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1. PRELIMINARIES ON TIME SCALES

The unification and extension of continuous calculus, discrete caloptaculus, and in-
deed arbitrary real-number calculus to time-scale calculus was first accomplished by Hilger in
his Ph.D. thesis |8]. Since then, time-scale calculus has made steady inroads in explaining the
interconnections that exist among the various calculi, and in extending our understanding to a
new, more general and overarching theory. The purpose of this work is to illustrate this new
understanding by extending some continuous @uéllculus inequalities and some of their ap-
plications, such as those by Steffensen, Hermite-Hadamard, lyengaCednydev, to arbitrary
time scales.

The following definitions will serve as a short primer on the time-scale calculus; they can
be found in Agarwal and Bohner|[1], Atici and Guseinov [3], and Bohner and Peterson [4]. A
time scaleT is any nonempty closed subsetl®f Within that set, define the jump operators
p,o:T — T by

p(t) =sup{s e T: s<t} and o(t)=inf{seT: s>t}

whereinf () := sup T andsup () := inf T. The pointt € T is left-dense, left-scattered, right-
dense, right-scattered f(t) = ¢, p(t) < t, o(t) = t, o(t) > t, respectively. IfT has a
right-scattered minimunmn, defineT, := T — {m},; otherwise, sef, = T. If T has a left-
scattered maximum/, defineT" := T—{M }; otherwise, sef* = T. The so-called graininess
functions areu(t) := o(t) — t andv(t) :=t — p(t).
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2 D. ANDERSON

For f : T — R andt € T,, the nabla derivative [3] of att, denotedfV(t), is the number
(provided it exists) with the property that given any- 0, there is a neighborhodd of ¢ such

that
[F(p(t)) = f(s) = [V ()[p(t) = s]| < elp(t) = s

for all s € U. Common special cases again incltle- R, wherefY = f/, the usual derivative;
T = Z, where the nabla derivative is the backward difference opergtat) = f(t) — f(t—1);
g-difference equations with < ¢ < 1 andt > 0,

t) — flgt)
vy _ I |

For f : T — R andt € T*, the delta derivative [4] of att, denotedf*(t), is the number
(provided it exists) with the property that given any- 0, there is a neighborhodd of ¢ such

that

[f(o(t) = f(s) = FA@)[o(t) — s]| < elo(t) —s|
foralls € U. ForT = R, f& = f’, the usual derivative; fof' = Z the delta derivative is the
forward difference operatof®(t) = f(t+1) — f(¢); in the case of-difference equations with

q>1,
A flat) = f(2) A . f(s) = f(0)
f (t)_ (q—l)t ) f (O)_EL% s .

A function f : T — R is left-dense continuous or Id-continuous provided it is continuous at
left-dense points iff’ and its right-sided limits exist (finite) at right-dense point¥inf T = R,
thenf is Id-continuous if and only iff is continuous. It is known from_[3] or Theorem 8.45 in
[4] that if f is Id-continuous, then there is a functidhsuch thatF'V (t) = f(¢). In this case,

we define \
/ f(t)Vt = F(b) — F(a).

In the same way, from Theorem 1.74 in [4] we have thatig right-dense continuous, there is
a functionG such thatG2(t) = ¢(t) and

b
/ J(t)At = G(b) — Gla).
The following theorem is part of Theorem 2.7 iin [3] and Theorem 8.47lin [4].

Theorem 1.1(Integration by parts)If a,b € T and fV, gV are left-dense continuous, then

/a eSOV = (Fa)b) / o)
/ F(p(t)g" (£)Vt = (£9)(b) / NG

2. TAYLOR'S THEOREM USING NABLA POLYNOMIALS

and

The generalized polynomials for nabla equations [2] are the functipn&? — R, k € N,
defined recursively as follows: The functiagp is

(2.1) ho(t,s)=1 forall s,teT,
and, giveniy, for k € Ny, the functionhy..; is

t
(2.2) Pt (2, s):/ he(r,s)Vr forall s,teT.
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Note that the functions,, are all well defined, since each is Id-continuous. If for each fixed
we leth) (t, s) denote the nabla derivative bf (¢, s) with respect ta, then

(2.3) hy(t,s) = hy_1(t,s) for keN, teT,.
The above definition implies
hi(t,s)=t—s forall steT.

Obtaining an expression fax, for & > 1 is not easy in general, but for a particular given time
scale it might be easy to find these functions; sée [2] for some examples.

Theorem 2.1(Taylor's Formulal[2]) Letn € N. Suppos¢f isn + 1 times nabla differentiable
onT,~+1. Lets € Tyn, t € T, and define the functions, by (Z.1)and (2.2), i.e.,

¢
ho(t,s) =1 and hgq(t,s) = / hi (7, s)VT for k € Ny.

s

Then we have

n

) =S bt )7 (s) + / ot p() £ ()W

k=0

We may also relate the functiong as introduced iff(2]1) anf (2.2) (which we repeat below)
to the functiongi;, andg, in the delta case [1, 4], and the functignsn the nabla case, defined
below.

Definition 2.1. Fort, s € T define the functions
ho(t,s) = go(t,s) = ho(t,s) = Golt,s) =1,
and givenh,., gn, iin, G, for n € Ny,

Bt 5) = / o, $) AT, g (8, 5) = / ga(o(r), )AT,

~

t t
B (t,5) = / (7 $)V 7, G (£, ) = / in(p(7), 5)VT.
The following theorem combines Theorem 9laof [2] and Theorem 1.112 of [4].

Theorem 2.2.Lett € T# ands € T*". Then

~

hn(t’s) = gn<t’ 3) = (_1)nhN<S7t) = <_1)ngn(svt)
forall n > 0.

3. STEFFENSEN’S INEQUALITY

For ag-difference equation version of the following result and most results in this paper,
including proof techniques, se€ [7]. In fact, the presentation of the results to follow largely
mirrors the organisation of [7].

Theorem 3.1(Steffensen’s Inequality (nabla)keta, b € T# witha < bandf,g : [a,b] — R
be nabla-integrable functions, witfi of one sign and decreasing aid< ¢g < 1 on [a, b].
Assumé, v € [a, b] such that

b
b—fs/g(t)vtm—a f7>0, telob)
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b
'y—a§/g(t)Vt§b—€ if f <0, te&la,bl.

Then

b b o
(3.1) [ 1oves [ragaves [ rove

Proof. The proof given in the-difference case [7] can be extended to general time scales. As
in [[7], we prove only the case if (3.1) whefe> 0 for the left inequality; the proofs of the
other cases are similar. After subtracting within the left inequality,

[ s~ [ s
= [ 1w+ [ swa0we- / v
=/£f<t> Vt—/ F00-g
/f OVt - f <>/£<1—g<t>>w
/ F0a0)9t = (b= 05(0)+ ) | g0y
/ FOgtVE — (0 /abg(t)VtJrf(f) / gove
= [ sstrer= o ([ swwi- [ sww)
/f NV - <>/;g(t>w

= [0 - 50909 2 0

a

sincef is decreasing anglis nonnegative. O

Note that in the theorem above, we could easily replace the nabla integrals with delta integrals
under the same hypotheses and get a completely analogous result. The following theorem more
closely resembles the theorem in the continuous case; the proof is identical to that above and is
omitted.

Theorem 3.2 (Steffensen’s Inequality Il)Leta,b € T% and f,g : [a,b] — R be nabla-

integrable functions, withf decreasing and) < ¢g < 1 on [a,b]. Assume\ := ffg(t)Vt
suchthath — \,a + A € T. Then

(32) RO [ rgves [ 0N
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4. TAYLOR’S REMAINDER

Supposef is n + 1 times nabla differentiable offi,.... Using Taylor's Theorem, Theorem
, we define the remainder function By, ¢(-, s) := f(s), and forn > —1,

4.1) R 4(t,s) Zh s, 0)fY (¢) / (s, p(N Y (1) VT
Lemma 4.1. The following identity involving nabla Taylor’s remainder holds:

b ¢ b
/ s (8, p(s) fV " (5)Vs = / R, t(a,s)Vs+ / R, (b, s)Vs.
a a t

Proof. Proceed by mathematical induction enForn =

/ho(tp( NV (s Vs—/f Vs—/f Vs+/f

Assume the result holds far= k& — 1:

/ hi(t, p(s)) fV" (s)Vs = / Ry_1.4(a, s)Vs + / Ry_1.¢(b, 5)Vs.

a a t

Letn = k. By Corollary 11 in[2], for fixedt € T we have

(4.2) hye(t,s) = —hi(t, p(s)).
Thus using the nabla integration by parts rule, Thedrem 1.1, we have

/ i (£, p(5)) £7 (5) Vs

- / hie(t, p(8)) Y (8)V's + s (8,0) £V (b) — by (8,0) £V (a).

By the induction assumption and the definitiorfz@tl,

b k+1 L b
/ hiia(t, p(s) fY (S)Vs:/ Rk_lyf(a,s)Vs—F/ Ri—1,4(b,s)Vs
i (£,0) 7 (0) = i (t, ) £ (a)

t b
:/ Rk_Lf(a,s)Ver/ Ri—1,4(b,s)Vs

o [ a0 [ s, @vs
_ / t (R s(a5) = (s, )1 (@)] Vs

[ [Rastos) — nts.0)5% )] v
_ / Ris(a,5)Vs + / Ruslb5)Vs

t
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Corollary 4.2. Forn > —1,

b o b
/ Boyi(a, p(s) ¥ (5)Vs :/ R, (b, s)Vs,

b - b
[ haslbps) £ Vs = [ Ruglacs)Vs

Lemma 4.3. The following identity involving delta Taylor’'s remainder holds:

b ¢ b
/hn+1(t,a(s))fAn+1(s)As:/ Rmf(a,s)As—i—/ R, (b, s)As,
a a t
where

Ry t(t,s) == f(s) — Zhj(s,t)fN(t).

5. APPLICATIONS OF STEFFENSEN’'S INEQUALITY

In the following we generalize to arbitrary time scales some results from [7] by applying
Steffensen’s inequality, Theorgm B3.1.

Theorem 5.1.Let f : [a,0] — R be ann + 1 times nabla differentiable function such that
¥ isincreasing andf¥" is monontonic (either increasing or decreasing)[on]. Assume
¢,~ € [a,b] such that

~

h b . n. .
b—t < M <~y —a if fV"is decreasing,
hnt1(b, p(a))
y—a< M <b—( if fV"isincreasing
i1 (b, p(a))
Then
. " 1 b n n
0= @< s [ Ruglas) Vs < 170 - 170,
hn+1<b>p(a)) a
Proof. AssumefV" is decreasing; the case whef&" is increasing is similar and is omitted.
Let F := — V""", BecausefV" is decreasingfV""" < 0, so thatF > 0 and decreasing on
[a, b]. Define

~

g(t)::we[o,l], telab), n>-1.

hn+1(b7 p<a))
Note thatF", ¢ satisfy the assumptions of Steffensen’s inequality, Thegrem 3.1; dising (4.2),

~

b 1 b, hpnio(b,
a hi1(b, p(a)) Ja hit1(b, p(a))
Thus if A
< _ hn+2<b, a/) S ’}/ _a,
hn-l—l(ba p(a))
then

/ebF(t)Vtg/abF(t)g(t)Vtg/;F(t)Vt.
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By Corollary[4.2 and the fundamental theorem of nabla calculus, this simplifies to

PO < g [ RtV SO

0

It is evident that an analogous result can be found for the delta integral case using the delta
equivalent of Theorein 3.1.

Definition 5.1. A twice nabla-differentiable functiotf : [a,b] — R is convex ona, b] if and
only if f¥* > 0on|a,b].

The following corollary is the first Hermite-Hadamard inequality, derived from Theprem 5.1
with n = 0.
Corollary 5.2. Let f : [a,b] — R be convex and monotonic. Assufme < |[a, b] such that
HZ(bv CL) h2<b CL)
b — p(a) b—pl(a)
ho(b, ) ha(b, a)
b— p(a) b—p(a)

+a if fis decreasing,

+a if fisincreasing.

Then

pla) = _
o+ 0 sty < s [ v < P a4 50 - 510

Another, slightly different, form of the first Hermite-Hadamard inequality is the following;
this implies that for time scales with left-scattered points there are at least two inequalities of
this type.

Theorem 5.3.Let f : [a,b] — R be convex and monotonic. Assufme € [a, b] such that

j h L .
(> a+M, v > b—M if fis decreasing,
b—a b—ua
€§a+m, v < b—M if fisincreasing
b—a b—a

Then

< [ )< @+ o) - 50
Proof. Assumef is decreasing and convex. ThgR® > 0, ¥V < 0, andfV is increasing. Then
F := —fV is decreasing and satisfiés> 0. ForG := 5_;2 0 < G < 1andF, G satisfy the
hypotheses of Theorgm 3.1. Now the inequality expression
b
b—fﬁ/nG@Vtgv—a

takes the form

b
b—t < /Xb—ﬂVtSy—w

—a
Concentrating on the left inequality,

1 b 1 b
EZb—b /(b—t)Vt:b—b /(b—a+a—t)Vt,

—-a J, —a
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which simplifies to

¢ > a4 hg(b CL)’
b—a
similarly,
~ Z h— h’2(baa').
b—a

Furthermore, note that® F'(t)Vt = f(r) — f(s), and integration by parts yields

b 1 b 1 b
| Focvi = [T @ve= s - 7 [ 1)

It follows that Steffensen’s inequality takes the form

70~ 10) < 50 ~ = [ spve < s - s2),
which can be rearranged to match the theorem'’s stated conclusion. O
Theorem 5.4.Let f : [a,b] — R be ann + 1 times nabla differentiable function such that
m< V<M

on [a, b] for some real numbers. < M. Also, let/, v € [a, b] such that

b—t < Ml_m 70 — 17 (@) — m(b— a)] < —a.
Then
Mhyo(b,a) + (M — m)hyyo(b, €) < b Ry, s(a,t)Vit
< Mhpia(bya) + (m = M)hnia(b,7).
Proof. Let
K0 = e [£(0) = mhana(8.0)] . F () = B (b, (1)

G(t) = 7" (1) = —— 7 ) = m] € [0,1],

Observe that' is nonnegative and decreasing, and

| 6@Vt = s 177 0 = 7 @) = mib - ).

SinceF, G satisfy the hypotheses of Theorém|3.1, we compute the various integrals given in

(3.1). First, by[(4.p),

b b
/ F(t)Vt:/ g1 (b, p(t))VE = — Ry o(b, 1) ]t = ha(, 0),
¢ ¢
and
v . N «
/ F(t)Vt = —hnia(b,t)|] = hnpa(b,a) — hnia(b,7).
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Moreover, using Corollary 4]2, we have

/ab F(t)G(t)Vt = i i - /ab ﬁnﬂ(b’ (1)) <fv"+1(t) B m) v

1 b m
_ B +(a, 1)Vt
M—m/a sl )VE+

1 b, m.
= M—m/a Rn,f(aut)Vt_ M_mhn+2(b7a)'

Using Steffensen’s inequality (3.1), we obtain

b
hasa(b,0) < { [ st 91 = a>} < ha(b, @) — o, ),

which yields the conclusion of the theorem. O

- b
mhn+2(b, t) \a

Theorem 5.5.Let f : [a,b] — R be a nabla and delta differentiable function such that
m< fY <M
on [a, b] for some real numbers, < M.
() If there exist, v € [a, b] such that

[f(b) = f(a) =m(b—a)] <7 —a,

b—t <
then
st a) + (O~ m)hatt.0) < [ F09 -0~ a)f (o)
< A;ﬁg(b, a) + (m — M)ha(b, 7).
(71) If there exist/,y € [a, b] such that

Y=<t [f(B) — fla) —m(b—a)] <D,

then
mha(a,b) + (M — m)ha(a,vy) < (b—a)f / ft)At
< Mhy(a,b) + (m — M)hy(a,l).
Proof. The first part is just Theoremn 5.4 with= 0. For the second part, let

1
S [f(H) = mlt =), F(t) = a,0(t),

k(t) :=

Glt) = KA (t) = ﬁ [72(t) —m] € [0,1].

Clearly F' is decreasing and nonpositive, and

b
1
| @0t = 5 (1) = f@ —m— e € b~ b1
Since F, G satisfy the hypotheses of Steffensen’s inequality for delta integrals, we determine
the corresponding integrals. First,

/bF(t)At = /b hi(a,o(t))At = —hg(a,t)]i’zé = —hy(a,b) + ha(a,l),
1 L
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and
}
/ F(H)AL = —hy(a,t)[] = —ha(a, ).

Moreover, using the formula for integration by parts for delta integrals,
b b
/ FO)G(#)AL = / h(a, o () K2 (£) At

= hi(a,t)k \ —/ R (a, t)k(t) At

— Mim [—(b—a)f(b) +/abf(t)At+mh2(a, b)] :

Using Steffensen’s inequality for delta integrals, we obtain

b
~h(a,b) + ha(a,€) < — — [—(b —a)f(b)+ / F(OAL+ mhs(a, b)]
< _h2(a7 7)7
which yields the conclusion dfi). O

In [[7], part (i) of the above theorem also involved the equivalent of nabla derivatives for
g-difference equations with < ¢ < 1. However, the function used therg(t) = a — qt =
a — p(t), is not of one sign ofu, b], sinceF (a) = a(1 —q) > 0, F(a/q) = 0, andF(a/q?) =
a(l —1/q) < 0. For this reason we introduced a delta-derivative perspectiy@)iabove and
in the following.

Corollary 5.6. Let f : [a,b] — R be a nabla and delta differentiable function such that
m< fY <M

on [a, b] for some real numbers: < M. Assume there exiéty € [a, p(b)] such that

(5.) o) —a <~ [f6) ~ fla) = m(b—a)] <7 —a
(5.2) bl < [f(B) — fla) — mlb— a)] < b p(0).
Then

2mha(a,b) + (M —m) [ha(£,b) + ha(a, p(7))]

/ FO)vE - / FOAL+ (b= a)(J(b) ~ f(a))
< 2Mhy(a,b) — (M — m) [ha(7,b) + ha(a, p(£))] .
Proof. By the previous theorem, Theor¢m|5.5,

b
mha(b,a) + (M — m)hy(b, ) < / fOVt = (b—a)f(a)

(5.3) < Mha(b, a) + (m — M)ha(b,7)
using(7) and the fact that

b= < = [f(b) — f(a) —m(b—a)] <7~
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in like manner
mha(a,b) + (M —m)ha(a,p(y)) < (b—a)f / f(t)At
(5.4) < Mhs(a,b) + (m — M)ha(a, p(£))

using(i7) and the fact that

o) =0 < S [f(8) — f(@) — m(b— )] < b= p(0).

Add (5.3) to [(5.4) and use Theor¢m 2.2 to arrive at the conclusion. O

Remark 5.7.f T=R,setA\:=b— (=~ —a,sothat —y=¢—a =0b—a — \. Here the
nabla and delta integrals gfon [a, b] are identical, and,(s,t) = (¢ — s)?/2, so the conclusion
of the previous corollary, Corollafy 5.6, is the known [7] inequality

(M —m)X* _ f(b) — f(a) (M =m)(b—a—))*
MY TGS = pma =M b—a)

If T = Z, thenhy(s,t) = (t — s)(t — s +1)/2 = (t — s)*>/2 and

(/f vvi/f A= S 5~ S ) = £0) - Fla)

t=a+1

This time take\ = b — ¢ = v — 1 — a. The discrete conclusion of Corollgry 5.6 is thus

(M=m)X _f®) = @) (M=m)b=a—A=1?
b—a)? — b—a (b—a)?

Corollary 5.8 (lyengar’s Inequality) Let f : [a,b] — R be a nabla and delta differentiable
function such that

m +

m< fY A<M

on [a, b] for some real numbers < M. Assume there exiéty € [a, p(b)] such that(5.1), (5.2)
are satisfied. Then

(M —m) [ha(€,b) + ha(a, p(£)) — ha(a,b)]

/f w+/f (AL~ (b~ a)(/(5) + f(a)
m) [ha(a, b) = ha(7,b) — ha(a, p(7))].
Proof. Subtract[(5.4) fron[@:%) and use Theorien] 2.2 to arrive at the conclusion. O

Remark 5.9. Again if T = R, then fab f(H)Vt = fabf(t)At = fabf(t)dt and hy(t,s) =
(t — s)?/2. Moreover,p({) = £ andp(v) = ~; set

1
T [f(0) = J(a) = m(d — a)].
This transforms the conclusion of Corollary]5.8 into a continuous calculus version,
+f( ) [f(0)— f(a) =m(b—a)] [M(b—a)+ f(a)— f(b)]
2(M —m) '

A=b—l=y—a=

———(b=a)|<
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6. APPLICATIONS OF éEBYéEV’SINEQUALITY

Recently,Cebysev's inequality on time scales for delta integrals was proven [9]. We repeat
the statement of it here in the case of nabla integrals for completeness.

Theorem 6.1(éeby§ev’s inequality)Let f and g be both increasing or both decreasing in
[a,b]. Then
b 1 b b
| rwgovez 2 [ ro9e [ g

If one of the functions is increasing and the other is decreasing, then the above inequality is
reversed.

The following is an application cﬁieby§ev’s inequality, which extends a similar resultin [7]
to general time scales.

Theorem 6.2. Assume thaf¥""" is monotonic ora, b).
(i) If f¥""" is increasing, then

0> /abéma,t)w— {fvn(bl)):i:w(“)} hsa(b, a)

> 177 @) = 177 0)] hasa (b ).

(i) If f¥""" is decreasing, then

0< /bfzn,f(a,t)w— [fw(b[))igw(a)} B a(b, @)

< [an+1<a) _ fv"“(b)} ﬁn+2(b, a).

Proof. The situation for(i7) is analogous to that df). Assume(i), and set'(t) := f¥"" (¢),
G(t) := hnya(b,p(t)). ThenF is increasing by assumption, addis decreasing, so that by
CebySev’s nabla inequality,

/abF(t)G(t)Vt < bia/abF(f)Vt/abG(t)w.

By Corollary[4.2,

b b b

[ FOc@vi= [ 57 bl p0)9t = [ Rstat)ve
We also have
b . . b b .
[ FOve=r"0) - 7@, [ GOVe= [ b plt) = hosalbia).
ThusCebysev's inequality implies
b
R 1 n n »
/ R, (a,t)Vt < yp— [V (0) = ¥ (a)] husa(b, a),

which subtracts to the left side of the inequality. Sifi¢@ " is increasing ofa, bl

SY0) = Y (@)
b—a

fvn+1 (a)ﬁn+2(bv a) < { ] ﬁn+2(bv a) < fvnH (b)ianrZ(bv a)7
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and we have

/b Rn,f(aa t)Vt_ |:fvn (bb) :J;vn (a):| iLnJrQ(ba Cl) 2 /b Rn,f(aa t)Vt - fanrl (b)iLnJrQ(ba a)'

Now Corollar and’V""" is increasing imply that

~

b b b
At / i (b, p(8)) V' > / Ros(a,)Vt > 17" () / e (b, (1)) O,

a

which simplifies to

b
P Ohasa0,0) 2 [ Rosla,)VE 2 177 @hasa(ba).
This, together with the earlier lines give the right side of the inequality. OJ

Theorem 6.3. Assume thaf2""" is monotonic orfa, b and the functiony;, is as defined in
Definition[2.]..
(i) If fA""" is increasing, then

02 0 [ gtz [EOZZ0]
<[4 0) = 2 (@) gusa(b,a).

(i7) If fA™" is decreasing, then

b AMp) — FAT(,
02 (- [ Ryae- O 00

> [fAnH(b) B fAn+1(a)] Gni2(b, a).

Proof. The situation for(ii) is analogous to that df). Assume(:), and sett'(t) := A @),
G(t) == (=1)""h,,1(a,0(t)). ThenF andG are increasing, so that yebySev’s delta in-
b
/ FO)G(#)AL >

equality,
1 b b
— / F(t)At/a G(t)AL
By Lemmg 4.8 witht = q,

b b b
/ F(t)G(t)At = (—1)"*1/ FA T Wi (a, o (t) At = (—1)"*1/ R, (b, t)At.
We also havefab F(t)At = fA"(b) — f2"(a), and, using Theore@.z,

b b
/ G(HAL = (~1)™*! / aer (0, 0 (£)) At = gopa(b, a).

ThusCebysev's inequality implies

b
1 n n
(0 [ R 0.088 = 2 (120~ 1 (@] gasalba)
which subtracts to the left side of the inequality. Sifféé " is increasing ofa, bl

A" _ LA™ a i~
P @anealta) < | 0 < 157 Bgnealt)
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and we have

b »
(1) / R s (b )AL — 2" (@) gnsa(b, @)

27 () = f2"(a)
b—a

> (—1)"*H /ab R, s(b,t)At — [ Gn+2(b, a).

Now Theoreny 22 and Lemma 4.3 again witk « yield

(_1)n+1/ R”7f<b’ t)At - / gn+1(0(t)va>fAn+l (t)At'

Sincef2""" is increasing,

b b b
f““@/lmAdm@mzc4wE/wawmzf““wjlmmdm@Aa

which simplifies to

b
A (0)gnra(b,a) > (1) / Ry (b, )At > f2"" (a)gnsa(b, a).
This, together with the earlier lines give the right side of the inequality. O

Remark 6.4. If T = R, then combining Theorefn 6.2 and Theoren] 6.3 yields Theorem 3.1 in
[6].

Remark 6.5. In Theorenj 6.R:), if n = 0, we obtain

ha(b, a)
b—a

b
6.1) (/me@ﬂww+

Compare that with the following result.

(f(b) = f(a)).

Theorem 6.6. Assume thaf is nabla convex ofu, b]; that is, f¥° > 0 on[a, b]. Then

62) [ rowywi < 050 - "2 50) - sy,

Proof. If F:= ¥ andG(t) := t — a = hy(t, a), then bothF and G are increasing functions.
By Ceby3ev’s inequality on time scales, and the definitioh of (2.2),

/ab Y@t —a)Vit > ﬁ/ﬂb fV(t)Vt/ab ha(t, a) VL.

Using nabla integration by parts on the left, and calculating the right yields the result. [

The following result is a Hermite-Hadamard-type inequality for time scales; compare with
Corollary[5.2.

Corollary 6.7. Let f be nabla convex ohz b]. Then
/f [ g, o 10) +fa)
b—a 2

Proof. Use [6.1),[(6.R) and rearrange accordingly. O
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