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Symmetric functions, Weighted means.

We present a generalization of Newton’s inequality, i.e., an inequality of mixed
form connecting symmetric functions and weighted means. Two open problems

are also stated.
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1. Introduction

A well-known theorem of Newtonl] states the following:

Theorem 1.1.If all the zeros of a polynomial

(1.2) Py(z) =epz" + ez " e, eo =1,

are real, then its coefficients satisfy Newton's Inequality
Slavko Simic
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we see that the coefficieat = e, (a) represents thkth elementary symmetric func-
tion of a, i.e. the sum of all the products,at a time, of different;; € a. FEI ST
There are several generalizations of Newton’s inequality[B]. In this artlcle Go Back
we give another one. For this purpose define the sequetjces a/{a;}, i =
1,2,...,n, and byei(al) denote thek-th elementary symmetric function ovaf. Full Screen
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and, for an arbitrary sequence = {q;}?_, of real numbers, define

n

(1.5) BY =) cala), B =1,

i=1

or equivalently,

(1.6) EY =ep—erifitepafi— 4 (=1 eprfl o+ (—1FfE,
where

" 1
(1.7) fo = (:E:(gaf) .

=1

Then
2

(1.8) EY B, < A (E};))  k=12....n—1

Proof. We shall give an easy proof supposing that the sequermmsists of arbi-
trary positive rational numbersSincea andc are independent of each other, the
truthfulness of the above theorem follows by the continuity principle.

Therefore, lep = {p;. }}_, be an arbitrary sequence of positive integers and put

Di .
1.9 G =—=>— 1=12,...,n, peN.
(1.9) S e
Now, for a given real sequenee consider the polynomia)(x) defined by
(1.10) Qz) = [[(= + )™
=1
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Since all its zeros are real, by the well-known Gauss theorem, the ze€P&:0f

(1.11) Q(z) = Q)Y L

- x—l—ai’
=1

are also real.
In particular, the same is valid for the polynomia(x) defined by

1.12 = ; -

(1.12) R(z) H<HG);<$+%>

Since

(1.13) Rlz)=a2" '+ B92" 2 ... 4 B9 h oy B9

the result follows by simple application of Theoreml.

Remarkl. Since) " , ex(a)) = (n — k)ex(a), puttinge; = 1/n, i = 1,2,....n
in (1.5 and (L.8), we obtain the assertion from Theorerm 1l Hence our result
represents a generalization of Newton'’s theorem.

Also, denoting byf{”(a) = f, := (321, c:a$)'/*, s > 0, the classical weighted

i= %

mean (with weights) of orders, and using the identity
(1.14) ex(al) = er(a) — a;ep_1(al),
an equivalent form oE,iC) arises, i.e.,

(1.15) B —ep—epifi+enmafi— o+ (=1 eprfl + -+ (=1)FfF.

Putting this in (.8), we obtain a mixed inequality connecting elementary sym-

metric functions with weighted means of integer order. O
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Problem 1.1. An interesting fact is that non-negativity ofs nota necessary condi-
tion for (1.8) to hold. We shall illustrate this point by an example. EGe 1, n = 3,
we have

(O~ 4B
= (c1(ag + as) + ca(ay + as) + c3(ar + az))? — 4(crazas + ca,a3 + cza,ay)
= (1 —co)* (a1 — a2)* + 2(c1 — cae3) (a1 — ag)(as — ay) + (1 — ¢3)*(as — a1)?,

and this quadratic form is positive semi-definite wheneyeyc; > 0. Slavko Simic
vol. 10, iss. 2, art. 44, 2009
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Hence, in this case the inequality.§) is valid for all real sequences with c

satisfying
(116) c1+cy+c3 = 1, C1C2C3 2 0. TS g
Therefore there remains the seemingly difficult problem of finding true bounds IS
for the sequencesatisfying (L.4), such that the inequalityL.(8) holds for an arbitrary < >
real sequenca.
. . . L < >
Problem 1.2. There is an interesting application of Theoreérfito the well known
Turan’s problem. Under what conditions does the sequence of polynoftials) } Page 6 of 8
satisfyTuran’s inequality
Go Back
: _ < 2
(1.17) Qu-1(2)Qu(2) < (Qu(a))?, P
for eachx € [a,b] andn € [ny,ny)? g
ose
This problem is solved for many classes of polynomidls (We shall consider
here the following questior]. journal of inequalities
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© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:ssimic@turing.mi.sanu.ac.rs
http://jipam.vu.edu.au

Denote also by, the set of zeros o, ().
Now, if for somem > 1 the setA,, consists of real numbers only, then from
Theoreml.?2, it follows that

(119) Pn—l(a>Pn+1 (CL) S P?f(a)7

for eacha € A,, andn € [1,m — 1].
Is it possible to establish some simple conditions such that the Turan inequality

(1.20) Py1(2) Paya(z) < Pi(x),

holds for eachr € [min a, maxal,e4,, andn € [1,m — 1].
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