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1. I NTRODUCTION

π, is a real number and defined as the ratio of the circumference of a circle to its diameter.
π′s digits have many interesting properties andπ has a rich history dating back to the time of
the Babylonians and Egyptians, circa 2000 B.C. The Bible has two references, I Kings 7:23 and
Chronicles 4:2, to Pi and gives it an estimate of about 3. The Babylonians gave an estimate of
π as31

8
and the Egyptians also obtained313

81
as an estimate. We know that31

8
< π < 313

81
.

Many researchers have increasingly calculated the number of decimal places for the value
of π. Apparently in September 2002, Dr. Kanada and his team, from the University of Tokyo,
calculatedπ to 1.2411 trillion digits, indeed a world record. Many, many formulae also exist
for the representation ofπ, and a collection of these formulae is listed below.

Vieta (~1593), see [7], gave an infinite product of nested radicals for the reciprocal ofπ,
namely
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2 ANTHONY SOFO

Wallis (~1650), see [7], gave

π

4
=

∞∏
r=1

(
1− 1

(2r + 1)2

)
.

Leibnitz (~1670), see [7], gave the very slow converging series

π

4
=

∞∑
r=0

(−1)r

2r + 1
.

Newton (~1666) admitted being ashamed at having computedπ to fifteen decimal places, by
the formula

π =
3
√

3

4
+ 24

∫ 1
4

0

√
x− x2dx

=
3
√

3

4
+ 2− 3

4

{
1

5
+

1

7 · 24
+

1

9 · 27
+

5

11 · 212
+ · · ·

}
=

3
√

3

4
+ 2− 3

4

∞∑
k=0

(
2k
k

)
1

16k (k + 1) (2k + 5)

Euler (~1750) gave many representations ofπ including:

π

2
= lim

n→∞

[
1

n
+

1

6n2
+ 4n

n∑
j=1

1

n2 + j2

]
.

Ramanujan (~1914) has also given many representations ofπ and its reciprocal, including:

1

π
=

2
√

2

34 · 112

∞∑
r=0

(4r)! (1103 + (2 · 5 · 7 · 13 · 29) r)

(r!)4 (22 · 32 · 11)4r .

For a fuller account of Ramanujan’s work the interested reader is referred to the books of Berndt
[4].

Comtet (1974) gave

π4 =
23 · 34 · 5

17

∞∑
r=1

1

r4
(

2r
r

) .
D. and G. Chudnovsky (1989) gave

1

π
= 12

∞∑
r=0

(−1)r (6r)!

(r!)3 (3r)!
· 13 · 1045493 + 2 · 32 · 7 · 11 · 19 · 127 · 163r

(218 · 33 · 53 · 233 · 293)r+ 1
2

.

Bailey, Borwein and Plouffe (1996) gave

(1.1) π =
∞∑

r=0

1

16r

[
4

8r + 1
− 2

8r + 4
− 1

8r + 5
− 1

8r + 6

]
.

Bellard (1997) gave

π =
1

32 · 52 · 11 · 13 · 23

[
∞∑

r=1

3P (r)(
7r
2r

)
2r−1

− 24 · 5 · 254741

]
,

where

P (r) = −13 · 29 · 2351653r5 + 193 · 16193509r4 − 52 · 7 · 79 · 212873r3

+ 5 · 206392559r2 − 2 · 98441137r + 23 · 13 · 43 · 2459.
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Lupas [10], gave

π = 4 +
∞∑

k=1

(−16)k

(
2k
k

)
(40k2 + 16k + 1)(

4k
2k

)2
2k (4k + 1)2

.

The original Lupas formula contained a minor misprint which has been corrected here.
Borwein and Girgensohn (2003), wrote

π = ln 4 + 10
∞∑

r=1

1

2rr
(

3r
r

) .
Sofo [16] has given

π

2
=
√

2 + ln
(√

2− 1
)

+
∞∑

r=0

(
4r

2r

)
1

16r (2r + 1) (4r + 1)

and

π2 =
1308

135
+

12

5

∞∑
r=1

4r

r2
(

2r
r

)
(r + 1) (2r + 1) (2r + 3)

.

Many other representations ofπ exist, including the famous Machin-type formulae such as

π

4
= 4 arctan

(
1

5

)
− arctan

(
1

239

)
.

There are also many other connections ofπ and other mathematical constants, including:

eiπ + 1 = 0,

π3 + 8π = 56− 8
∞∑

r=1

(−1)r

r (r + 1) (2r + 1)3 ,

π2

6
= 3 ln2 φ +

∞∑
r=0

(−1)r (r!)2

(2r)! (2r + 1)2 , whereφ is the Golden ratio

and

π2 = −12e3

∞∑
r=1

1

r2
cos

 9

rπ +
√

(rπ)2 − 32

 .

A selection of some series expansion representations ofπ including some of the above is
given by Sebah and Gourdon [15].

There are other nice articles and books relating toπ including [2, 3, 6, 7, 8, 11, 12].
The aim of this paper is to derive representations ofπ, as well as some other constants, by the

consideration of a particular definite integral. The following integral will now be investigated.
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4 ANTHONY SOFO

2. THE I NTEGRAL

Theorem 2.1.For k, m andα real positive numbers anda ≥ 1, then

I (a, k, m, α) =

∫ 1
a

0

xm

(1− xk)α dx(2.1)

=
∞∑

r=0

(α)r

r! (rk + m + 1) ark+m+1
(2.2)

= T0 2F1

[
m+1

k
, α

m+1+k
k

∣∣∣∣ 1

ak

]
(2.3)

=
1

k

[
B

(
1− α,

m + 1

k

)
−B

(
1− a−k; 1− α,

m + 1

k

)]
,(2.4)

where

(2.5) T0 =
1

(m + 1) am+1
,

(b)s is Pochhammer’s symbol defined by

(2.6)


(b)0 = 1

(b)s = b (b + 1) · · · (b + s− 1) = Γ(b+s)
Γ(b)

,

Γ (b) is the classical Gamma function,2F1 [· ·] is the Gauss Hypergeometric function,B (s, t)
is the classical Beta function and

B (z; s, t) =

∫ z

0

us−1 (1− u)t−1 du

is the incomplete Beta function.

Proof.

I (a, k, m, α) =

∫ 1
a

0

xm

(1− xk)α dx

=

∫ 1
a

0

∞∑
r=0

(−1)r

(
−α

r

)
xkr+m.

where we have utilised
1

(1 + z)β
=

∞∑
r=0

(
−β

r

)
zr

and from (
−β

r

)
= (−1)r

(
β + r − 1

r

)
=

(−1)r (β)r

r!

we have

I(a, k,m, α) =

∫ 1
a

0

∞∑
r=0

(α)r

r!
xkr+m.

Reversing the order of integration and summation and substituting the integration limits we
obtain the result (2.2). The result (2.4) is obtained by the use of the substitutionu = 1− xk.

J. Inequal. Pure and Appl. Math., 6(5) Art. 138, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


π AND OTHER CONSTANTS 5

Binomial sums are intrinsically associated with generalised hypergeometric functions and if
from (2.2) we let

(2.7) Tr =
(α)r

r! (rk + m + 1) ark+m+1
,

then we get the ratio

(2.8)
Tr+1

Tr

=
(α + r)

(
r + m+1

k

)
ak (r + 1)

(
r + m+1+k

k

)
whereT0 is given by (2.5). From (2.5) and (2.2) we can write

I(a, k,m, α) = T0 2F1

[
m+1

k
, α

m+1+k
k

∣∣∣∣ 1

ak

]
=

1

k

[
B

(
1− α,

m + 1

k

)
−B

(
1− a−k; 1− α,

m + 1

k

)]
,

which is the result (2.3). We can now match (2.2) and (2.3) so that
∞∑

r=0

(α)r

r! (rk + m + 1) ark+m+1
= T0 2F1

[
m+1

k
, α

m+1+k
k

∣∣∣∣ 1

ak

]
=

1

k

[
B

(
1− α,

m + 1

k

)
−B

(
1− a−k; 1− α,

m + 1

k

)]
,

and the infinite series converges for
∣∣a−k

∣∣ < 1. �

In a previous paper, Sofo [17] has utilised (2.1) for the casea = 1 and developed identities
for π and other constants, such as

π =
15p!

(√
30 + 6

√
5 + 1−

√
5
)

4
(

7
30

)
p

∞∑
r=0

(
7
30

)
r

r! (30r + 30p + 7)
, for p = 0, 1, 2, 3, . . .

Remark 2.2. Bailey, Borwein, Borwein and Plouffe see [7] utilised (2.1) fora =
√

2, α = 1,
k = 8 andm = β − 1, β < 8 to prove the new formula (1.1). Subsequently Hirschhorn [9] has
shown that (1.1) can be obtained from standard integration procedures.

The following lemma will be useful in the consideration of the integral (2.1).

Lemma 2.3. For p = 0, 1, 2, . . . the following well-known identities are given by Beyer[5]

(2.9) sin2p+1 x =
(−1)p

22p

p∑
j=0

(−1)j

(
2p + 1

p

)
sin ((2p + 1− 2j) x)

and

(2.10) sin2p+2 x

=
1

22p+1

[(
2p + 1

p

)
− (−1)p

p∑
j=0

(−1)j

(
2p + 2

p

)
cos ((2p + 2− 2j) x)

]
.

The integral (2.1) can be simplified as follows. Consider the casek = 2; then from (2.1)

(2.11) I (a, m, 2, α) =

∫ 1
a

0

xm

(1− x2)α dx.

The following lemma concerns the integral (2.11).
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Lemma 2.4.
(i) For m = 2p + 1, 2α = 2q + 1; p = 0, 1, 2, . . . , andq = 0, 1, 2, . . .

I (a, m, 2, α) =

∫ 1
a

0

x2p+1

(1− x2)
2q+1

2

dx =

∫ θ∗

0

sin2p+1 θ

cos2q θ
dθ(2.12)

=
1

2

[
B

(
1− 2q

2
, p + 1

)
−B

(
1− a−2;

1− 2q

2
, p + 1

)]
=

1

2q − 1
·
(

1
a

)2p+2

cos2q−1 θ∗
+

q−1∑
j=1

(−1)j ( 1
a

)2p+2

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i)− 1

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i)− 1

2 (q − i) + 1

[
(−1)p

22p

×
p∑

s=0

(−1)s

2p− 2s + 1

(
2p + 1

s

)
{1− cos ((2p− 2s + 1) θ∗)}

]
.

wherex = sin θ andθ∗ = arcsin
(

1
a

)
.

Note, the middle term in the right hand side of (2.12) is identically zero forq = 1 and
only the last sum applies forq = 0.

(ii) For m = 2p + 2, 2α = 2q + 1; p = 0, 1, 2, . . . , andq = 0, 1, 2, . . .

I (a, m, 2, α) =

∫ 1
a

0

x2p+2

(1− x2)
2q+1

2

dx =

∫ θ∗

0

sin2p+2 θ

cos2q θ
dθ(2.13)

=
1

2

[
B

(
1− 2q

2
, p +

3

2

)
−B

(
1− a−2;

1− 2q

2
, p +

3

2

)]
=

1

2q − 1
·
(

1
a

)2p+3

cos2q−1 θ∗
+

q−1∑
j=1

(−1)j ( 1
a

)2p+3

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i + 1)

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i + 1)

2 (q − i) + 1

{
1

22p+1

[(
2p + 1

p

)
θ∗

− (−1)p
p∑

s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin ((2p− 2s + 2) θ∗)

]}
.

wherex = sin θ andθ∗ = arcsin
(

1
a

)
.

Note, the middle term in the right hand side of (2.13) is identically zero forq = 1 and
only the last two terms apply forq = 0.

Proof. (i) From

I (a, m, 2, α) =

∫ θ∗

0

sin2p+1 θ

cos2q θ
dθ,

integrating by parts once leads to

I (a, m, 2, α) =
1

2q − 1

[
sin2p+2 θ

cos2q−1 θ

}θ∗

0

− (2p + 3− 2q)

∫ θ∗

0

sin2p+1 θ

cos2q−2 θ
dθ

]

=

(
1
a

)2p+2

(2q − 1) cos2q−1 θ∗
− 2p− 2q + 3

2q − 1

∫ θ∗

0

sin2p+1 θ

cos2q−2 θ
dθ,
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and repeated integration by parts gives us

(2.14) I (a, m, 2, α)

=

(
1
a

)2p+2

(2q − 1) cos2q−1 θ∗
+

q−1∑
j=1

(−1)j ( 1
a

)2p+2

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i) + 1

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i) + 1

2 (q − i) + 1

∫ θ∗

0

sin2p+1 θdθ.

Substituting (2.9), from Lemma 2.3, into (2.14) and integrating, results in (2.12) hence
part (i) of the lemma is proved.

(ii) The proof of part (ii) of the lemma follows the same footsteps as part (i).
�

The following lemma is given and will be useful in the simplification of the left hand side of
(2.17) and (2.18).

Lemma 2.5. For r = 0, 1, 2, . . . andq = 1, 2, 3, . . . then

(2.15)

(
q + 1

2

)
r

r!
=

1

4r

(
2r

r

) q−1∏
ρ=0

2r + 2ρ + 1

2ρ + 1
,

and forq = 0,

(2.16)

(
1
2

)
r

r!
=

1

4r

(
2r

r

)
.

Proof. For q = 0, then (
1
2

)
r

r!
=

Γ
(
r + 1

2

)
r!Γ
(

1
2

) =
1

4r

(
2r

r

)
.

This result is well known and is also given by Wilf [18].
For q ≥ 1, let

P (q) :=

(
q + 1

2

)
r

r!
=

1

4r

(
2r

r

) q−1∏
ρ=0

2r + 2ρ + 1

2ρ + 1

then

P (1) =

(
3
2

)
r

r!
=

(2r + 1)

2

Γ
(

1
2

)
Γ
(

3
2

) (1
2

)
r

r!
,

and from (2.16)

P (1) =
2r + 1

4r

(
2r

r

)
,

which satisfies the right hand of (2.15) forq = 1.
Consider

P (q + 1) =

(
q + 3

2

)
r

r!
=

Γ
(
q + r + 3

2

)
r!Γ
(
q + 3

2

)
=

(
2q + 2r + 1

2q + 1

)
Γ
(
q + r + 1

2

)
r!Γ
(
q + 1

2

)
=

(
2q + 2r + 1

2q + 1

) (
q + 1

2

)
r

r!
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and from (2.15)

P (q + 1) =

(
2q + 2r + 1

2q + 1

)
1

4r

(
2r

r

) q−1∏
ρ=0

2r + 2ρ + 1

2ρ + 1
=

1

4r

(
2r

r

) q∏
ρ=0

2r + 2ρ + 1

2ρ + 1

hence the lemma is proved. �

Fork = 2 the following theorem now applies.

Theorem 2.6.

(i) For m = 2p + 1, 2α = 2q + 1; p = 0, 1, 2, . . . , q = 0, 1, 2, . . . ,

∞∑
r=0

(
q + 1

2

)
r

r! (2r + 2p + 2) a2r+2p+2
=

∞∑
r=0

(
2r
r

) ∏q−1
ρ=0

2r+2ρ+1
2ρ+1

4r (2r + 2p + 2) a2r+2p+2
(2.17)

= T ∗0 2F1

[
p + 1, 1

2
(2q + 1)

p + 2

∣∣∣∣ 1

a2

]
=

1

2

[
B

(
1− 2q

2
, p + 1

)
−B

(
1− a−2;

1− 2q

2
, p + 1

)]
=

(
1
a

)2p+2

(2q − 1) cos2q−1 θ∗
+

q−1∑
j=1

(−1)j ( 1
a

)2p+2

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i) + 1

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i) + 1

2 (q − i) + 1

×

[
(−1)p

22p

p∑
s=0

(−1)s

2p− 2s + 1

(
2p + 1

s

)
{1− cos ((2p− 2s + 1) θ∗)}

]

where

T ∗0 =
1

(2p + 2) a2p+2

andθ∗ = arcsin
(

1
a

)
.

(ii) For m = 2p + 2, 2α = 2q + 1; p = 0, 1, 2, . . . , q = 0, 1, 2, . . . ,

∞∑
r=0

(
q + 1

2

)
r

r! (2r + 2p + 3) a2r+2p+3
(2.18)

=
∞∑

r=0

(
2r
r

) ∏q−1
ρ=0

2r+2ρ+1
2ρ+1

4r (2r + 2p + 3) a2r+2p+3

= T∇0 2F1

[
1
2
(2p + 3) , 1

2
(2q + 1)

1
2
(2p + 5)

∣∣∣∣ 1

a2

]
=

1

2

[
B

(
1− 2q

2
, p +

3

2

)
−B

(
1− a−2;

1− 2q

2
, p +

3

2

)]
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=

(
1
a

)2p+3

(2q − 1) cos2q−1 θ∗
+

q−1∑
j=1

(−1)j ( 1
a

)2p+3

cos2(q−j)−1 θ∗

j∏
i=1

2 (p− q + i + 1)

2 (q − i) + 1

+ (−1)q
q∏

i=1

2 (p− q + i + 1)

2 (q − i) + 1

{
1

22p+1

[(
2p + 1

p

)
θ∗

− (−1)p
p∑

s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin ((2p− 2s + 2) θ∗)

]}
,

where

T∇0 =
1

(2p + 3) a2p+3

andθ∗ = arcsin
(

1
a

)
.

The proof of Theorem 2.6 follows directly from Lemma 2.4 , (2.14) and Lemma 2.5.
Some examples will now be given expressingπ and other constants in terms of an infinite

series.

3. I LLUSTRATIVE EXAMPLES

Example 3.1.From (2.17) withq = 2, a = 2 andθ∗ = π
6
, we have

2√
3

(
8

3
− 2 (2p− 1)

)
+ 8 (−1)p (2p− 1) (2p + 1)

×
p∑

s=0

(−1)s

2p− 2s + 1

(
2p + 1

s

){
1− cos (2p− 2s + 1)

π

6

}
=

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

16r (r + p + 1)
.

Hence, forp = 7,

√
3 =

3 · 222

7 · 163 · 6367
− 32 · 11

26 · 7 · 163 · 6376

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

16r (r + 8)
.

Example 3.2.From (2.18) withq = 2, a = 2√
3

andθ∗ = π
3
, we have

8− 4p +
16p (p + 1)(√

3
)2p+3

[(
2p + 1

p

)
π

3

− (−1)p
p∑

s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3

]

=
∞∑

r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r

J. Inequal. Pure and Appl. Math., 6(5) Art. 138, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 ANTHONY SOFO

or rearranging,

π

3
=

3p+ 3
2

16p(p + 1)
(

2p+1
p

) {4p− 8 +
∞∑

r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r
}

+
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
,

and forp = 2

20
√

3π

81
= 1 +

1

16

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

2r + 7

(
3

16

)r

.

Forp = 2, a =
√

2

π =
8

3
+

1

3
√

2

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

2r + 5

(
1

8

)r

.

Example 3.3.For q = 3, p = 2 anda =
√

2,

π =
52

15
− 1

30
√

2

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3) (2r + 5)

2r + 7

(
1

8

)r

.

Example 3.4.For q = 4, p = 3 anda = 2,

π =
1712

√
3

945
+

1

8960

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3) (2r + 5) (2r + 7)

(2r + 9) 16r
.

Example 3.5.For q = 5, p = 0 anda =
√

5,

√
5 =

211

3 · 5 · 193 · 2731

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 5) (2r + 7) (2r + 9) (2r + 11)

20r
.

Example 3.6.For q = 6, p = 5 anda =
√

2,

π =
23 · 1289

5 · 7 · 9 · 11
+

1

5 · 16 · 829 ·
√

2

∞∑
r=0

[(
2r

r

)
× (2r + 1) (2r + 3) (2r + 5) (2r + 7) (2r + 9) (2r + 11)

(2r + 13) 8r

]
.

Example 3.7.For q = 4
(
α = 9

2

)
, p = 59 (m = 120) anda = 2,

π =
Ω1

Ω2

√
3

+
1

Ω3

∞∑
r=0

(
2r

r

)
(2r + 1) (2r + 3) (2r + 5) (2r + 7)

(2r + 121) 16r
,

where

Ω1 = 15604102274295581508678435968572864501995513795052733

= (46042305118509401202197) (338907929004245243145594887689) ,

Ω2 = 26 · 35 · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59

· 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113

J. Inequal. Pure and Appl. Math., 6(5) Art. 138, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


π AND OTHER CONSTANTS 11

and

Ω3 = 211 · 33 · 5 · 7 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 59

· 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113.

In this case the first term of the sum givesπ accurate to over forty decimal places.

Other particular values of constants may be obtained from (2.13).

Example 3.8.Fora = 2, m = 10, k = 1 andα = 7

ln 2 =
27947

27 · 32 · 5 · 7
+

1

212 · 3 · 5 · 7

∞∑
r=0

(
r + 6

r

)
1

(r + 11) 2r
.

It is of some interest to note that from (2.18) form = 0 andα = w > 1, integer, we may
eventually write, after integration by parts, and using (2.2)

ln

(
a + 1

a− 1

)
=

2w (w − 1)!

(2w − 3)!!

[
∞∑

r=0

(
r + w − 1

r

)
1

(2r + 1) a2r+1

− 1

a (2w − 1)

w−1∑
j=1

1

2j

(
a2

a2 − 1

)w−j j∏
ν=1

2w − 2ν + 1

w − ν

]
,

where(2w − 3)!! = (2w − 3) (2w − 5) · · · 5 · 3 · 1, anda > 1.
Fora = 11 andw = 7, we have

ln

(
6

5

)
=

211

3 · 7 · 112

∞∑
r=0

(
r + 6

r

)
1

(2r + 1) 121r
− 11 · 179 · 17047711

29 · 38 · 56
.

Remark 3.1. In the degenerative case ofw = 1 then we obtain the well-known formula as
listed in Abramowitz and Stegun [1], namely

ln

(
a + 1

a− 1

)
= 2

∞∑
r=0

1

(2r + 1) a2r+1
.

4. SOME ESTIMATES

It is useful to be able to obtain some estimates of the representation of the series (2.2). This
is done in the following theorems.

Theorem 4.1.Given that

(4.1) S (a, k, α, m) =
∞∑

r=0

(α)r

r! (rk + m + 1) ark+m+1
,

then
1

(m + 1) am+1
(4.2)

< S (a, k, α, m)

≤


1

((mq+1)amq+1)
1
q k

1
p

[
B
(
1− αp, 1

k

)
−B

(
1− a−k; 1− αp, 1

k

)] 1
p ,

(
ak

ak−1

)α
1

(m+1)am+1 , a > 1,
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for real numbersp and q wherep > 1, 1
p

+ 1
q

= 1, B (s, t) is the classical Beta function and
B (z; s, t) is the incomplete Beta function as described in Theorem 2.1.

Proof. Let f (x) = 1

(1−xk)
α andg (x) = xm. Since|f (x)|p and|g (x)|q are integrable functions

defined onx ∈
[
0, 1

a

]
, then by Hölder’s integral inequality [14]

S (a, k, α, m) ≤

(∫ 1
a

0

xmqdx

) 1
q
(∫ 1

a

0

dx

(1− xk)αp

) 1
p

.

Now ∫ 1
a

0

dx

(1− xk)αp =
1

k

[
B

(
1− αp,

1

k

)
−B

(
1− a−k; 1− αp,

1

k

)]
by the substitutionu = 1− xk, and hence

S (a, k, α, m) ≤ 1

((mq + 1) amq+1)
1
q k

1
p

[
B

(
1− αp,

1

k

)
−B

(
1− a−k; 1− αp,

1

k

)] 1
p

.

The lower bound onS (a, k, α, m) is 1
(m+1)am+1 since the sum (2.2) is one of positive terms.

The second part of the inequality (4.2) is obtained from∫ x1

x0

|f (x) g (x)| dx ≤ ess sup
x∈[x0,x1]

|f (x)|
∫ x1

x0

|g (x)| dx.

Sincef (x) is monotonic onx ∈
[
0, 1

a

]
,

ess sup
x∈[0, 1

a ]

{
1

(1− xk)α

}
=

(
ak

ak − 1

)α

and ∫ 1
a

0

xmdx =
1

(m + 1) am+1
,

hence
1

(m + 1) am+1
< S (a, k, α, m) ≤

(
ak

ak − 1

)α
1

(m + 1) am+1
.

The result (4.2) follows and the theorem is proved. �

The next theorem develops an inequality of (4.1) based on the pre-Grüss result.

Theorem 4.2.For a > 1,

(4.3)

∣∣∣∣S (a, k, α, m)− 1

k (m + 1) am

{
B

(
1− α,

1

k

)
−B

(
1− a−k; 1− α,

1

k

)}∣∣∣∣
≤ m

2 (m + 1) am+1
√

2m + 1

[(
ak

ak − 1

)α

− 1

]
.

Proof. Define

T (g, f) :=
1

x1 − x0

∫ x1

x0

f (x) g (x) dx− 1

x1 − x0

∫ x1

x0

f (x) dx · 1

x1 − x0

∫ x1

x0

g (x) dx

for f (x) andg (x) integrable functions, as given in Theorem 4.1, and defined onx ∈
[
0, 1

a

]
,

then the pre-Grüss inequality [13] states that

|T (g, f)| ≤ Γ− γ

2
[T (g, g)]

1
2
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for γ ≤ f (x) ≤ Γ.
Now, for x ∈

[
0, 1

a

]
γ = 1 ≤ f (x) =

1

(1− xk)α ≤
(

ak

ak − 1

)α

= Γ,

T (g, f) = a

∫ 1
a

0

xm

(1− xk)α dx− a2

∫ 1
a

0

dx

(1− xk)α

∫ 1
a

0

xmdx

= aS (a, k, α, m)− a2

(m + 1) am+1k

[
B

(
1− α,

1

k

)
−B

(
1− a−k; 1− α,

1

k

)]
.

In a similar fashion
[T (g, g)]

1
2 =

m

(m + 1) am
√

2m + 1
.

CombiningT (g, f) and[T (g, g)]
1
2 gives us the result (4.3) after a little algebraic simplifica-

tion. �

Open Problem 1. From Example 3.2, we have that

U∞ =
3p+ 3

2

16p(p + 1)
(

2p+1
p

) {4p− 8 +
∞∑

r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r
}

+
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
=

π

3
.

Now let us consider the following. For a finite positive integerR let

UR =
3p+ 3

2

16p(p + 1)
(

2p+1
p

) {4p− 8 +
R∑

r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r
}

+
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
,

UR = V + W,

in fact
UR <

π

3
.

For a fixed positive integerR, it can be shown, by standard analysis methods, that

lim
p−>∞

V = lim
p−>∞

3p+ 3
2

16p(p + 1)
(

2p+1
p

)
×

{
4p− 8 +

R∑
r=0

(
2r

r

)
(2r + 1) (2r + 3)

(2r + 2p + 3)

(
3

16

)r
}

= 0

and asp− > ∞ uniformly

W =
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
u

π

3
.
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This implies that forp− > ∞, W u U∞ and

W =
(−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3
u

π

3
.

An open problem is to prove, or provide a contradiction to,

lim
p−>∞

W = lim
p−>∞

 (−1)p(
2p+1

p

) p∑
s=0

(−1)s

2p− 2s + 2

(
2p + 2

s

)
sin (2p− 2s + 2)

π

3

 =
π

3
.
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