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ABSTRACT. We analyze the relations of three coefficient conditions of different type implying
one by one the absolute convergence of the Haar series. Furthermore we give a sharp condition
which guaranties the equivalence of these coefficient conditions.
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1. INTRODUCTION

A known result of P.L. Ul'janovi[4] asserts that the condition

(1.1) oy = An <oo (a,>0)
2

implies the absolute convergence of the Haar series, i.e.

oo 2™ 00
Z Z }bgf)ngi)(l’ﬂ = Z |an Xn(2)] < 00
m=0 k=1 n=0
almost everywhere if0, 1). He also verified, among others, that if the sequége is mono-
tone then the conditiorj (1.1) is not only sufficient, but also necessary to the absolute conver-
gence of the Haar series.
In [1] we verified that if the condition

(1.2) 0P ::i{ Z ai} < 00
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holds then the Haar series is absol(de«)-summable for anyx > 0, consequently the condi-
tion (1.2) also guarantees the absolute convergence of the Haar series.
Recently, in[[8], we showed that if the sequeReg} is onlylocally quasi decreasing.e. if

a, < Ka,, for m<n<2m andforall m,

and the Haar series is absol(it& « > 0)-summable almost everywhere, then{1.2) holds.
Here and in the sequek” and K; will denote positive constants, not necessarily the same at
each occurrence. Furthermore we shall say that a seqepgés quasi decreasing

(0 <)an < Kap,
holds for anyn > m. This will be denoted by{a,} € @DS, and if the sequencgu,,} is a

locally quasi decreasing, then we use the short nation} € LQDS.
P.L. Ul'janov [5], implicitly, gave a further condition in the form

1
o0

. 1 oe] ) 2
(1.3) 03 : mz::?) m(logm)% {;nan} < o0
which also implies the absolute convergence of the Haar series.
These results propose the question: What is the relation among these conditions?
We shall show that the conditioh (1.3) claims more than| (1.2), (2.2) demands more than
(1.1); and in general, they cannot be reversed. In order to get an opposite implication, a certain
monotonicity condition on the sequenge, } is required.

2. RESULTS
We establish the following theorem.

Theorem 2.1. Suppose that := {a, } is a sequence of nonnegative numbers. Then the follow-
ing assertions hold:

(2.2) o1 < K oy,
and ifa € LQ DS then

(2.2) o9 < K oy.
Similarly

(2.3) o9 < K 03,

and if the sequencg4,,, } defined by

k=2m41
belongs ta) DS then
(2.4) o3 < K oy.
Finally
(2.5) o1 < K o3,
and if the sequencgra?} € QDS then
(2.6) o3 < Koy.

Corollary 2.2. If the sequencéna?} € QDS then the conditiond (111), (1.2) and (IL.3) are
equivalent.
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Next we show that the assumpti¢na?} € QDS in a certain sense is sharp. Namely if we
claim only that the sequende® a2} € QDS with o < 1, then already the implicatioh (1.1
(1.3), in general, does not hold.

Proposition 2.3. If (0 <)a < 1 then there exists a sequene,} such that the sequence
{n*a2} € QDS, furthermore

01 <0 but 03 = OQ.
Finally we verify the following.

Proposition 2.4. The requirements

(2.7) {na’} € QDS
and the following two assumptions jointly
(2.8) {A,,} € QDS and {a,} € LQDS

are equivalent.

Acknowledgement 1.1 would like to sincerest thanks to the referee for his worthy sugges-
tions, exceptionally for the remark that the inequality (2.6) also follows fionj (2.2), (2.4) and

Propositiorj 2.4.

3. LEMMA

We require the following lemma being a special case of a theorem proved in [2, Satz] ap-
pended with the inequality (3.2) which was also verified, in the same paper, in the proof of the
"Hilfssatz" (see p. 217).

Lemma 3.1. The inequality[(1.3) holds if and only if there exists a nondecreasing sequence
{p.} of positive numbers with the properties

o) 1 o0
(3.1) > o< and ) a? i, < oo.
n=1 n n=1
Furthermore
1 1 1
o0 oo 2 oo 2 o0 1 2
3.2 ape SKQY anun
(.2 nznlogné{; k} N {§ M} {;’W"}

also holds.

4. PROOFS
Proof of Theorem 2]1The inequality[(2.]L) can be verified by then Holder inequality. Namely
0o 2m+1 2m+1 2 2m+1 1 2
=X > F Z PRV e
n
m=1n= 2m+1 =2m+1 n=2m+1
To prove the inequality (2/2) we utilize the monotonlcity assumption and thus we get that

00 2m+1

02<KZ2/ ayni <K1Y Z »=Kioy.

m=1n= 2m+1
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1
o) 2
The inequality) also comes via the Hdolder inequality. Rgt:= { > ai} . Then

n=m

1

oo 2vtl_1 ( om+l 2

w3 S
v=0 m=2¥ n=2m+1

22v+1 2

o0
SR I
v=0 n=22" 41
1
o0 oo 2
<>l Y
v=0 n=22" 141
00 22"

In order to prove[(2]4) first we define a nondecreasing sequigngeas follows. Let

fn = max Al for 2™ <n<2mt m=1,2...,
1<k<m
furthermore lefu; = o = us. Itis clear by{A4,,} € QDS that
(4.1) ATl < pigmin < KA (m>1),

holds. Hence we obtain by (1.2) and (4.1) that

[o%) 2m+1

(4.2) Z Z aZ pi, < Koy < 00

m=1n=2m+1

and

IN

=1 =1

0o 2m+1

Ky Y -

m=1n=2m+1 " Hn

o0

(4.3) <Ky —

1
oy Hamt

SKlem:Kl(TQ < Q.
m=1
Finally, using the inequality (3}2), the estimatiops [4.2) (4.3) clearly imply the statement
2.

The assertior] (2]5) is an immediate consequende df (2.1) and (2.3).
The proof of the declaratio.6) is analogous to that of| (2.4). The assumiptioh} €

QDS enables us to define again a nondecreasing seqyengesatisfying the inequalities in
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(3.1). We can clearly assume that @l > 0, otherwise|[(2.6) is trivial if{na2} € QDS. Let
forn >3

1<k<n

1
n = max ——, and = llg = lU3.
2 vk Hi= H2 = K3

The definition ofu,, and the assumptiofn a2} € QDS certainly imply that

1 K
4.4 < pin <
(4.4) anyn ==
is valid. The definition ofr; given in (1.1) and[(4]4) convey the estimations
ZaiungKZa—nﬁK01<oo
n
n=3 n=3
and
SIS RS TR
n=1 " Hn a n=3 T Hn n=3 n 1
These estimations and (8.2) verify (2.6).
Herewith the whole theorem is proved. O

Proof of Corollary{2.2.The inequalities| (2]1)[ (2.3) and (2.6) proved in the theorem obviously
deliver the assertion of the corollary. The proof is ready. O

Proof of Proposition 23 Setting

a—1
__02™m _ m/2 P}
Um 27, &nm o—m/ [zt
and
2 . @ _
a, :=¢e;.n if vp<n<v,g, m=01,
Then
o0 (e’e} Um+1
an _ 14
doE=d Em
n
n=3 m=0 n=vm-+1
o0 oo
11—« /2
2 _ —m
< E Em Vil = E 2 < 00,

1
o) 2
however, withR,, := {Z ai} ,
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furthermore
o0 V41 [e'e] V41
2 2 2 —«
Ry, > > an=) ¢ Y k
k=m n=v+1 k=m n=vi+1

1 - 21—« 1 - —k 1 —-m
ZE;%%H:?;z > 2
From the last two estimations we clearly get that= co, as stated.
The proof is complete. O

Proof of Proposition 2 J4First we prove that the assumptipn (2.7) implies both properties claimed
in (2.8). Namely by{n a2} € QDS we get that ifu > m then

2m+1

2
2 &nn 1 m 1 2 m+1
A=) n = gmril el
n=2m+1
1 ou+1
2 2
2 g 2 5pm D
n=2,41

1 2
- QK3

i.e.{na’} € QDS = {A,} € QDS holds.
The implications{na?} € QDS = {a,} € QDS = {a,} € LQDS are trivial.
To prove the implicatior| (2|8} (2.7) we first prove by{a,} € LQDS that if 1 > m then

2m+1

Z a; < K2™ a3
k=2m+1
and
QK

k=2r—141

thus by{A,} € QDS we obtain that
a2, < Ky 2™dal,
holds, whencdna?} € QDS plainly follows.
The proof is ended. O
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