced in the 1960's ([4, 26, 32]), and have
been used in the study of partial differential equations and boundary value problems. They are
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2 MONICA-GABRIELA COJOCARU

part of general variational inequalities theory, a large area of research with important applica-
tions in control theory, optimization, operations research, economics theory and transportation
science (see for example [2,111) 12] 13,[14,[16] 17, 19, 20, 22, 25,128, 30] and the references
therein). The form of EVI problems we consider in the present paper represents a unified formu-
lation coming from applied problems in traffic, spatial price and financial equilibrium problems
[11,[12,13] 14] and were introduced first in [6]. The existence and uniqueness theory for EVI
problems has been studied in many contexts; here we use the result in [13]. In [8] the authors
give a refinement of this existence result showing under what conditions continuous solutions
exist. In [3,[7] the authors present computational procedures for obtaining approximate solu-
tions of an EVI problem of the type considered here.

Building upon the existence results of [13, 8] we show under what conditions solutions to
EVI problems are expected to be piecewise functions. This depends directly upon the form of
the constraint set we work with; in particular, we consider various forms of demand constraints
(piecewise continuous functions, step functions) and draw new conclusions about the type of
solutions in each case.

In [6l, [7] the authors introduce double-layered dynamics theory as the natural combination
of the theories of EVI and projected dynamical systems (PDS). PDS theory has started to de-
velop in the context of differential inclusions [18,/10, 1], but was first formalized ih [16] on the
Euclidean space and in [20, 5] on arbitrary Hilbert spaces. In essence, DLD consists of associ-
ating to an EVI on the Hilbert spade? ([0, 7|, R?), an infinite-dimensional PDS, whose critical
points coincide exactly with the solutions of the EVI problem and vice versa. In this paper we
use DLD theory to study the structure of EVI solutions for particular (step) demand functions.
DLD is further used to show how some equilibrium states can be reached in finite time under
suitable conditions.

We recall that variational inequalities theory has been used to formulate, qualitatively an-
alyze, and solve a number of network equilibrium problems [14] 27, 28, 29, 30]. However
DLD theory is also attractive for the modelling and analysis of equilibrium problems because
it allows the study of applications involving two types of time dependency: one represented by
the time-dependent equilibria (that can be predicted for a given problem via EVI theory), and
the other represented by the time-dependent behavior of the application around the predicted
equilibrium curve (obtained via PDS theory). The interpretation of the two timescales in DLD
theory was discussed inl[7] and it is further deepened in this paper with the help of what we call
the prediction timescalandthe adjustment timescale

The structure of the paper is as follows: in Secfibn 2 we present our results about piecewise
solutions of EVI in the generic context @f-spaces and a theoretical example. In Segtjon 3
we give brief introductions to PDS and DLD, and show that step function solutions for EVI are
possible. In Section 4 we discuss the relation between the prediction and adjustment timescales
in DLD theory. We introduce here the conceptre$trong pseudo-monotonicity with degree
a (which is similar but more general than that of strong pseudo-monotonicity with degree
[24,[28,20]) and we show how this concept is useful in determining when an EVI solution can
be reached in finite-time. Sectiph 5 presents a dynamic traffic equilibrium example following a
computational procedure as in [6] (using an original MAPLE 8 code), illustrating the theoretical
results of the previous sections and their possible consequences for traffic control. We close with
conclusions and acknowledgements in Sedtjon 6.

2. PIECEWISE SOLUTIONS OF EVOLUTIONARY VARIATIONAL |INEQUALITIES

Evolutionary variational inequalities were originally introduced by Lions and Stampacchia
[26] and Brezis[[4]. In this paper we use an EVI in the form initially proposed in [13] but using

J. Inequal. Pure and Appl. Mat}8(2) (2007), Art. 63, 17 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

PIECEWISE SOLUTIONS OFEVI APPLICATION TODLD M ODELLING 3

the unified framework proposed first in [€, 7]. These EVI come from traffic network problems
and economic equilibrium problems (seel[6} 11,/12, 13]) and are presented next. We consider
a nonempty, convex, closed, bounded subset of the reflexive Banach/gipacé’|, R?) given

by:

Qi)K:{uemwjmengwmngaempﬂ;

q
Zgﬂuz(t) = ,Oj(t) a.e. in[O,T], sz’ c {—1,0, ].},Z - {1, ... ,q},j € {]., .. ,l}}
=1
Recall that

(6, u)) = / (&) (t), u(t))dt

is the duality mapping od? ([0, '], R?), where¢ € (LP([0,T],R27))* andu € L?([0,T],RY).
Let F': K — (LP([0,T],R?))"; the standard form of the EVI we work with is therefore:

(2.2) findu € K such that((F(u),v — u)) > 0, Vv € K.

Theorem 2.1.If F' in (2.2) satisfies either of the following conditions:

(1) F is hemicontinuous with respect to the strong topologykorand there exisd C K
nonempty, compact, and C K compact such that, for everyc K\ A, there exists
u € Bwith ((F(u),v —u)) <0;

(2) F is hemicontinuous with respect to the weak topologKon

(3) F'is pseudo-monotone and hemicontinuous along line segments,

then the EVI problenj (2.2) admits a solution over the constrainkset

For a proof, see [13]. If" is strictly monotone, then the solution §f (R.2) is unique. Another
result about uniqueness of solutions[to {2.2) can be found! in [7] and we recall it in the next
section.

Remark 2.2. Theoren] 2.[L simply states that a measurable solution can be found for an EVI
problem of type[(2]2). We show next that this problem admits a piecewise solution, provided
the constraint functions, p, p, satisfy A, p € LP([0,T],R?) andp;(t), j € {1,...,l}, are
piecewise functions as presented below.

We consider sets

QS)K:{ueU@J1WHM®§Mﬂ§MUaeMMH;

q
Zfﬁul(t) = p](t) a.e. in[O,T], gji - {—1,0, 1},Z € {1, e ,q},j € {1, Ce ,l}},
=1
wherep; are given by

Cl(t), |f0§t§t1
i <
p](t) _ Cg<t), .|"f t1 <t <ty

?

Ck; (t), if tkj—l <t< tkj =T

c) € LP([tp-1,t,),R?), foranyn € {1,... k;}
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Remark 2.3. Without loss of generality, we can consider thatgli¢) partition the interval
[0, 7] in the same number of subintervals. Otherwise, we consider the set

l
A= J{0.t1 ta,  t, -1, T}

j=1
and we partitior[0, 7'] according to the division sek, possibly rewriting the functiong;(¢).
Therefore, we consider sdtsas in [2.8) with
Cl<t), |f0§t§t1
, if t1 <t <ty

Q
(V)
~—~
~+~
~—

Ck(t), if th_1 <t§tk:T

c e LP([ty_1,t,],R?), foranyn € {1,... k}.

Theorem 2.4. AssumeK is of the form [(2.8) and assume th&t: K — L?([0,7],R%)* is
strictly monotone and continuous. Then EVI[2.2) admits a unique piecewise solution.

Proof. We first prove the result for the case of s&tsas in [2.8) wherg := 1. These are
therefore of the form

2.4) K= {u e LP([0, T],RY) | A(t) < u(t) < u(t)

and ifmﬂﬂ =pi(t) a.e, on[O,T]},

where¢;; € {0,1} andp;, is given by

Cl(t), |f0§t§t1

Cg(t), if 1 <t <ty
nB=9 . ’

Ck(t), if thi<t<t,=T
cn € LP([ty_1,t,],R?), foranyn € {1,... k}.
Foreachn € {1,..., k} we consider the following set

Ky == {u |1, .| v € K} which has the property that
Kn C {z € LP([tn—1, ta], RT) [ A1) < 2(2) < pa(?)

q
and Zglizi(t) =c,(t)a.at e [tn_l,tn]},
i=1
We also consider the evolutionary variational inequatity 7,, on the sel,,, namely

findu € K, s.t. /tn (F(u)(t),v(t) —u(t))dt >0, Yvek,.
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Each of the setK,, is closed, convex and bounded, and the mappisatisfies Theorefn 3.1(3)
onK,,. According to this theorem eadhil’ I,, has a uniqgue measurable solution. Let us denote
it by w*. We then consider the mapping : [0, 7] — R? given by:

wit), fo<t<t

(1), ift <t<t
(2.5) = B0 Thsrst

UZ(t), if 1 <t<t,=T

We show thau* € K. By the definition ofu* we see thah(t) < u*(t) < u(t), and
q
> &uup(t) = pi(t) ae.on [0,7].
i=1

It remains to show that* € L*([0, 7], R?). This follows from the fact that
poe LP(0, T, R and  [[u"(®)]], < [[n(0)]l, < o0,

thusu* € K.
Suppose now that* is not a solution of the EVI problem (2.2). Then there exists K so
that

((F(u"),v—u")) <0<« /0 (F(u™)(t),v(t) —u*(t))dt < 0.
This is further equivalent to

> [ p@.ew - o <o

tn—1

Letw, := v |, , +.]; We subsequently get

k tn
(26) > [ Fw 0wt - i) <o.
n=1Ytn-1
But on each seK,, we have thatvV' ], is solvable and so
(2.7) ((F(ur),z—uy)) >0,Vz € K,
tn
— / (F(ur)(t), z(t) —ur(t))dt >0, Vz € K,.
th—1

We note thatv,, defined above is an elementf,, so letz := w, in (2.7). Since we can do
this for eachn € {1,...,k}, we get that

(2.8) Z/” (F(u)(t), wn(t) — us(t))dt >0, VYne{l,... k}.

th—1

We see now thaf (2.6) and (2.8) lead to a contradiction. Hence K is a piecewise solution

of EVI 2.2).

Keeping in mind Remark 2.3, the cage- 1 can be shown in a similar manner, by defining,
foreachn € {1, ..., k}, the set

Ko := {u |t 41| v € K} where
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and Zfﬂzz(t) = CZL(t) a.a.t € [tn_l,tn],j € {]_, . ,l}}

O
Next we prove more about the structure of the solutions of an EVI proflem (2.2) for the case
of L2([0, T],R9).
Corollary 2.5. Assume the hypotheses of Theofem 2.4, where 2, ), ;i are continuous
functions,p, are piecewise continuous arfd is given byF'(u)(t) = A(t)u(t) + B(t), where
A(t) is a positive definite matrix for eache [0,7] and A, B are continuous. Then EV (2.2)
admits a piecewise continuous solution.

Proof. EachEV I, has, under the present hypotheses, a continuous solijtion This follows
from [3]. Then by Theorerm 2.4 the solution of the EVT (2.2) is piecewise continuous. [

Corollary[2.% is also important from a computational point of view. We obtain the solution
u*(t) by computing the piecewise componenfgt), as shown in[[8], or using the computa-
tional procedure in [6].

Example 2.1.Letp := 2, ¢ := 4, T := 90, j := 2 and{;; := 1fori,j € {1,2}. We set
A(t) = (0,0,0,0) andp(t) = (100, 100, 100, 100) for ¢ in [0, 90], hence

K = {u € L2(]0,90], RM)[0 < w!(t) < 100

a.e.in0,90], i € {1 2}, je{1,2}

and Zu ) a.e. inf0,90], j € {1, 2}}
where
2t, if 0<t<30 2, if0<t<30
pl( ) = . ) P2 = . .
—2t+220, if30<t<90 t, 1f30<t<90
We consider:

F (ul b ) (1)
= (uy(t) — 120, ub(t) — 120, 2u3(t) + u3(t) — 330, ui(t) + 2u;(t) — 330),
F : K — L*([0,90], R*) and the following EVI:
((F(u),v—u)) >0, YvekK

We remark that” : K — L?([0,90], R*) satisfies the hypotheses of Corollary|2.5. Using a
computational procedure as In [6], we obtain that the unique equilibrium curve of this problem
is given by the piecewise continuous function

(t6.5.5). if 0 < <30
ui(t) =
(—t+110,—t+110,%, %), if 30 < ¢ < 90.

In the next section we further refine our results by studying the structure of solutions to EVI
(2.9) in the context of double-layered dynamics theory.
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3. DOUBLE-LAYERED DYNAMICS

In essence, EVI problems of the type considered in this paper can be viewed as a 1-parameter
family of a static variational inequality, with parameter From here on, we consider that
our EVI (2.2) represents the model of an equilibrium problem (as, for example, lin [14]). In
this context, the parameterwill be taken to mean physical time. Asvaries over|0, 71,
the constraints of the equilibrium problem change, and so the static states describe a curve of
equilibria. Such an equilibrium curve can be of the form](2.5), as in Theprgm 2.4. DLD was
introduced in([6, 7] as a unifying tool for deepening the study of an EVI problem with constraint
setsK C L*([0, 77, RY).

3.1. PDS. A thorough introduction to both theories and applications of EVI and PDS can be
found in [6]. DLD theory is presented in detail inl[7]. In this section we outline only the
necessary theoretical facts in order to insure a self-contained presentation of this wakk. Let
be a Hilbert space of arbitrary (finite or infinite) dimension andHetC X be a non-empty,
closed, convex subset. We assume that the reader is familiar with the concepigearit and
normal cones tds atz € K (Tx(z), respectivelyNg(z)), andthe projection operator oX
onto K, Pk : X — K given by||Pk(z) — z|| = gglf( ||z — 2||.

The properties of projection operators on Hilbert spaces are well-known (see for instance
[33]). The directional Gateaux derivative of the operdtaris defined, for any € K and any
elementy € X, as the limit (for a proof seé [33]):

P o) —
My (2, 0) = 5{%& K (T +5 v) r

Letllx : K x X — X be the operator given b, v) — Ik (z,v). Note thatllx is discontin-
uous on the boundary of the st In [15,/21], several characterizationslof are given.

moreover, Ik (z,v) = Pr ) (v).

Theorem 3.1. Let X be a Hilbert space and{ be a non-empty, closed, convex subset. Let
F : K — X be a Lipschitz continuous vector field angle K. Then the initial value problem

dx(T)
dr
has a unique absolutely continuous solution on the intejalo).

(3.1)

=Hg(x(r), —F(z(1)), x(0)=20€ K

For a proof, see [9,/5]. This result is a generalization of the one in [16], wKere R", K
was a convex polyhedron arfdhad linear growth.

Definition 3.1. A projected dynamical systeisigiven by a mapping : R, x K — K which
solves the initial value problem:

é(ﬂ ZE) = HK<¢(77 I)’ _F(qb(Tv ZL’))), qb(O?I) =x9 € K.

3.2. DLD. Double-layer dynamics consists of intertwining an EVI problem and a PDS as fol-

lows: we letp := 2, X := L?([0,T],R?) and we consider se& C L?([0,7],R?), as given by

(2.3). Further, we consider the infinite-dimensional PDS defined by

du('a T)
dr

where we assume the following hypothedis: K — L?([0, T, RY) is strictly pseudo-monotone

and Lipschitz continuous. Note that this hypothesis is in the scope of both Theloréms 2.1 and

[2.4. The following results hold (seel[8] for a proof of the first and §ée [6] for a proof of the
second):

(3.2)

=l (u(,7), =F(u)(-, 7)), u(-,0) =u() €K,
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Theorem 3.2.

(1) Assuming that' is strictly pseudo-monotone and Lipschitz continuous, the solutions of
the EVI problem[(2]2) are the same as the critical points of HDS (3.2). The converse is
also true.

(2) EVI (2.2) has a unique solution.

DLD theory helps establish the long time behaviour of the applied problem with respect to its
curve of equilibria. This has been donelin [7], where infinite-dimensional PDS theory was used
to draw conclusions about the stability of such a curve. Next we use a DLD setting to prove a
new result about the solution structure of an EVI problem.

Theorem 3.3. Assume a s&K is as in [2.4), where = 2, A(t) := A, u(t) := p are constant
functions, and;(¢) are step functions. Lef' : K — L*([0,T],R), F(u)(t) = Au(t) + B be
strictly pseudo-monotone and Lipschitz continuou&orThen the unique solution of EVT (2.2)
is a step function.

Proof. From Corollary] 2.5 and Theorejn 8.2(2), we have that the unique solution of the EVI
problem [2.2) is of the form:

(wi(t), ifo<t<t

u*(t) = ’ , Where eachy) is continuousyp € {1,...,k}.

L UZ(t), if 1 <t<t,=T

From Theorenj 3]2(1), we have that this solution curve constitutes the unique equilibrium of

PDS [3.2). Let us now arbitrarily fix € {1,2,...,k} andt € (¢,_1,¢,]. We denote by?D S,

the finite-dimensional projected dynamical system given by the flow of the equation:

dw(T)
dr

(3.3) = g (w(r), —F(w(7))),

where

k
K(t) := {w =u(t) ER| A <w < p,and) G =d), j € {1,...,1}} and
=1
F, : K(t) — R?, given byF;(w) := Aw + B.

DLD theory implies that the unique equilibrium point of this system’jé&). Similarly, choos-
ingt € (t,_1,t,] andt # t', the unique equilibrium point oP DS, is v} (t'). However, the
constraint set&(¢) andK(¢') coincide, and the mappindgs andF} are the same, henéeD S,
and PDS, are given by the same differential equatipn(3.3). Theref¢(¢) = v (¢'). Since
t, t" were arbitrarily chosen oft,,_1, t,,], thenu (t) =constant: u* on the intervalt,_1, ¢,].
Sincen was also arbitrarily chosen {1, ..., k}, the solutionu* is a step function. O

4. ADJUSTMENT TO EQUILIBRIAIN DOUBLE-LAYERED DYNAMICS

Recall that we consider an EVT(2.2) as the model of an equilibrium problem. The solution of
this EVI is interpreted as a curve of equilibrium states of the underlying problem over the time
interval [0, T']. These are all thpotentialequilibrium states the problem can reach. Therefore
we call[0, 7] the prediction timescale

We further associate to EV[ (2.2) a PDOS (3.2). By Theofenp 3.2, the equilibrium curve is
stationary in the projected dynami¢s (3.2), hence [0, co) represents the evolution time of
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the problem from disequilibrium to equilibrium. Therefore we ¢@lbo) the adjustment scale
Our DLD models include the following assumptions:

(1) ¢, T represent physical time;

(2) time unit is the same;

(3) time flows forward.

The modelling questions we want to answer here are of the following type: does an equi-
librium problem modelled via DLD reach one of its predicted equilibrium stisidisite time
starting from an observed initial statét,), at some,, € [0, 7]?

A first answer to this question was given in [7] (Theorem 4.2), where it is shown that for a
fixed to, under strong pseudo-monotonicity with degree 2 of F; , the PD.S;, (as defined in
(3.3) above) admits a finite-time attractor, namelyt,). An estimate for the time necessary for
a trajectory of the? DS, to reachu*(t) is given and is denoted by,. In [7], [, is interpreted
as an instantaneous adjustment of the dynamics atttimodats corresponding equilibrium &f.

This kind of interpretation may be applicable to problems where the adjustment dynamics take
place very rapidly, for example internet traffic problems. Here, in the first subsection below, we
give a new more general time estimate, more readily applicable to the modelling of equilibrium
problems. In the second subsection we use this estimate in the context of the two timescales
(prediction and adjustment).

In this part of the paper we prove a generalization of our result in [7] (see Lémina 4.2 below).
In order to do so, we need to introduce first a new concept, thastsbng pseudo-monotonicity
as follows:

Definition 4.1. Let K C X be closed, convex, wher¥ is a generic Hilbert space. Lét:, -))
be the inner product oX andf : K — X a mapping. Then:

(1) f is calledlocally r-strongly pseudo-monotone with degreat +* € K if, for a given

r > 0, there exists a neighbourhodd(z*) C K of the pointz* with the property that
for any pointz € N(z*)\ B[z*, r|, there exists a positive scalgfr) > 0 so that

({(f@™),x—2%)) 20 = ((f(x),x —a")) = n(r)|le— =]

(2) f is calledr-strongly pseudo-monotone with degreat =* € K if the above holds for
all z € K\Blz*,r].

Remark 4.1.

(1) Definition[4.1 is a generalization of strong pseudo-monotonicity with degratez*
(first introduced in[[20]); strong pseudo-monotonicity with degree itself a general-
ization of the notions of local and global strong monotonicity with degrégroduced
in [24,(28].

(2) Definition[4.] is not vacuous; note that any (locally) strongly pseudo-monotone map-
ping f with degreex at z* satisfies Definitiof 4]1.

(3) There exist mappings satisfyingstrong pseudo-monotonicity with at z*, but which
do not satisfy strong pseudo-monotonicity withat that point (see our example in
Sectior] b and the justification in the Appendix).

We are ready to prove the following:

Lemma 4.2. Assume thaf : K — X satisfies condition (1) (respectively (2)) of Definition 4.1
with degreed < o < 2, is Lipschitz continuous, and that is a critical point of the projected
dynamical system given byf on K:
dx(T)
dr

= g (z(7), = f(x(7))).
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Given an initial stater(0) € N(x*)\B[z*,r| (respectivelyz(0) € K\B[z*,r]), the unique
trajectory of the projected system starting:d0) reaches) B[z*, r| after

0) — z*||%* —r2> | .
7= 12(0) (§(|2|X ) " units of time
nr)(2 —«

Proof. Assumef to be locallyr-strongly pseudo-monotone with degreec 2 atz* € K there
exists a neighbourhoal (z*) andn(r) > 0 so that

({(f(@"), 2 —2") 20 = ((f(z),z — ") n(r)|lx —z7[|".
Letz(0) € N(2*)\B|z*, r] andz(7) the unique trajectory of PDS startingsgt)). Assume that

(4.1) |le(r) —2*|| =r>0,Vr >0 = |z(r) —z*|| >r > 0.
This implies that
1
D(r):= §|]x(7) —2** >0, Vr>0.

%D(T) - <<%($(7) — o), 2(r) — x>>

= (W (x(7), = f(x(7))), x(7) — z7))
< = ((fa(m)), x(r) —a%)) .

Sincezx* is an equilibrium point, thefil i (z*, — f(z*)) = 0 & — f(2*) € Nk (z*), hence

(4.2) —{(f(@"),z(r) —a")) <0.
Based on[(4]2), from the hypothesis we have that

(4.3) — ((f(a(r)), 2(r) — 2%)) < —n(r)l|z(r) — 27|
and so from[(4]2) andl (4.3) we have that
d
dr
Following a similar computation as inl[7] (proof of Theorem 4.2), integrating from € toe
obtain

We have

D(1) < —n(r)||z(r) — 2*||* < 0 = 7 — ||z(7) — z*|| is decreasing

lo(7) = 2" 7 < [|2(0) — 2™ — 7 (r)[2 — o].
The last inequality is equivalent to

() = "l = 7 < [o(0) = &2 = 7n(r)[2 = 0] 7 =,

and we see that our assumptipn [4.1) is contradicted because we can find a moment

(which we will denote from now on by, to keep a notation consistency with [7]) so that
lz(7) — 27| =r <0,

namely

_ Jlaf0) — = e

(4.4) I = T2 = o]
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Remark 4.3. The result of Lemmpa 4]2 is a generalization of the one in Theorem 41 in [7]. In
that case, we simply have= 0 and a strong pseudo-monotone mapping with 2, thusz* is

a finite-time attractor and the adjustment time of the dynamics from the initial:g@feo the
equilibriumz* is given by

_ l2(0) — 27"
(2—a)n

We return now to the study of an equilibrium problem modelled with DLD. We assume that
we start observing the problem at sorgec [0, 7, with initial datau (¢, 0) € K(¢y), where

(45) l(] .

K(to) = {w = U(to) c R? | )\(to) S w S /,L(to), Zfﬂwz = pj<t0), j € {1, Ce ,l}} .

We considerPDS;, and F;, : K(t,) — R? as in [3.8); according to DLD theory, its unique
equilibrium isu*(ty). Letw(r) := u(to, ) be the solution of the®? DS, starting atu(ty, 0).
Then Lemmé& 4]2 implies that: whenevegy, is r-strongly pseudo-monotone with degreec 2
atu*(to), then by[(4.4) we have that

(4.6) [[ulto, li,) — u*(to)|| = 7.

However, time passes uniformly on both prediction and adjustment scales. Fgrmula (4.6) indi-
cates that; units have passed on the adjustment scale, but none have passed on the prediction
scale. Thug (4]6) makes sense only if there exists- 0 so that

u*(to) = u*(to + At) andAt = [ .

The last formula gives us the following interpretation:

ther-neighbourood of the equilibrium* (¢, + At) is reached in finite time starting from the
disequilibrium state*(t, 0), if I}, = At.

Remark 4.4. In the more particular case of a mappiAgwhich is strongly pseudo-monotone
with degreex < 2 atz*, keeping in mind[(4]5), we have that the equilibriu{t, + At) is
reached in finite time starting from the disequilibrium staté&,, 0), if [,, = At.

In the next section we present a novel traffic network example to illustrate our results.

5. APPLICATION TO TRAFFIC NETWORK EQUILIBRIUM PROBLEMS

In the example below we consider that the demamh the network is a piecewise contin-
uous function of and we illustrate our interpretation of adjustment to the neighbourhood of a
predicted equilibrium state of the network. Such an example represents a novelty for the DLD
applications present in the literature so far. Moreover, in this example we present a new use
of formula (4.6) as follows: if an equilibrium state takes place twice in the time intéval,
namely in our previous notatiow (ty) = u*(to + At), then we can determine for which initial
statesu(t), formula [4.6) takes place. In other words, we can determine from which initial
disequilibrium states the traffic will adjust to (a neighbourhood of) the equilibtitiity + At).

We consider a traffic network with one origin destination pair having two links (as depicted
in Figure 1) and the following constraint set corresponding to this network configuration

K := {u € L*([0,110], R?) | 0 < u(t) < 120, uy(t) + us(t) = p1(t) a.a.t € [0,110]},
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"1
u2
Figure 1
120 -
100
80

flow demand 60—3

40-
20
0775 30 60 80 100 120
t
Figure 2
where
( 4t, t €0, 15],
60, t € (15,20],
;) =< 3t t € (20,40],
120, t € (40,91],
—t 4211, te (91,110].

\
We consider the time unit to be a minute and the time intgfv&ll0] to correspond to 6:30
am - 8:20 am during a weekday. Let the flows on each link be denoted hy and the demand
by p; (Figure 2 depicts the demand). We see that during the hight of rush hour, 7:10-8:00 am
(i.e.,t € (40, 91]) the demand is highest.
Let us also consider the cost on each link to be given by the mapping

F:K — L*([0,110],R?), F((u1,u2)) = (u1 + 151, uy + 60).
The dynamic equilibria for such a problem are given by the EVI (seelals01[14, 7])
110
/ (F(u)(t),v(t) —u(t))dt >0, Yo e K.
0
The mappingF is Lipschitz continuous with constamtand F'(u) := Au + B with A posi-
tive definite; by Corollary 2]5, the unique solution of the above EVI is piecewise continuous;

moreover, by Theorern 3.3, the solution has a constant value over the intgfalg] and
[40,91]. By the method proposed in![6], implemented with a MAPLE 8 code, we compute an
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1004
a0
u2s)
4|:|‘:
20
20
t a0
B0
80
100
120
Figure 3
approximate solution to be
((0,4t), t €0, 15],
(0,60), t € (15,20,
" (0, 3¢), te (20,9],
u*(t) =
(3 91 3t+91) ’ t e (%740] ,
(14.5,105.5), t € (40,91],
| (75120, =532) -t ¢ (91,110,

2 2

The graph of this solution is presented in Figure 3. We note that the Wardrop equilibrium
conditions are satisfied for this solution, namely all paths with positive flow in equilibrium have
equal minimal costs, as can be seen below:

/

151,4t 4+ 60),  t € [0,15],

(
(151,120), t € (15,20],
(151,3t + 60), ¢ € (20, %],
F(u*)(t) =X ( 3t+211 3t+211) t e (ﬂ 40}
) 37 )
(165.5,165.5),  t € (40,91],
\ (—t—;422’ —t—;422) , t€(91,110].

We see here that users prefer the second road to the first, however, during the rush hour peak,
they will use both routes, as they become equally expensive.

So far, the EVI model of this problem has provided the approximate equilibrium curve for the
traffic, given a certain structure of the demand function. In general however, the traffic may be
in disequilibrium, in which case we want to know if/how it will evolve towards a steady state.
This type of question is answered via the DLD model of this network, namely considering the
PDS:

U(cti;-T) = g (u(t, 1), —F(u)(t, 7))
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Lett, € [0,110] be fixed and consider the projected dynamicg aP DS, given by

dw(T)
dr

= HK(to)(w<T>7 —Fy, (w(7))),
where
K(to) = {u(t) := w € R* | (0,0) < (wy,wy) < (120, 120),w; + wy = py ()},

andFy, : K(t) — R?, Fy, (w) = (w; + 151, w4 + 60).

We can study whether the traffic approaches a small given neighbourhood of a steady state.
Moreover, as we show below, this has consequences for traffic control, as one could find a flow
distribution at the initial time, so that at a later time the traffic will adjust "close enough" to
an equilibrium.

Lett, := 35 (i.e. 7:05 am) and we have that(35) = (7, 98) cars/min; but we also note that
there existg\t¢ := 71 min with the property that

u*(35) = u* (35 + At) = u*(106) = (7, 98).

The mappingF},_ss is 1-strongly pseudo-monotone with degree= 1 andr := /2 atu*(35)
(see Appendix for a proof). Using formula (#.4), we can find a flow distributiaiy at 35 so
that

|u(35,0) — u*(35)]| — 1
V2

This means that if ay = 35 the flow distribution is, for example,(35,0) = (79, 26) cars/min,
the traffic could adjust close to'(35 + At) = u*(106) = (7, 98) cars/min after approximately
71 minutes.

I3 = At < =71 min = ||u(35,0) — u*(35)|| ~ 71.7.

5.1. Appendix. We remark that for the sé in our application the following holds: for any
u # v € Kwith u := (uy,up) andv := (v, v), it is always the case that (t) + us(t) =
v1(t) + va(t) = p1(t). This implies that

(5.1) ur(t) —v1(t) = —(ua(t) — ve(t)), fora.a.t € [0,110].
This further implies that a pair # v € K satisfiesu; # v, anduy # ve a.a. on0, 110].

1. We show first that;(w) = (w; + 151, w, + 60) is strongly pseudo-monotone with:= 1

andn := % whenevens, < 90, for a.a.t € [0, %]. Letw,v € K(¢) and we evaluate

(Fi(v),w —v) = (v1 + 151)(wy — v1) + (vg + 60) (w2 — v2) by G.1) (v

Then(vy — vy + 91)(wy; —vy) > 0ifand only if v; — ve + 91 > 0 andw; — v; > 0. Now, we
evaluate

1 — Uy + 91)(21]1 — Ul).

by (5.1)
(F(w),w —v) Y ED (wy — 1wy +91) (w1 — 1)
We takea = 1 and want to find; > 0 so that

by (5.1))
(w1 —wy + 91)(wy —vq) > n\/(wl —01)% + (wy — v9)? y G \/§n|w1 — ).
Sincew; > v; andw # v, we can divide the last inequality by, — v; and so
(wy —wy + 91) > V21

But w; > 0 from the hypothesis, soif, < 90 — —w, > —90, then we find) := %
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2. Here we show that choosing= 1, Fi_3;(w) := (w; + 151, wy + 60) is 1-strongly pseudo-
monotone with degree = 1 andn(1) = v/2 atu*(35) = (7, 98). We have that

(F((7,98)), (w1 — T,ws — 98))

(158, 158), (wy — T, ws — 98)) V&P 0., (7,98), (w1 — 7, ws — 98),

therefore

(Fy(w), (w1 — T,ws — 98)) Y& () — wy + 91)(wy — 7) 2715 20, — 72,

We findn(1) > 0 so that
Sy — 7P > V(D) ~ 7] = (1) :=min {vBhuwr ~ 7} = VEr = V2

Note thatF}s is not strongly pseudo-monotone with< 2 atu*(35).

6. CONCLUSIONS AND ACKNOWLEDGEMENTS

In this paper we presented new results about the solution form of an[EVI (2.2) subject to
various types of constraint sets. These results have consequences for the study and modelling
of equilibrium problems, in particular here, traffic network equilibrium problems. We have
further demonstrated how the recently developed theory of double-layered dynamics, which
combines evolutionary variational inequalities and projected dynamical systems over a unified
constraint set, can be used for the modelling, analysis, and computation of solutions to time-
dependent equilibrium problems; concretely, we presented here a novel interpretation of the
timescales present in a DLD model of an equilibrium problem, more general than the one in
[7]. We also answered questions regarding the finite-time adjustment to equilibrium states for
traffic network problems by the introduction of a new type of monotonicity. This type, called
r-strong pseudo-monotonicity, implies a stability property of a small neighbourhood around an
equilibrium of a projected dynamical system.
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neering Research Council (NSERC) of Canada, as well as The Fields Institute for Research in
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