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ABSTRACT. We make use of the Guo-Krasnoselskii fixed point theorem on cones to prove ex-
istence of positive solutions to a non logalLaplacian boundary value problem on time scales
arising in many applications.
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1. INTRODUCTION

The purpose of this paper is to prove the existence of positive solutions for the following non
local p-Laplacian dynamic equation on a time scéte

(1.1) — (62 (1)) = Mu®) e 0.7y =T,
SO = T ey 9 R

subject to the boundary conditions

1.2) bp(u?(0)) = Bp(u®(m) =0, 0<y<T.

u(T) — Pu(n) =

0,
whereg,(-) is thep-Laplacian operator defined ky,(s) = |s|P~2s,p > 1, (¢,) " = ¢, with ¢
the Holder conjugate of, i.e. - + & = 1. The function

(H1) f:(0,T)r — R*™ is assumed to be continuous
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(R** denotes the positive real numbers)is a dimensionless parameter that can be identified
with the square of the applied potential difference at the ends of a condyi¢toris the tem-
perature dependent resistivity of the conduciois a transfer coefficient supposed to verify

0 < B < 1. Different values fop andk are connected with a variety of applications for both

T = RandT = Z. Whenk > 1, equation|[(1.]l) represents the thermo-electric flow in a con-
ductor [20]. In the particular cage= k = 2, (1.1) has been used to describe the operation of
thermistors, fuse wires, electric arcs and fluorescent lighis [11, 12, 18, 19k #ot, equa-

tion (1.1) models the phenomena associated with the occurrence of shear bands (i) in metals
being deformed under high strain rates([6, 7], (ii) in the theory of gravitational equilibrium of
polytropic stars[[17], (iii) in the investigation of the fully turbulent behavior of real flows, us-
ing invariant measures for the Euler equationl [10], (iv) in modelling aggregation of cells via
interaction with a chemical substance (chemotaxkis) [22].

The theory of dynamic equations on time scales (or, more generally, measure chains) was
introduced in 1988 by Stefan Hilger in his PhD thesis (se¢([14, 15]). The theory presents a
structure where, once a result is established for a general time scale, then special cases include
a result for differential equations (obtained by taking the time scale to be the real numbers) and
a result for difference equations (obtained by taking the time scale to be the integers). A great
deal of work has been done since 1988, unifying and extending the theories of differential and
difference equations, and many results are now available in the general setting of time scales —
seel[1/ 2, B3,4,18,/19] and the references therein. We point out, however, that results concerning
p-Laplacian problems on time scales are scdrce [21]. In this paper we prove the existence of
positive solutions to the probler (1.1)-(1.2) on a general time stale

2. PRELIMINARIES

Our main tool to prove the existence of positive solutions (Theprem 3.5) is the Guo-Krasnoselskii
fixed point theorem on cones.

Theorem 2.1(Guo-Krasnoselskii fixed point theorem on corled [13, 168t X be a Banach
space ands C £ be a cone inX. Assume tha®, and(2, are bounded open subsets/ofwith
0eQy CQ CQandthatG : K — K is a completely continuous operator such that

(i) either||Guw| < ||wl||, w € 98, and||Gw|| > ||w]|, w € 08; Or

(i) ||Gw| > ||w|, w € 924, and||Gw|| < ||w||, w € I.

Then,G has a fixed point i\ (2.

Using the properties of on a bounded s€b, T')r, we construct an operator (an integral
equation) whose fixed points are solutions to the problenm (L.1)-(1.2).

Now we introduce some basic concepts of time scales that are needed in the sequel. For
deeper details, the reader can see, for instanice,[[1, 5, 8]. A timeBa#m arbitrary nonempty
closed subset dk. Theforward jumpoperators and thebackward jumpperatorp, both from
Tto T, are defined in[14]:

ot)y=inf{reT:7>t} T, pt)=sup{reT:7<t}eT.

A pointt € T is left-dense, left-scattered, right-dense, or right-scattere@)f= ¢, p(t) < t,
o(t) =t,oro(t) > t, respectively. Il has aright scattered minimum, defineT, = T—{m};
otherwise sef, = T. If T has a left scattered maximuid, defineT* = T — { M }; otherwise
setT* = T.

Let f : T — R andt € T* (assume is not left-scattered if = sup T), then the delta
derivative of f at the pointt is defined to be the numbgi® (¢) (provided it exists) with the
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property that for each > 0 there is a neighborhodd of ¢ such that
(o)) = F(5) = fA)(0(t) — 5)| < |o(t) — 5|, forallseU.
Similarly, fort € T (assumé is not right-scattered if = inf T), the nabla derivative of at

the pointt is defined to be the numbé® (¢) (provided it exists) with the property that for each
e > 0 there is a neighborhodd of ¢ such that

[F(p(1) = f(s) = Y (&) (p(t) = s)| < |p(t) — 5|, forallseU.
If T =R, thenz®(t) = 2V(t) = 2/(t). If T = Z, thenz®(t) = x(t + 1) — z(¢) is the forward
difference operator while" (t) = z(t) — z(t — 1) is the backward difference operator.
A function f is left-dense continuousd-continuous) iff is continuous at each left-dense

point in T and its right-sided limit exists at each right-dense poiri.iet f beld-continuous.

If FV(t) = f(t), then the nabla integral is defined by

b
[ v =Fo) - Pl

if F2(t) = f(t), then the delta integral is defined by

/ FOAL = F(b) — F(a).

In the remainder of this articl& is a closed subset AR with 0 € Ty, T € TF; E =
Cia([0,T],R), which is a Banach space with the maximum ndjmff = maxqo 7, [u(t)|.

3. MAIN RESULTS

By a positive solution of (1]1)-(1} 2) we understand a functiot) which is positive or{0, 7')
and satisfied (1}1) and (1.2).

Lemma 3.1. Assume that hypothesfs (H1) is satisfied. Th&t),is a solution of (L-1)-(L-2) if
and only ifu(t) € FE is solution of the integral equation

ult) = - / b4 (9(s)) s + B,
where

o(s) = /0 No(u(r))Vr — A,
A8 [T

A= 6wt (0) = 775 | b))V,
i) = O
(s feu(r) vr)

1 r g
B=u0) = 2 { [ autanas =5 [ antatsnas).
1=5 o 0
Proof. We begin by proving necessity. Integrating the equafiorj (1.1) we have

o0 () = 02 0) = [ Mhta(r)Vr
On the other hand, by the boundary condition|(1.2)

6 (12(0)) = B (u® () = 3 (¢p<uﬁ<o>> _ / ! /\h(u(r))Vr) |
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Then,

It follows that

Integrating the last equation, we obtain

(3.1) ) = u() = [ onfao)ss.
Moreover, by[(3.]l) and the boundary conditipn{1.2), we have
u(0) = u(T) + i bqlg(s))As

Then,

Sufficiency follows by a simple calculation, taking the delta derivative(of. O

Lemma 3.2. Suppose| (H1) holds. Then, a solutiorof (I-1)(L.2) satisfiesu(t) > 0 for all
t € (0,7)r.

Proof. We haved = 227 [ h(u(r))Vr < 0. Then,g(s) = A [; h(u(r)) — A > 0. It follows
thato,(g(s)) > 0. Sinced < § < 1, we also have
n

w0 == { [ osanas—s [ oanas]

0

and
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If t € (0,T)r,
u(t) = u(0) —/0 bq(9(s))As

> - / 6a(9(s)) 25 + u(0) = u(T) > 0.

Lemma 3.3. If (H1) holds, then(T') > pu(0), wherep = 37— > 0.

Proof. We haveg,(u”(s)) = ¢,(u”(0)) — [; A(u(r))Vr < 0. Sinced = ¢,(u”(0)) < 0,
thenu® < 0. This means thatu| = u(0), inf;eo7), u(t) = u(T). Moreover,¢,(u”(s)) is
non increasing which implies, with the monotonicityqgf, thatu” is a non increasing function
on (0, 7). It follows from the concavity ofi(¢) that each point on the chord betwe@nu(0))
and(T,u(T)) is below the graph of(¢). We have

u(T) — u(n)

Alternatively,
Tu(n) —nu(T) = (T — n)u(0).
Using the boundary conditiof (1.2), it follows that

(% - ) u(T) > (T — )u(0).
Then,
w(T) > 5TT__;HU(0).

In order to apply Theorem 3.1, we define the canéy

54 )T

K= {u € E,u is concave orf0, 7")r and 2nf) u(t) > p||u||} .
te(0,T

It is easy to see thaft (1.1)-(1.2) has a solutios «(t) if and only if » is a fixed point of the
operatorGG : K — F defined by

t
(3.2) Gutt) =~ [ 6,(a(s)) &5 + B,
0
whereg and B are defined as in Lemnja 8.1.

Lemma 3.4. Let G be defined by{3.2). Then,
() G(K) € K,
(i) G: K — K is completely continuous.

Proof. Condition(i) holds from previous lemmas. We now pro\ié). Suppose thab C K is
a bounded set. Let € D. We have:

|Gu(t)| = '—/Ot Pq (9(5))A8+B‘
'_ /Ot " </0 (Jo JA‘{:?T(;)))VT)NT - A) As+ B
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T * Asup f(u)
< UED _
< [ o[ AT vr-a) oo+

A6 [T
L—5 Jy

N ) g
il (o f(u(r) Ir)t
>\/6 SupuED f<u>

—1- 6 (Tinfu€D>k

Al = h(u(r))Vr

In the same way, we have

It follows that

Gut) </ " (A(;iﬁ—ﬁfg“) (s+ f—”ﬁ» As+ 1Bl

As a consequence, we get
Asup,ep f(u) 61
o < 5 5/ %( (Tinfyen)" (5+1—ﬁ))
AsupuGD f( ) g 577
= 1—5¢ ( (T infyep) )/ %1 (”1—6) £

We conclude tha€Z(D) is bounded. Iteni:) follows by a standard application of the Arzela-
Ascoli and Lebesgue dominated theorems. O

Theorem 3.5(Existence result on conespuppose thaf (H1) holds. Assume furthermore that
there exist two positive numbetrsandb such that

(H2) max f(u) < ¢y(ady),
(H3) Qi f(u) = ¢(b51),
where

Ay = T(12__5ﬁ) O ((T info<u1<a f(u))® (T ! 15__%))

_1-p A
B, = —6<T ) bp(1)Pp ((T Supogugbf(u))k> :

Then, there exist8 < A, < 1 such that the non local-Laplacian problem({T.1)}-(1.2) has at
least one positive solutiom, a < u < b, for any\ € (0, \,).

and
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Proof. Let 2, = {u € K, ||u|]| < r}, 0, = {u € K,||u|]| =r}. If u e 09Q,, then0 < u < q,
t € (0,T)r. Thisimpliesf(u(t)) < maxo<u<q f(u) < ¢,(aA). We can write that

|Gul < / bulg(s)) s + B

g = M(u(r))
< ’ - Vr—Al|As+ B,
/0 ’ </0 (fo flu(r))Vr)* )

LT S o A (A
‘A’—l—ﬂ/o T ) Vo - = 1= B T infozea @)

le) < <Tir?f(oifip}<lu>>k (7+575)
Then,
.AT%@@DA5§¢@(HH$tj22a”k(T+T@%))T

= AT, ((T infogula ) (T i lﬁ——nﬁ)> |

Moreover,
= ([ antaonas—s [Mataas)
<15 ( OT¢q<g<s>>As)
T A £n

s ey 5% ((Tmfogugaﬂu))k (T * ﬂ)) |

For A, as in the statement of the theorem, it follows that

2-0 A Bn
|Gull < adiTT—504 ((T tfocuce F(0))F (T = 6))

2-4 1 6n
= (bq(A)aAlTl - 5% ((TinfOSUSa f(u))k (T s ﬁ)>

2— 4 1 Bn
oM T30, ((T hycuce F(0))F (T i ﬁ))
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If u € 09, we have

IGull = = [ oy (9(s)) b5 +
> / 60t0(5)) B+ = [ 0y(0(6) A5 = 2= [, (009)) 25

21_ [ oo ss =25 [No,060 25

> 1 / 84 (9(5)) 55

SinceA < 0, we have

g(s) = )\/OS h(u(r))Vr — A > )\/OS h(u(r))Vr

’ f(w)
=2 /0 (T SUPg<yu<b fu))*
(bBy)P~!
(T SUPogugb)k .
Using the fact thad, is nondecreasing we get

6a(9(s)) > 6, (A%)

> A

A

2 0800 (G ) )

Then, using the expression Bf,

:
el > oo () | 44

B A
> T —
> 08,0, (s f(u))k) 64n)(T ~ )
> b= ||ull
As a consequence of Lemrpa]3.4 and Theorer @.has a fixed point theorem such that
a<u<hb. O

4. AN EXAMPLE

We consider a functioyi which arises with the negative coefficient thermistor (NTC-thermistor).
For this example the electrical resistivity decreases with the temperature.

Corollary 4.1. Assume{(H1) holds. If

o S
Jo= 5, )

f(u)
“_’OO (bp( )

:()7 foo_

= +OO7

or
fO = +00, foo = 07
then problen{T.T)(1.2) has at least one positive solution.
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Proof. If f, = 0thenV A; > 0 3 a such thatf(u) < (4u)?™1, 0 < u < a. Similarly as
above, we can prove thaGu|| < ||u||, V u € 09,. On the other hand, if,, = +oo, thenV¥
By > 0,3b > 0such thatf(u) > (Bju)?~!, u > b. As in the proof of Theorer 3.5, we have
|Gull > ||ul|, V u € 8. By Theoren) 2J1¢7 has a fixed point. O

For the NTC-thermistor, the dependence of the resistivity to the temperature can be expressed
by

(4.1) fls)=—, k>2.

Forp = 2, we have
- fw) - fu)
fo=lim =400, foo= lim =
D a0 gy (u) )
It follows from Corollary{4.1 that the boundary value problém|1[T){(1.2) with 2 and f as
in (4.1) has at least one positive solution.
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