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Abstract

Some recent and classical integral inequalities are extended to the general
time-scale calculus, including the inequalities of Steffensen, lyengar, CebySeyv,
and Hermite-Hadamard.
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The unification and extension of continuous calculus, discrete calgutzculus,

and indeed arbitrary real-number calculus to time-scale calculus was first ac-
complished by Hilger in his Ph.D. thesis][ Since then, time-scale calculus
has made steady inroads in explaining the interconnections that exist among the
various calculi, and in extending our understanding to a new, more general and
overarching theory. The purpose of this work is to illustrate this new under-
standing by extending some continuous gnchlculus inequalities and some

of their applications, such as those by Steffensen, Hermite-Hadamard, lyengar,

Time-Scale Integral Inequalities

andCebysev, to arbitrary time scales. PRIEIES R, AT e
The following definitions will serve as a short primer on the time-scale cal-

culus; they can be found in Agarwal and Bohng}; Atici and Guseinov ], Title Page

and Bohner and Petersefl [ A time scaleT is any nonempty closed subset of

R. Within that set, define the jump operatprs : T — T by Contents

44 44

p(t) =sup{s € T: s<t} and o(t)=inf{seT: s>t} p R

whereinf () := sup T andsup () := inf T. The pointt € T is left-dense, left- Go Back

scattered, right-dense, right-scattered(if) = ¢, p(t) < t, o(t) = t, o(t) > t,

respectively. IfT has a right-scattered minimum, defineT,. := T — {m}; Close

otherwise, sefl, = T. If T has a left-scattered maximu, defineT" := Quit

T—{M}; otherwise, seéT” = T. The so-called graininess functions afe) := Page 3 of 33

o(t) —tandv(t) .=t — p(t).
For f : T — R andt € T,, the nabla derivatived] of f att, denotedf" (¢), e ——————
is the number (provided it exists) with the property that givenany 0, there http/fipam.vueduau
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is a neighborhood’ of ¢ such that

[ (p(8)) = f(s) = fY(O)p(t) — ]| < elp(t) — 5|

for all s € U. Common special cases again incltfle- R, wherefY = f’, the
usual derivativeT = Z, where the nabla derivative is the backward difference
operator,fV(t) = f(t) — f(t — 1); ¢-difference equations with < ¢ < 1 and

=0 76) - Flat
t) — f(qt
7o = 19100

For f : T — R andt € T*, the delta derivative’]] of f att, denotedf(t),
is the number (provided it exists) with the property that givenany0, there
is a neighborhood’ of ¢ such that Title Page
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Contents
[f(o(t) = f(5) = FA@)[o(t) — s]| < ela(t) — 5|
44 44
foralls € U. ForT = R, f& = f/, the usual derivative; fof' = Z the delta p >
derivative is the forward difference operatgr; (t) = f(t + 1) — f(t); in the
case ofy-difference equations with > 1, Go Back
Ay flat) = f(t) sy o f(8) = £(0) Close
Page 4 of 33

A function f : T — R is left-dense continuous or ld-continuous provided
it is continuous at left-dense points Thand its right-sided limits exist (finite)
at right-dense points iff. If T = R, then f is ld-continuous if and only if b pamieduat
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f is continuous. It is known from3] or Theorem 8.45 in4] that if f is Id-
continuous, then there is a functidhsuch thatt'V(t) = f(¢). In this case, we

define ,
/ FOVE= F(b) — Fla).

In the same way, from Theorem 1.74 i) we have that ifg is right-dense
continuous, there is a functiagi such thatG> (t) = g(t) and

The following theorem is part of Theorem 2.7 if] and Theorem 8.47 in

[4].

Theorem 1.1 (Integration by parts). If a,b € T and fV, ¢V are left-dense
continuous, then
o~ [ ruteorve

o= [ row

/ (9" OV = (£9)(b)

[ #oong Ve = (o)e

and
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The generalized polynomials for nabla equatiofisdre the functions
T? — R, k € Ny, defined recursively as follows: The functiopis

(2.1) ho(t,s)=1 forall s,teT,

and, giveniy, for k € Ny, the functionhy..; is
t
(2.2) hit1(t, s) :/ hi(r,8)VT forall s,teT.

Note that the funct[onék are all well defined, since eachAis ld-continuous. If for
each fixeds we leth) (¢, s) denote the nabla derivative bf (¢, s) with respect
tot, then

(2.3) hY(t,s) = he(t,s) for keN,teT,.
The above definition implies
h(t,s)=t—s forall s,teT.

Obtaining an expression fdr, for k& > 1 is not easy in general, but for a
particular given time scale it might be easy to find these functions;3der|
some examples.

Theorem 2.1 (Taylor's Formula [7]). Letn € N. Supposef is n + 1 times
nabla differentiable offT,.».+:. Lets € T,.», t € T, and define the functioris,
by(2.1) and(2.2), i.e.,

¢
ho(t,s) =1 and hg(t,s) = / hi (1, )V for k € Np.

S
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Then we have

n

F0) =St )7 (s) + / bt p () £ ()W

k=0

We may also relate the functios as introduced in.1) and @.2) (which
we repeat below) to the functioris. and g, in the delta casel] 4], and the
functionsg, in the nabla case, defined below.

Definition 2.1. For ¢, s € T define the functions Time-Scale Integral Inequalities

Douglas R. Anderson

ho(t,s) = go(t, s) = ho(t,s) = Go(t,s) =1,

~

and givenh,,, g, hn, g, for n € Ny, Title Page
t t Contents
P (t, s :/hnT,SAT,gn t,s :/gnaT),sAT,
+1()S() +1(>S(() « "
t t
hn+1(ta S) = / hn(Ta S)VT7 gn-l-l(tv S) = / gn(p(T)v S)VT' < 4
’ ’ Go Back
The following theorem combines Theorem 9 &f ond Theorem 1.112 of —
[4].
n Quit
Theorem 2.2. Lett € T ands € T* . Then
Page 7 of 33

~

hn(tv S) = gn(ta S) = (—1)nhn(8,t) = (_1)ngn<87t)
J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005
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For ag-difference equation version of the following result and most results in
this paper, including proof techniques, seg [In fact, the presentation of the
results to follow largely mirrors the organisation a6f.[

Theorem 3.1 (Steffensen’s Inequality (nabla))Leta,b € T% witha < b
and f, g : [a,b] — R be nabla-integrable functions, witfi of one sign and
decreasing an@ < g < 1 on|a,b]. Assumé, v € [a, b] such that

Time-Scale Integral Inequalities

b
b—eg/QMNugv—anza t€ a,b),

Douglas R. Anderson

b
’Y—CLS/ g(t)VtSb—f iffﬁoa te[a,b]. Title Page
Then ’ Contents
b b i <44 >»
3.1) [ rves [ rwgoves [ rove
l a a 4 | 4
Proof. The proof given in the-difference case/] can be extended to general Go Back
time scales. As in{], we prove only the case ir3(1) wheref > 0 for the left
inequality; the proofs of the other cases are similar. After subtracting within the Close
left inequality, Quit
Page 8 of 33

b b
| rwsve- [ sove
a l
J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005
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:/em) Vt—/f J(1—g

/f Vt—f()/e(l—g(t))Vt
/ FgOVE— (b - OF(0) + £(0) / o(t)Vt

b b
> [ s0a05i- 10 [Caw5i 50 [ oo : -
a ) ime-Scale Integral Inequalities
b b
/ f Vt— ( ) (/ g(t)vt—/ g(t)vt) Douglas R. Anderson
a l
44
/ f Vt _ ( ) / g(t)Vt Title Page
“ Contents
- / (£(0) = F(0) g()Vt 2 0 T
sincef is decreasing anglis nonnegative. O ¢ >
Go Back
Note that in the theorem above, we could easily replace the nabla integrals
with delta integrals under the same hypotheses and get a completely analogous Close
result. The following theorem more closely resembles the theorem in the con- Quit
tinuous case; the proof is identical to that above and is omitted. Page 9 of 33

Theorem 3.2 (Steffensen’s Inequality Il).Leta,b € TF and f, g : [a,b] — R

be nabla-integrable functions, witfi decreasing and < ¢ < 1 on [a,b). 3. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005
http://jipam.vu.edu.au
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Assume\ := fabg(t)Vt suchthath — \,a + A € T. Then

(3.2)

b b a+\
" soves [sogaves [ v
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Suppos¢’ isn+1 times nabla differentiable dfy..+.. Using Taylor's Theorem,
Theorem2.1, we define the remainder function B, ((-, s) := f(s), and for
n > —1,

(4.1) R, (t,s):=f

Zhswm f (s, () £ (1)

Lemma 4.1. The following identity involving nabla Taylor's remainder holds:

b t b
/ Bt (£, p()) V" (8)V s :/ R, ¢(a, s)Vs+/ R, (b, s)Vs.
a a t

Proof. Proceed by mathematical induction @enForn =

/mQMJ“ W—/f W—/f W+/f

Assume the result holds far= k& — 1:

b . t b
/ hi(t, p(s)) fY (s)Vs:/ Rk_ljf(a,s)Vs%—/ Ry—1.¢(b, s)Vs.

a t

Letn = k. By Corollary 11 in ], for fixed¢ € T we have

(42) }Alkv-h(t? 5) = _iLk(t7 p(S))
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Thus using the nabla integration by parts rule, Theotelhwe have

b
/ hia (. p(3)) f¥ 7 (5) Vs
b
- / hue(t, p(s) Y (5)Vs + hun (8,0 7 (0) = b (8,0) ¥ (a).
By the induction assumption and the definitionqf ;,

b t b
/ B (8, p(s) fV T (5)Vs :/ Ri_1,¢(a,s)Vs +/ Ry_1,4(b,s)Vs
a a t

t rea (8,0) 7 (0) = b (t,0) ¥ (a)
:/atzék_l,f(a, s)vs+/tb}§2k_1,f(b, $)Vs

+ /bt T (5,0) ¥ (b) Vs — /at T (s, ) f¥" (a) Vs
_ / t [Rir s, ) — (s, a) 7 (@)] Vs

b [ [uas0.5) — a5 )] 0

t
t b
:/ fA{kJ(a,S)VS—i—/ .Rk7f(b75)vs.
a t
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Corollary 4.2. Forn > —1,
b - b
[ sl po)s ™ (Vs = [R5V
" . » ab .
/ By 1 (b, p(s)) ¥ (5)Vs :/ R, ¢(a,s)Vs.

Lemma 4.3. The following identity involving delta Taylor's remainder holds:

b t b
/ hsr (t,0(s) f2" (s)As = / R, f(a,s)As + / R, (b, s)As,
a a t

where

Time-Scale Integral Inequalities

Douglas R. Anderson

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 13 of 33

J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:andersod@cord.edu
http://jipam.vu.edu.au/

In the following we generalize to arbitrary time scales some results friy[
applying Steffensen’s inequality, Theor&imi.

Theorem 5.1.Let f : [a,b] — R be ann + 1 times nabla differentiable func-
tion such thatf¥""" is increasing andf¥" is monontonic (either increasing or
decreasing) otla, b]. Assumé, v € [a, b] such that

il/ . mn. .
< M <~ —a if f¥"is decreasing,
hn+1(ba p(a))
y—a< U IUT) fY"is increasing

Pont1 (bu P(a))
Then

A

vn _fVn 1 ’ vn YA
R A e / R sla,5)Vs < 17" (6) — 17 (0).

h‘n+1 (bv p

Proof. AssumefV" is decreasing; the case whef®" is increasing is similar
and is omitted. Lef := — V""", Becausef¥V" is decreasingf¥""" < 0, so
that /* > 0 and decreasing oja, b]. Define

~

(b p()
M) = b pla))

Note thatF’, g satisfy the assumptions of Steffensen’s inequality, Thed@emn

€[0,1], telab, n>-1.

Time-Scale Integral Inequalities
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using @.2),

~

b 1 b hpyo(b, @
[ o9t = [ ptive= 2ol
a hat1(b; p(a)) Ja hnta (b, p(a))
Thus if A
b—0< M <~ —a,
hn+l<b7 ,O(CL))
then Time-Scale Integral Inequalities
b b 0
/ F(t)Vt < / F(t)g(t)Vt < / F(t)Vt. Douglas R. Anderson
l a a
By Corollary4.2 and the fundamental theorem of nabla calculus, this simplifies _
to Title Page
n 1 b n Contents
PO < s [ Ruslas) Vs < SO
h41(b, p(a)) Ja «“ >
= < >

It is evident that an analogous result can be found for the delta integral case Go Back

using the delta equivalent of Theoréeii.
Close

Definition 5.1. A twice nabla-differentiable functiofi : [a,b] — R is convex out

on|a, ] if and only if f¥° > 0 on [a, b].
. . . . . . . Page 15 of 33
The following corollary is the first Hermite-Hadamard inequality, derived

from Theorenb.1withn = 0.

J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005
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Corollary 5.2. Let f : [a,b] — R be convex and monotonic. Assufhe €
[a, b] such that

(>b— ha(b,a) , N2 ha(b, a) +a if fis decreasing,
b— p(a) b— p(a)
iLQ(b, a) iLQ(b, CL) . .. .
(<b— , < ——~ +a Iif fisincreasing.
b—p(a) b—p(a)
Then Time-Scale Integral Inequalities
p(a) —a 1 b b—a Douglas R. Anderson
fly) + fla) < /ftVt§ fla)+ f(b) — f(£).
)+ G @) < g [ 0Vt @) + 1) - 10
Another, slightly different, form of the first Hermite-Hadamard inequality is Title Page
the following; this implies that for time scales with left-scattered points there Contents
are at least two inequalities of this type. » N
Theorem 5.3.Let f : [a,b] — R be convex and monotonic. Assufne € [a, b % N
such that
A N Go Back
hz(b, CL) hg(b, a) . . .
C>a+ Do 7 >b— . if f is decreasing, Close
it
(<a-+ M, v<b-— ha(b,a) if fisincreasing o
b—a b—a Page 16 of 33
Then
1 b J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005
f(’)/) < b—a / f(p(t))Vt < f(a) + f(b) — f(f) http://jipam.vu.edu.au
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Proof. Assumef is decreasing and convex. Th¢l~ > 0, f¥ < 0, andfV is
increasing. Ther” := —fV is decreasing and satisfiés> 0. ForG := ,’j_;];
0 < G < 1andF, G satisfy the hypotheses of Theor&ni. Now the inequality

expression
b
b—ég/ Gt)Vt<~v—a

takes the form
1

—

b
b—€§b /(b—t)Vtgfy—a.

Concentrating on the left inequality,

>b—

b 1 b
/(b—t)Vt:b—b /(b—a—l—a—t)Vt,

—a —a

which simplifies to

(>a+ hQ(b’a);
b—a
similarly, X
sy eba)
b—a

Furthermore, note thgt’ F(t)Vt = f(r)— f(s), and integration by parts yields

b b b
| Focavi=  [e-nr 09 = @) - ;= [ v

Time-Scale Integral Inequalities
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It follows that Steffensen’s inequality takes the form

f(0) = f(b) < f(a)

i [ rewves s@ - ),

which can be rearranged to match the theorem'’s stated conclusion.

Theorem 5.4.Letf : [a,b] — R be ann+ 1 times nabla differentiable function

such that
Vn+1

m< f

on [a, b] for some real numbers. < M. Also, let/, v € [a, b] such that

<M

bt [F70) ~ 7 (@)~ m(b—a)] <7 -

Then

miLnJrg(b,a) + (M —m) n+2b€ §/ R, (a,t)V
< Mh

n+2(b a) + (m — M)izn+2(b, ).

Proof. Let

Time-Scale Integral Inequalities

Douglas R. Anderson

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 18 of 33

J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:andersod@cord.edu
http://jipam.vu.edu.au/

Observe thaf' is nonnegative and decreasing, and

| 6Vt = o [ 0) = 57 @)~ mlb )]

SinceF, G satisfy the hypotheses of Theoréiri, we compute the various in-
tegrals given in3.1). First, by @.2),

¥ (a)

b b
/ F(t)Vt = / Bs1 (b, p(£))VE = —hi (b, 1) |t = hnga(D,0),
l l

and .,
/ F(6)VE = —hnia (b D] = hya(b, @) — hya(b, 7).
Moreover, using Corollarnt.2, we have

/abF(t)G(t)Vt =37 1_ - /ab Pr (b, p(2)) <fvn+1(t) B m) vy

1 b m
- R, 1(a, )Vt
M—mL SO e v

1 b m
= R, OVt —
M—m/a £, )Vt = -

Using Steffensen’s inequalityd (1), we obtain

- b
mhn+2(b, t) ya

iln+2(b7 CL).

Bt (b, £) <

—m

which yields the conclusion of the theorem. H

b
|:/ Rn,f(a’u t>Vt - mhn—l—Q(b’ CL) S hn+2(b7 a>_hn+2<b’ ’7>a
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Theorem 5.5. Let f : [a,b] — R be a nabla and delta differentiable function

such that
m< fY A<M

on [a, b] for some real numbers < M.

() If there exist,~y € [a, b] such that

b—1(<

then

mhs(b, a) + (M — m)ha(b, €) < / FOVE— (b— a)f(a)

< Mhy(b,a) + (m — M)hy(b, 7).

(i7) If there exist/, v € [a, b] such that

v—a<
then

mhs(a,b) + (M —m)hs(a,vy) < /f t)At

< Mhy(a,b) + (m — M)hy(a, l).
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Proof. The first part is just Theorefm 4 with n = 0. For the second part, let

L f) - mt—b)], F(t) = ha(a,o (),

k(t) = T

G(t) = k(1) = imgﬂw—ﬂewg.

Clearly F' is decreasing and nonpositive, and

b
/ G(t)At = M 1_ m [f(b) - f(a> - m(b - CL)] S [’7 —a b— ﬁ], Time-Scale Integral Inequalities

SinceF’, GG satisfy the hypotheses of Steffensen’s inequality for delta integrals,
we determine the corresponding integrals. First,

Douglas R. Anderson

b b Title Page
AF@Nzthﬂ@Mz&Mathe ha(a,b) + ha(a, ©), S
and ., <44 >»
/ F(t)At = —h2(a,t)|;/ = —ha(a,y). < >
Moreover, using the formula for integration by parts for delta integrals, Go Back
b b A Close
/ F(t)G(t)At = / hi(a,o(t))k=(t)At
a a Quit
= i (a, O)k(t)|" —/ he(a, t)k(t) At e 2l O el
1 b J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005
= - —(b — a)f(b) + / f(t)At + mhg(a, b) . http:/jipam.vu.edu.au
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Using Steffensen’s inequality for delta integrals, we obtain

1

—m

b
—ho(a,b) + ho(a, l) < 7 {—(b —a)f(b) +/a f()At + mhy(a,b)

S _hQ(a'7 7)7

which yields the conclusion dfi). N

In [7], part (i) of the above theorem also involved the equivalent of nabla
derivatives forg-difference equations with < ¢ < 1. However, the function
used theref'(t) = a — qt = a — p(t), is not of one sign offu, b|, sinceF'(a) = Douglas R. Anderson
a(l—q) >0, F(a/q) =0,andF(a/q*) = a(1 — 1/q) < 0. For this reason we
introduced a delta-derivative perspective ii) above and in the following.

Time-Scale Integral Inequalities
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Corollary 5.6. Let f : [a,b] — R be a nabla and delta differentiable function Contents
such that
m< Y A<M « dd
on[a, b] for some real numbers, < M. Assume there exiéty € [a, p(b)] such ) d
that Go Back
1 cl
(5.1)  p()-a< [F(b) = f(a) =m(b—a)] <7 —a. —
M 1_ m Quit
(5.2) b—l< 7 [f(b) = fla) =m(b—a)] <b—p(l). Page 22 of 33
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Then
2mha(a,b) + (M —m) [ha(€,b) + ha(a, p(7))]

/ e w—/ AL+ (b~ a)(F(B) ~ f(a)
< 2Mhg(a,b) — (M —m) [ha(7,b) + ha(a, p(£))] .
Proof. By the previous theorem, Theorenb,

mhs(b, a) + (M — m)ha(b, €) < / FOVE— (b—a) f(a)

using(7) and the fact that

bt < s [F(0) ~ f(a) —~mib— ) <7~
in like manner
mha(a,b) + (M —m)ha(a, p(y)) < (b—a)f / f(t)At
(5.4) < Mhs(a,b) + (m — M)ha(a, p(¢))

using(ii) and the fact that

o) 0 < 5 [f(8) — f(@) ~ m(b— )] < b pl().

Add (5.3) to (5.4) and use Theorera.2to arrive at the conclusion.
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Remark 1. If T = R, setA :=b—{¢ =~ —a,sothatb —v = ( —a =
b — a — A. Here the nabla and delta integrals @fon [a, b] are identical, and
hy(s,t) = (t—s)?/2, so the conclusion of the previous corollary, Coroll&ry,
is the known T[] inequality

SRIULS (G

(M —m)\?

(M —m)(b—a— \)?
(b—a)? '

(b—a)?

m +

If T = Z, thenhy(s,t) = (t — s)(t — s +1)/2 = (t — 5)?/2 and

b b b b—1
/ )Vt~ / Fat =S £ty = S £(t) = £(b) - f(a).

This time take\ = b — ¢ = v — 1 — a. The discrete conclusion of Corollaky6
is thus

(M —m)N _ )= fla) _

(M —m)(b—a—X—1)?
b—a? — b—a T '

(b—a)?

m +

Corollary 5.7 (lyengar’s Inequality). Let f : [a,b] — R be a nabla and delta
differentiable function such that

m< fY A<M

on [a, b] for some real numbers < M. Assume there exiéty € [a, p(b)] such
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that (5.1), (5.2) are satisfied. Then

(M —m) [ha(€,b) + ha(a, p(¢

/f w+/ FHAL— (b— a)(f(b) + f(a))
m) [ha(a, b) — ha(7y,b) — ha(a, p(7))] .

Proof. Subtract §.4) from (5.3) and use Theore 2to arrive at the conclusion.
O

Remark 2. Again if T = R, thenf;’f(t)Vt = fff(t)At — fabf(t)dt and
ho(t,s) = (t — s)2/2. Moreover,p({) = ¢ and p(7) = ; set

— ha(a, b)]

1

A=b—Vl=~v—a=
v-a M—m

[£(b) = f(a) =m(b—a)].

This transforms the conclusion of Corollaby7 into a continuous calculus ver-
sion,

—m(b—a)][M(b—a)+ f(a) — f(b)]
2(M —m) ‘
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Recently,éebyéev’s inequality on time scales for delta integrals was prcien |

We repeat the statement of it here in the case of nabla integrals for completeness.

Theorem 6.1 Cebyéev’s inequality). Let f and g be both increasing or both
decreasing ifja, b]. Then

/f Vt>—/f w/ (VL.

If one of the functions is increasing and the other is decreasing, then the above

inequality is reversed.

The following is an application oéebyéev’s inequality, which extends a
similar result in [] to general time scales.

Theorem 6.2. Assume thaf¥V""" is monotonic oria, b).
(i) If f¥""" is increasing, then

0> /b R, s(a,t)Vt — {fvn(b;:icvn(aq hy2(b, )
> |7 (@) = 57 0)] Busalbia).

(i) If ¥ is decreasing, then

0< /abRn,f(a,t)Vt - [fvn(b;:fn(a)} hny2(b, )

< 7@ = 177 O)] husalb,0).
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Proof. The situation for(ii) is analogous to that ofi). Assume(i), and set

F(t) == f¥""(t), G(t) := husi(b, p(t)). ThenF is increasing by assumption,

and( is decreasing, so that l§yebySev’s nabla inequality,

bF(t)Vt /bG(t)Vt

/bF(t)G(t)V <

By Corollary4.2,

A

/ FY T () h g1 (b, p(1)) VE = / R p(a, t)Vt.

a

/ PGV =
We also have
| Fove= " 0-r"@ / G(1)Vt = / o (b, p(8)) = o (b, ).

ThusCebysev’s inequality implies

[ fusta, 09t < = [ 0) = 17 @) hualba),

which subtracts to the left side of the inequality. Sifdé " is increasing on

a, b],

PV (@) ya(b,a) < [fvn(b[)) : £vn(@)

} nya(b,a) < fV (D) (b, a),
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and we have

/: R p(a, )V — {fvn(bi:gvn(“)} o sa(b, )

b
> / Ry (0, )9 = £ (0) (b, a).

Now Corollary4.2and f¥""" is increasing imply that
Time-Scale Integral Inequalities

b b b
£ ) / hover (b, p(£))VE > / Rop(a, )Vt > 7" (a) / v (b, p(£)VE, S —
which simplifies to TiielPage
n+1 -~ b ~ n+1 ol C t t
£ B, 0) = [ R 98 2 17 @hsalbra). T
“ <44 44
This, together with the earlier lines give the right side of the inequality. [J < >
Theorem 6.3. Assume thafA"+1 is monotonic ona, b] and the functiony; is Go Back
as defined in Definitio. 1. ——
(i) If fA""" is increasing, then Quit

Page 28 of 33
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(i) If fA4""" is decreasing, then

b A" () — FA"(,
02 (-1 [ Rugtnar- | EOZE g )

> [ 0) = 12 (@) gura(bya).
Proof. The situation for(ii) is analogous to that ofi). Assume(i), and set

F(t) :== fA" (1), G(t) :== (=1)""hni1(a, 0(t)). ThenF andG are increas-
ing, so that byCebysSev’s delta inequality,

/abF(t)G(t)At > 1 /abF(t)At/abg(t)At.

By Lemma4.3with ¢t = q,

/ F(HG()AL = (~1)+ / P (O (a, 0 (1) At

a

b
— (1) / Ry (b, )AL,
We also havefab F(t)At = f2"(b) — f2"(a), and, using Theorerd.2,
b b
[ 0ar= 00 [ haao®)at = g

ThusCebysev's inequality implies

1
—a

b
0 [ Rusb )0t 2 5 [750) — £ (@)] gurall o)
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which subtracts to the left side of the inequality. Sifé8 " is increasing on

la, b],

27 () = f2(a)
b—a

fAnH (a)gn+2(b> a) S |:

and we have

} Gsa(b,@) < F (B)gusalb, ),

b il
(1) / Ro s (b, )AL — F2" (@) gnsa(b, )

> e Rt se- (OO )

b—a
Now Theoren®.2and Lemmat.3again witht = «a yield

(0 [ Rugb.08t = [ guatot)a) > 0,

Since 2" is increasing,
b b
A (b)/ Gni1(o(t),a)At > (—1)”*1/ R, (b, t)At

> £ a) / G (0(8), @) AL,

which simplifies to

b
A (D) gnsa(b,a) > (—1)mH / Ry s (b,t)At > f2"" () gnia(b, a).

a

This, together with the earlier lines give the right side of the inequality. [J
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Remark 3. If T = R, then combining Theore®.2 and Theorent.3 yields
Theorem 3.1 inf].

Remark 4. In Theoren®t.2 (i), if n = 0, we obtain

hz(b G)
b—a

6.1) / FOVE< (b—a)f(a) + 22D (1) - f(a)).

Compare that with the following result.
Time-Scale Integral Inequalities

Theorem 6.4. Assume thaf is nabla convex ofu, b]; thatis, f¥° > 0 on|a, b).

Then Douglas R. Anderson
(6.2) / flp)Vt < (b—a)f(b) — h;@’(j) (f(b) — f(a)). Title Page
Contents
Proof. If F := f¥ andG(t) := t — a = Iu(t,a), then bothF and G are > o
increasing functions. BZebySev’s inequality on time scales, and the definition
of hin (2.2), < >
b 1 b b Go Back
/ V)t —a)Vt > m/ fV(t)Vt/ hyi(t,a)Vt. e
Quit

Using nabla integration by parts on the left, and calculating the right yields the
result. ] Page 31 of 33
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Corollary 6.5. Let f be nabla convex ofu, b]. Then
1 /b flp() + [ (t) f(0) + f(a)
b—a /, 2 '

Vit <
- 2

Proof. Use 6.1), (6.2) and rearrange accordingly. O]

Time-Scale Integral Inequalities

Douglas R. Anderson

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 32 of 33

J. Ineq. Pure and Appl. Math. 6(3) Art. 66, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:andersod@cord.edu
http://jipam.vu.edu.au/

[1] R.P. AGARWAL AND M. BOHNER, Basic calculus on time scales and
some of its application®esults Math.35(1-2) (1999), 3—-22.

[2] D.R. ANDERSON, Taylor polynomials for nabla dynamic equations on
time scalesPanAmerican Math. J12(4) (2002), 17-27.

[3] F.M. ATICI AND G.Sh. GUSEINQV, On Green’s functions and positive so-
lutions for boundary value problems on time scaleSomput. Appl. Math.,
141(2002) 75-99.

[4] M. BOHNER AND A. PETERSON,Dynamic Equations on Time Scales:
An Introduction with ApplicationBirkhauser, Boston (2001).

Time-Scale Integral Inequalities

Douglas R. Anderson

[5] M. BOHNERAND A. PETERSON (Eds.)Advances in Dynamic Equations L
on Time ScalesBirkhauser, Boston (2003). Contents
[6] H. GAUCHMAN, Some Integral Inequalities Involving Taylor's Remainder «
I, J. Inequal. in Pure & Appl. Math4(1) (2003), Art. 1. [ONLINE:http: <
/ljipam.vu.edu.au/article.php?sid=237 ]
Go Back
[7] H. GAUCHMAN, Integral Inequalities ig-Calculus,Comp. & Math. with e
Applics.,47 (2004), 281-300.
[8] S. HILGER, Ein MaRkettenkalkil mit Anwendung auf Zentrumsmannig- out
faltigkeiten PhD thesis, Universitat Wiirzburg (1988). Page 33 of 33

[9] C.C. YEH, F.H. WONGAND H.J. LI, éebyéev’s inequality on time scales, o R
J. Inequal. in Pure & Appl. Math.§(1) (2005), Art. 7. [ONLINE:http: http://jipam.vu.edu.au
/ljipam.vu.edu.au/article.php?sid=476 ]


http://jipam.vu.edu.au/
mailto:andersod@cord.edu
http://jipam.vu.edu.au/
http://jipam.vu.edu.au/article.php?sid=237
http://jipam.vu.edu.au/article.php?sid=237
http://jipam.vu.edu.au/article.php?sid=476
http://jipam.vu.edu.au/article.php?sid=476

	Preliminaries on Time Scales
	Taylor's Theorem Using Nabla Polynomials
	Steffensen's inequality
	Taylor's Remainder
	Applications of Steffensen's Inequality
	Applications of Cebyšev's Inequality

