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ABSTRACT. We present a generalization of Newton’s inequality, i.e., an inequality of mixed
form connecting symmetric functions and weighted means. Two open problems are also stated.
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1. INTRODUCTION

A well-known theorem of Newton [1] states the following:

Theorem 1.1. If all the zeros of a polynomial

(1.2) Py(z) =epz" + ez 4 a4 e, eg =1,
are real, then its coefficients satisfy
(1.2) Ep_16ps1 < A,(:)ez, k=1,2,...,n—1;
) . k _n—k
whereA,” = 5257

For a sequence = {a,}"_, of real numbers, by putting

(1.3) P.(z) = H(x +a;) = Z epx™ ",

we see that the coefficieat = e (a) represents théth elementary symmetric functia@f a,
i.e. the sum of all the products,at a time, of different;; € a.

There are several generalizations of Newton’s inequélity [2], [3]. In this article we give
another one. For this purpose define the sequeaces a/{a;}, ¢ = 1,2,...,n, and by
er(a}) denote the:-th elementary symmetric function ove}. We have:
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Theorem 1.2.Letc = {¢;}_, be a weight sequence of non-negative numbers satisfying

n

(1.4) de=1,

=1

and, for an arbitrary sequence = {a;}"_, of real numbers, define
(1.5) B =Y cen(al), EfY =1,

or equivalently,

(1.6) BY = ey —exrfi +enafi— o+ (<1 e fr 4o+ (DFFE
where

. 1
a.7) fs = (Z cmf) .

=1

Then
2

(1.8) EY B < A" 1)( ”) . k=12...n-1

Proof. We shall give an easy proof supposing that the sequeroasists of arbitrarypositive
rational numbers Sincea andc are independent of each other, the truthfulness of the above
theorem follows by the continuity principle.

Therefore, lep = {p}}_, be an arbitrary sequence of positive integers and put

i .
(2.9) Gi==mn—,> t=12....n; peN.
21 Pk
Now, for a given real sequenee consider the polynomia)(x) defined by
(1.10) Q(z) = [ [z + a;).
=1
Since all its zeros are real, by the well-known Gauss theorem, the ze€P&0f
/ . Di
1.11 =
(L11) Q) =Q@3
are also real.

In particular, the same is valid for the polynomia{x) defined by

n n

C<
g ; (z + a;)
Since
(113) R(Qj) — 1 + Efc)xn E(C) n—1— k E7(lc)1’

the result follows by simple application of Theorgm|1.1.

Remark 1. Since}"" | ex(a]) = (n — k)ex(a), puttinge; = 1/n, i = 1,2,...,nin (1.5) and
(1.8), we obtain the assertion from Theorem 1.1. Hence our result represents a generalization
of Newton’s theorem.
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Also, denoting byf{(a) = f, := o, c;af)®, s > 0, the classical weighted mean (with

7

weightsc) of orders, and using the identity

(1.14) ex(a)) = ex(a) — azep_1(a)),
an equivalent form oE,EC) arises, i.e.,
(115) B =en—epfitenaff — b (1) e f] 4+ (SR
Putting this in [(I.B), we obtain a mixed inequality connecting elementary symmetric func-
tions with weighted means of integer order. 0J

Problem 1.1. An interesting fact is that non-negativity efis nota necessary condition for
(1.8) to hold. We shall illustrate this point by an example. Fet 1, n = 3, we have

()7 ~ 15 B
= (c1(az + az) + calay + az) + c3(ar + ag))? — 4(crazaz + cra1a3 + czaias)
= (1—cp)* (a1 — az)* + 2(c1 — cae3) (a1 — ag)(az — ay) + (1 — e3)*(az — a1)?,
and this quadratic form is positive semi-definite wheneyejc; > 0.
Hence, in this case the inequalify (1.8) is valid for all real sequeaeéth c satisfying
(1.16) c1+c+ce3=1, cieae3 > 0.

Therefore there remains the seemingly difficult problem of finding true bounds for the se-
quencec satisfying [I1.4), such that the inequalify (1.8) holds for an arbitrary real sequence
a.

Problem 1.2. There is an interesting application of Theorem| 1.2 to the well known Turan’s
problem. Under what conditions does the sequence of polynodialéx)} satisfy Turan’s
inequality

(1.17) Qn-1(2)Qns1(z) < (Qu(2))%,
for eachz € [a, b] andn € [ny, ng)?

This problem is solved for many classes of polynomials [4]. We shall consider here the
following question|[5].

An arbitrary sequencgl; },i = 1,2, ... of real numbers generates a sequence of polynomials
{P.(z)},n=0,1,2,... defined by

(1.18) Pu(z) i=a" +diz" t Fdpr" 4+ dy i+ dy,  Polx) =1

Denote also by, the set of zeros of, ().
Now, if for somem > 1 the set4,, consists of real numbers only, then from Theofem 1.2, it
follows that

(1.19) Po_1(a)P,y1(a) < P3(a),

for eacha € A,, andn € [1,m — 1].
Is it possible to establish some simple conditions such that the Turan inequality

holds for eachr € [min a, max al,ca,, andn € [1,m — 1].
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