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ABSTRACT. Letey be the volume of thé-dimensional standard Euclidean unit ball. In standard
Euclidean space the ratio of the surface area of the unit ball to the volume is equal to the dimen-
sion of the space. In Minkowski space (finite dimensional Banach space) where the volume has
been normalized according to the Holmes-Thompson definition the ratio is known to lie between
Fe and;i%. We show that whed = 2 the lower bound is 2 and equality is achieved if and
only if Minkowski space is affinely equivalent to Euclidean, i.e., the unit ball is an ellipse.
Stronger criteria involving the inner and outer radii is also obtained for the 2-dimension spaces.
In the higher dimensions we discuss the relationship of the Petty’s conjecture to the case for
equality in the lower limit.

Key words and phrasesConvex body, Isoperimetrix, Mixed volume, Projection body, the Holmes-Thompson definitions of
volume and surface area.

2000Mathematics Subject Classificat o62A20, 46B20.

1. INTRODUCTION
In their paperl[4] Holmes and Thompson investigated the ratio of

w(B) = G-t 1el0B)

deq  pp(B)’
wheree; = 7%2I'(d/2 + 1)~ is the volume of ad-dimensional Euclidean unit ball and
wp(B), np(0B) are volume and surface area, respectively, of the unit ball id-dienensional
Minkowski space for the “Holmes-Thompson definitions” (this will be defined later). They es-
tablished certain bounds an which state that ifB is a d-dimensional Minkowski unit ball,
then p

1
— < w B < —
2~ (B) < 2
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2 ZOKHRAB MUSTAFAEV

with equality on the right ifB is a cube or an ‘octahedron’. They raised the question, “What is
the lower bound fow(B) in R??" This problem was solved for the case- 2 in the paper([7].
It was obtained that iB is the unit disc in a two-dimensional Minkowski space, then

< hB(9B)
~ us(B)
with equality on the left if and only if3 is an ellipse and equality on the right if and onlyAf

is a parallelogram. Thus, there does not exist another Minkowski plane besides the Euclidean
one for which ratio of the length of the unit ‘circle’ to the area of the unit disc equals 2.

In this paper we prove that for the unit balls possessing a certain property this ratio is greater
thand, with equality if and only ifB is an ellipsoid and further this property is implied by the
Petty’s conjectured projection inequality for the unit balls.

There will be also proved some isoperimetric inequalities for the Holmes-Thompson defini-
tions of volume and surface area.

We recommend seeing the interesting book by A.C. Thompson “Minkowski Geometry” for
a thorough discussion on this topic.

2 <7

2. SOME BACKGROUND MATERIAL AND NOTATION

In this section we collect the facts we will need from the theory of convex bodies.
A Minkowski space is a paifX, ||-||) in which X is finite dimension and-|| is a norm. We
will assumed = dim X. The unit ball in(X, ||-||) is the set
B:={re X :|z|| <1}
The unit sphere ifX, ||-||) is the boundary of the unit ball, which is denoteddy. Thus,
OB :={z e X :|z|]| = 1}.
If K is a convex set ik, the polar reciprocak’ of K is defined by
Ke:={feX": f(z)<1lforallzxz € K}.

The dual ball is the polar reciprocal &f and is also the unit ball in the induced metric &n.
Recall that a convex body is a non-empty, closed, bounded convex set.
If K, and K, are the convex bodies iN, anda; > 0, 1 < 7 < 2, then the Minkowski sum
of these convex bodies is defined as

CYlKl -+ O[2K2 = {I‘ T = Q1x] + QoXo, T; € Kl}

It is easy to show that the Minkowski sum of convex bodies is itself a convex body.

We shall suppose thaX also possesses the standard Euclidean structure and ihahe
Lebesgue measure induced by that structure. We refer to this measure as volume (area) and
denote it as\(-). The volume) gives rise to a dual volumg* on the convex subset of*, and
they coincide ink*.

Recall that\(aK) = a?\(K) and\(0(aK)) = a®'A\(9K), for a > 0.

Definition 2.1. The functionhx defined by
hic(f) = sup{f(z) : = € K}
is called the support function df.

Note thath,x = ahg, for o > 0. If K is symmetric, therhy is even function, and in this
casehk(f) = sup{|f(z)| : = € K}. In R? we definef(x) as the usual inner product ¢fand
Z.

Every support function is sublinear (convex) and conversely every sublinear function is the
support function of some convex set (See [12, p. 52]).
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Definition 2.2. If K is a convex body with) as interior point, then for each # 0 in X the
radial functionp () is defined to be that positive number such thatx)x € K.

The support function of the convex body is the inverse of radial function df°. In other
wordspre(f) = (hx(f)) ™" andpx(z) = (hxe(z)) 7

One of the fundamental theorem of convex bodies states theatif a symmetric convex
body in X, then

ME)N(K°) < €,
wheree, is the volume of al-dimensional Euclidean ball. Moreover, equality occurs if and
only if K is an ellipsoid. It is called the Blaschke-Santalo Theorem (see [12, p. 52]).
The best lower bound is known only for convex bodies which are zonoids[(see [12, p. 52]).
That is
4d
o SAON(K),
with equality if and only if K" is a parallelotope. It is called Mahler-Reisner Theorem.

Recall that zonoids are the closure of zonotopes with respect to the Hausdorff metric, and
zonotopes are finite Minkowski sum of the symmetric line segments. Whef all symmetric
convex bodies are zonoids (see Gardner’s book more about zonoids).

The Euclidean structure ok induces on eacfd — 1)-dimensional subspace (hyperplane) a
Lebesgue measure and we call this measure area denotitg dythe surface) K of a convex
body K does not have a smooth boundary, then the set of points wiicts not differentiable
is at most countable and has meadur&Ve will denote the Euclidean unit vectors ¥ by u
and inX* by f.

Definition 2.3. The mixed volumé/ (K [d—1], L) of the convex bodie&” andL in X is defined
by
(2.1) V(K[d—1],L) =d 'lime "Y\NK +¢cL) — M(K)}

e—0

=d! / hi(f.)ds(z),
oK
whereds(-) denotes the Euclidean surface area elemedtof

V(K,...,K) = V(K[d]) is the standard Euclidean volume bf/’). The mixed volume
V(K|d — 1], L) measures the surface area in some sense and satisfies

V(aK[d—1], L) = a*'V(K[d — 1], L), for a > 0.
See Thompson’s book ([12, p. 56]) for those and the other properties of mixed volumes.

Theorem 2.1(Minkowski inequality for mixed volumes)(se€[10, p. 317]or [12, p. 57). If
K, and K, are convex bodies ifX, then

VUKL [d — 1], K9) > MK I\(Ky)
with equality if and only if; and K, are homothetic.

If Koy = B is the unit ball in Euclidean space, then this inequality becomes the standard
Isoperimetric Inequality.

Definition 2.4. The projection bodyI K of a convex bodyx in X is defined as the body whose
support function is given by
MK + elu]) — AM(K)

hHK(U) = lli% - )

where[u] denotes the line segment joining; to 3.

J. Inequal. Pure and Appl. Mathb(1) Art. 17, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 ZOKHRAB MUSTAFAEV

Note thatllKX = II(—K) andIIK C X*. The functionhyx is the area of the orthogonal
projection of K onto a hyperplane perpendicularitoA projection body is a centered zonoid.
If K, andK, are centered convex bodiesin and if[IK; andI1 K, are equal, the’; and K,
are coincide.

For a convex bodys in X andu € S¢~! we denote by, (K | u*) the(d— 1) dimensional
volume of the projection of{ onto a hyperplane orthogonal #o

Theorem 2.2. (see[13]). A convex bodys € X is a zonoid if and only if
V(K, Li[d—1]) < V(K, Ly[d —1])

forall Ly, L, € X which fulfill \g_; (L | ut) < Xg_1(Lo | ut) forall u € S41,

Theorem 2.3. (see[3], p. 321]or [6]). If K is a convex body iX, then

(%)) < M EON@ERY) < e
with equality on the right side if and only i is an ellipsoid, and with equality on the left side

if and only if K is a simplex.

The right side of this inequality is called the Petty projection inequality, and the left side was
established by Zhang.

The k-dimensional convex volume of a convex body lying ih-adimensional hyperplang
is a multiple of the standard translation invariant Lebesgue measure, i.e.,

w=op(Y)A

Choosing the ‘correct’ multiple, which can depend on orientation, is not as easy as it might
seem. Also, these two measugeand A must agree in the standard Euclidean space.
The Holmes-Thompsod#-dimensional volume is defined by

AME)N*(B°
N’B(K) = ( )Ed( )a
ie.,
A (B°
7u(x) = 2
and for ak-flat P containing a convex bod¥
ML)N*((PN B)°
(D) = A0 <£k )

(See Thompson’s book and see also Alvarez-Duran’s paper for connections with symplectic
volume). This definition coincides with the standard notion of volume if the space is Euclidean.
From this point on, the word volume will stand for the Holmes-Thompson volume.
The Holmes-Thompson volume has the following properties:
(1) up(B) = jpe(B°).
(2) up(B) < €4, is from Blaschke-Santalo Inequality.
The definition can be extended to measure(the 1)-dimension surface volume of a convex
body using

(2.2) na(0K) = [ on(ids(f),

0K
whereds is standard Lebesgue surface measurefare X* is zero on the tangent hyperplane
atzx.
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If 0K does not have a smooth boundary, then the set of points on the boundémt @fhich
there is not a unique tangent hyperplane has measure zero.

Expanding|(2.R) and using Fubini’'s Theorem one can show thagifid B are two unit balls
in X, then

15(0A) = pa(9B°)

and in particulagz (0B) = ppe(0B°).

We can relate the Holmes-Thomps@h— 1)-dimensional surface volume to the Minkowski
mixed volumeV/ (K [d — 1], L) as follows:
o5(f) is a convex function (see Thompson’s book), and therefore is the support function of
some convex bodys. Hence equatior (2.2) shows that

(2.3) 15(0K) = dV (K[d — 1], Ig),

wherelp is that convex body whose support functiowis
Note that the ratiguz (015) to A(Ip) is equald, i.e.,

(2.4) 1p(01p) = dA\(Ip).

It turns out (see Thompson’s book) thatdfis the unit ball inX and iz is the convex body
defined as above, then
I1(B°)

€d—1

(2.5) I =

Thus, /5 is a centered zonoid.

Minkowski Inequality for mixed volume shows that in a Minkowski sp&ég B), among
all convex bodies with volumg(/) those with minimum surface volume are the translates of
I. Likewise, among convex bodies with the Minkowski surface volupédIy) those with
maximum volume are the translates/gf(see [12, p. 144]).

If volume is some other fixed constant, then the convex bodies with minimal surface volume
are the translates of a suitable multiple/gf The same applies, dually, for the convex bodies
of maximum volume for a given surface volume.

The homogenity properties normali@ZA) by repladipdy I =

1p(01p) = dug(Ip)

as in the Euclidean case. The convex bdgys called isoperimetrix.
The relation between the Holmes-Thompson surface volume and mixed volume becomes

pp(0K) = dogV(K[d —1], Ip).

s 50 that
B

g

3. THE UNIT BALL AND THE |SOPERIMETRIX

We can summarize the relationship between the unit ball and the isoperimetrix. First by
definition
ps(01g) = dup(Ip).
Second settindd = B° in Petty projection inequality and usir|g (R.5) for the dual pf we
obtain

~

(3.1) ppe(Ig) < ppe(B°)
with equality if and only ifB is an ellipsoid.

Proposition 3.1. i) If I C B thenB is an ellipsoid and; = B.
i) p17,(B) < pp(B)andp;, (Ip) < pp(lp).
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Proof. ) If Iz C BthenB° C Ig. Thus,\*(B°) < A\*(I%), which is a contradiction of
). A
ii) Multiplying both sides to\(B)/eq (A(Ip)/€q) IN ), we obtain those inequalities.
[

From the above arguments it follows thatjf = «B, thena > 1 and equality holds if and
only if B is an ellipsoid.

It is also interesting to know the relationship betwegr(B) and (1), which we will
apply in the next section. In a two-dimensional space it is not difficult to establish this relation-
ship.

Proposition 3.2. If (X, B) is a two-dimensional Minkowski space, then
pup(B) < pup(lp)
with equality if and only ifB is an ellipse.

Proof. Recall that in a two-dimensional Minkowski spa&& B°) = A(Ip), sincely is the
rotation of B°. Then from the Blaschke-Santalo Inequality we obtain

71'2 7T2 ~
< * oy — _ ©° — .
)\(B) — )\*Q(BO))\ (B ) )\*2<BO))\(]B) )\(‘[B)
Thus, A
ps(B) < pp(Ip).
Obviously, equality holds if and only iB is an ellipse. O

4. THE RATIO OF THE SURFACE AREA TO THE VOLUME FOR THE UNIT BALL AND
PETTY’S CONJECTURED PROJECTION INEQUALITY

Petty’s conjectured projection inequality (see [8, p. 136]) states tlaisfa convex body in
X, then

d
(4.1) NN (K) > <Ei—1)
d
with equality if and only if K is an ellipsoid.

In his paper([5] Lutwak described this conjecture as “possibly the major open problem in the
area of affine isoperimetric inequalities” and gave an ‘equivalent’ non-technical version of this
conjecture. Itis also known that this conjecture is true in a two-dimensional Minkowski space
(see Schneider[9)).

Setting K = B° (assumeX = RY) we can rewritel) as

eq PAIIB°) > g M71(B°).
Using (2.5), we have

(4.2) MNTHBO) < €42\ (I).
Multiplying both sides to\(B°), we obtain
(43) NB(fB) Z €d.

Inequalities[(4.R) and (4.3) are also Petty’s conjectured projection inequality for the unit balls,
and these hold with equality wheh= 2.
In (4.2) using the Blaschke-Santalo Inequality, we get

AB)A(B®) < eAH(B°) < e (Ip).
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Thus, we have the next inequality

(4.4) pus(B) < pup(lp)
with equality if and only if B is an ellipsoid.
We have obtained that if Petty’s conjectured projection inequality for the unit balls holds,
then [4.4) is true.
In the previous section we showed that this inequality is valid for the two-dimensional spaces.
If we multiply both sides of{ (4]2) ta?~!(B) and apply the Minkowski mixed volumes in-
equality, then
)\d71<B>/\d71(Bo)

d—1
€4

Using (2.3) forK = B, we have
(4.5) H5(0B) = d'eapi; (B)

with equality if and only if B is an ellipsoid.
We can also rewrité (4.5) as

wherew, = de, is the surface area of the unit ball in the Euclidean space.
Inequality [4.6) is the isoperimetric inequality for the Holmes-Thompson definition of vol-
ume and surface area, and it is also well known that this inequality is true avheh

< e, "]ANTHB)AIB) < ;' VYB[d — 1], Ip).

Theorem 4.1.1f B is the unit ball in ad-dimensional Minkowski space such that(B) <
,uB(IB), then
15(0B)

p5(B)
with equality if and only ifB is an ellipsoid.

>d

Proof. ug(B) < up(Iz) can be written as
A(B)AY(B®) < egM(Ip).
Multiplying both sides to@ and applying Minkowski Inequality for the mixed volumes,
d
we obtain

d d o d
€d
Thus,
15(0B)
>
pp(B) —
and equality holds if and only iB8 is an ellipsoid. O

Corollary 4.2. Let B be the unit ball in ai—dimensional Minkowski space. If Petty’s conjec-
tured projection inequality is true for the unit ball, then

p5(0B)
up(B) ~

with equality if and only ifB is an ellipsoid.

Proof. We have been seen that if Petty’s conjectured projection inequality is truey thiéh) <
uus(15). Hence the result follows from Theordm j.1. O
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Conjecture 4.3.f B is the unit ball and’j is the isoperimetrix defined as above in a Minkowski
space, then

ps(B) < pp(lp)
with equality if and only ifB is an ellipsoid.

It has been shown that this conjecture is true in a two-dimensional Minkowski space.

Definition 4.1. If K is a convex body inX, the inner radius of<, r(K) is defined by

r(K) := max{o : 3z € X with alg C K + x},
and the outer radius df, R(K) is defined by

R(K) := min{a : 3z € X with alg D K + z}.
Lemma 4.4.If r(B) is the inner radius of the unit ball a8, then

r(B) <1

with equality if and only ifB is an ellipsoid.

Proof. We know by [3.1) that\(I3) < A(B°). Using the fact tha3> C I3, we obtain the
result. O

Lemma 4.5.1f d > 3 and R(B) is the outer radius of the unit ball @8 in a d-dimensional

Minkowski spacé¢ X, B), then
€d—1 2d %
> )
R(B) > deg (d)

Proof. Setting X’ = B° in Zhang’s inequality and using (2.5) for the duallgfwe obtain that

A(f3) > A(B) (E‘Z—;)d (Qj) 4,

The result follows from the fact that?\(B°) > \(I3). O

For two-dimensional spaces, it was shown'in [7] tRaB) > % with equality if and only if
B is an affine regular hexagon.

Remark 4.6. From R(B) = 1, it does not follow thai3 is an ellipsoid.

For two-dimensional Minkowski spaces, stronger result was also obtained. Namely, it was
proved that ifr(B) and R(B) are the inner and outer radii of the unit disc®frespectively, in
a two-dimensional Minkowski space, then
B 1
ps(0B) 1
p5(B) r

pel0B) L p o, L
ps(B) R
with equality if and only ifB is an ellipse (se€l [7]).
In a higher dimension, we can also obtain a stronger result vitiéh) < 1, i.e., B C I.
Sincels is maximizing and minimizing the volume and surface area, respectively, we have

ps(0K)* _ up0Ip)?
,UB(K)d_l > /LB(fB)d_l =d ,UB([B).

and

But us(Ip) > gapin(B).
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Hence
15(0B)

15(B)
with equality if and only if B is an ellipsoid.

d
>
R

Proposition 4.7. If B is the unit ball in ad-dimensional Minkowski space such that(0B) >
deg, then

- 15(0B)
| >d,
0 ns(B) =
d d—1
ded €q
Proof. Sinceup(B) < ¢, we obtain both inequalities. O

There exist examples such that(0B) < de,; (see Thompson [11]).
Theorem 4.8.Let (X, B) be ad- dimensional Minkowski space apg (0B) < deg4, then
N?;1(B)MB(fB) < ¢j
with equality if and only ifB is an ellipsoid.
Proof. Using ), we can rewritep(0B) < deg as
V4YBld —1], Ip) < €.
From the Minkowski Inequality we obtain

(4.7) MY B)A(Ip) < €.
We know from the Petty projection inequality that
(4.8) NTUBONI) < el

Multiplying (4.7) and [(4.B) we get
MY BNTY BN\ I5) < .
The left side of this inequality can be also written as
MdB_Q(B)NfB(B)MB(jB) < €f.

Recalling thafu; (B) < up(B) < €4, We obtain the desired result. One can see that equality
holds if and onlyB is an ellipsoid. O

Proposition 4.9.1f B is the unit ball in ad-dimensional Minkowski space and\f_; (BJut) <
A(Ig|ut) for all u € S41, then
pp(B) < up(lp).
Proof. SincefB is a zonoid, settind{ = L, = fB andL; = Bin Theore we have
VA(Bl[d—1], Ig) < X(Ip).
Now we can obtain the result from the Minkowski Inequality for the mixed volumes. [

Proposition 4.10. If B is the unit ball in ad-dimensional Minkowski space such thatis a
zonoid, then
4d

15(0B) = d—1)
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Proof. SinceB is a zonoid by Mahler-Reizner Inequality we have

4d
B) > —.
pg(B) > eyd!
Assuming that the conjecture is true, the result follows from Thegrem 4.1. O

Whend = 3, the smallest value qf ;(0B) that has been found so far3$ in the case when
B is either the rhombic-dodecahedron or its dual (see [4] or Section 6. 5in Thompson'’s book).

Problem 4.11.1f B is the unit ball in ad-dimensional Minkowski space such that(0B) <
degq, then is this still true . .
-1
pe(B)\" o (ms(B)\",
deas ) — €d
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