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In the paper [5] Feng Qi proved the following proposition.

Proposition 1. Suppose thatf ∈ Cn([a, b]) satisfiesf (i)(a) ≥ 0 andf (n)(x) ≥
n! for x ∈ [a, b], where0 ≤ i ≤ n− 1 andn ∈ N, then

(1)
∫ b

a

[f(x)]n+2dx ≥
(∫ b

a

f(x)dx

)n+1

.

This motivated him to propose an open problem.

Problem 1. Under what conditions does the inequality

(2)
∫ b

a

[f(x)]tdx ≥
(∫ b

a

f(x)dx

)t−1

hold for t > 1?

In the joint paper [6], K.W. Yu and F. Qi obtained one answer to the above
problem: inequality (2) is valid for all f ∈ C([a, b]) such that

∫ b

a
f(x)dx ≥

(b − a)t−1 for given t > 1. Many authors considered different generalizations
of Problem1 (cf. [1, 2, 3, 4]).

We will prove the following answer to Problem1 which will imply a gener-
alization of Proposition1.

Theorem 2. Suppose thatf ∈ C1([a, b]) satisfiesf(a) ≥ 0 and f ′(x) ≥
(t− 2)(x− a)t−3 for x ∈ [a, b] andt ≥ 3. Then

(3)
∫ b

a

[f(x)]tdx ≥
(∫ b

a

f(x)dx

)t−1

holds. The equality holds only ifa = b or f(x) = x− a andt = 3.
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Proof. Let f be a function satisfying the conditions of Theorem2. Functionf is
increasing becausef ′(x) > 0 for x ∈ (a, b], so fromf(ξ) ≤ f(x) for ξ ∈ [a, x]
we obtain

(4) f(x)(x− a) ≥
∫ x

a

f(ξ)dξ, for all x ∈ [a, b].

Now we define

F (x) ,
∫ x

a

[f(ξ)]tdξ −
(∫ x

a

f(ξ)dξ

)t−1

.

ThenF (a) = 0 andF ′(x) = f(x)G(x), where

G(x) = [f(x)]t−1 − (t− 1)

(∫ x

a

f(ξ)dξ

)t−2

.

Clearly,G(a) = [f(a)]t−1 ≥ 0 and

G′(x) = (t− 1)f(x)

(
[f(x)]t−3f ′(x)− (t− 2)

(∫ x

a

f(ξ)dξ

)t−3
)

.

From the conditions of Theorem2 and inequality (4) we have

(5) [f(x)]t−3f ′(x) ≥ (t− 2)(f(x)(x− a))t−3 ≥ (t− 2)

(∫ x

a

f(ξ)dξ

)t−3

.

ThusG′(x) ≥ 0, so withG(a) ≥ 0 we getG(x) ≥ 0. FromF (a) = 0 and
F ′(x) = f(x)G(x) ≥ 0 it follows thatF (x) ≥ 0 for all x ∈ [a, b], particularly

F (b) =

∫ b

a

[f(ξ)]tdξ −
(∫ b

a

f(ξ)dξ

)t−1

≥ 0.
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The equality in (3) holds only ifF ′(x) = 0 for all x ∈ [a, b] which is equiva-
lent tof(a) = 0 andG′(x) = 0 and according to (5), if t > 3, this is valid only
for f(a) = 0, f ′(x) = (t − 2)(x − a)t−3 andf constant on[a, b]. But the last
two conditions cannot hold simultaneously ifb 6= a. The other possibility for
equality to hold is iff(a) = 0 andt = 3. In that case (5) implies thatf ′(x) = 1
on [a, b] sof(x) = x− a.

Corollary 3. Suppose thatf ∈ C1([a, b]) satisfiesf(a) ≥ 0 and f ′(x) ≥
n(x− a)n−1 for x ∈ [a, b] and a positive integern, then∫ b

a

[f(x)]n+2dx ≥
(∫ b

a

f(x)dx

)n+1

.

Proof. Sett = n + 2 in Theorem2.

Remark 1. Now we show that Proposition1 follows from Corollary3. Let
the functionf satisfy the conditions of Proposition1. Sincef (n)(x) ≥ n!,
successively integratingn − 1 times over[a, x] we getf ′(x) ≥ n(x − a)n−1,
x ∈ [a, b]. Therefore the conditions of Corollary3 are fulfilled.
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