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ABSTRACT. One of the most fundamental problems in submanifold theory is to establish simple
relationships between intrinsic and extrinsic invariants of the submanifolds (cf. [6]). A general
optimal inequality for submanifolds in Riemannian manifolds of constant sectional curvature
was obtained in an earlier articl€ [5]. In this article we extend this inequality to a general optimal
inequality for arbitrary Riemannian submanifolds in an arbitrary Riemannian manifold. This
new inequality involves only thé-invariants, the squared mean curvature of the submanifolds
and the maximum sectional curvature of the ambient manifold. Several applications of this new
general inequality are also presented.
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1. INTRODUCTION

According to the celebrated embedding theorem of J.F. Nash [23], every Riemannian mani-
fold can be isometrically embedded in some Euclidean spaces with sufficiently high codimen-
sion. The Nash theorem was established in the hope that if Riemannian manifolds could always
be regarded as Riemannian submanifolds, this would then yield the opportunity to use extrinsic
help. However, as observed by M. Gromov|[18], this hope had not been materialized. The main
reason for this is due to the lack of controls of the extrinsic properties of the submanifolds by
the known intrinsic data.

In order to overcome the difficulty mentioned above, the author introduced in [4, 5] some
new types of Riemannian invariants, denotedby;, ..., n,). Moreover, he was able to es-
tablish in [5] an optimal general inequality for submanifolds in real space forms which involves
his é-invariants and the main extrinsic invariant; namely, the squared mean curvature. Such
inequality provides prima controls on the most important extrinsic curvature invariant by the
initial intrinsic data of the Riemannian submanifolds in real space forms. As an application,
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2 B. Y. CHEN

he was able to discover new intrinsic spectral properties of homogeneous spaces via Nash’s
theorem. Such results extend a well-known theorem of Nagano [22]. Since themiragiant

and the inequality established in [5] have been further investigated by many geometers (see for
instance,[[2, 8,19, 10, 11, 14,112,/13, 15} [17,[20,21[ 24, 25, 26, 27, 28,129, 30]). Recently, the

d-invariants have also been applied to general relativity theory as well as to affine geometry (see
for instance,[[7, 16, 19]).

In this article we use the same idea introduced in the earlier aiticle [5] to extend the inequality
mentioned above to a more general optimal inequality for an arbitrary Riemannian submanifold
in an arbitrary Riemannian manifold.

Our general inequality involves theinvariant, the squared mean curvature of the Riemann-
ian submanifold and the maximum of the sectional curvature function of the ambient Riemann-
ian manifold (restricted to plane sections of the tangent space of the submanifold at a point on
the submanifold). More precisely, we prove in Secfipn 3 that, forradymensional subman-
ifold M/ in a Riemanniann-manifold //™, we have the following general optimal inequality:

(1.1) S(ny,...,n) < c(ny,...,ng)H? +b(ny,...,n,) max K

for any k-tuple (n4, ..., n;) € S(n), wheremax K (p) denotes the maximum of the sectional
curvature function of\/™ restricted to 2-plane sections of the tangent space of M atp.
(see Sectiof]3 for details). (Whén= 0, inequality [1.1) can be found in B. Suc@warticle
[27]).

In the last section we provide several immediate applications of inequality (1.1). In par-
ticular, by applying our inequality we conclude thatiif is a Riemanniam-manifold with
d(nq,...,n;) > 0atsome pointinV/ for somek-tuple (ny,...,n;) € S(n), thenM admits no
minimal isometric immersion into any Riemannian manifold with non-positive sectional curva-
ture. In this section, we also apply inequality (1.1) to derive two inequalities for submanifolds
in Sasakian space forms. In fact, many inequalities for submanifolds in various space forms
obtained by various people can also be derived directly from inequiality (1.1).

2. PRELIMINARIES

Let M be ann-dimensional submanifold of a Riemannianrmanifold M/™. We choose a
local field of orthonormal frame

€1y,.--,€n,€p11,.-.,Em

in M™ such that, restricted tt/, the vectors, . . ., e, are tangent td/ and hence,.1,...,en
are normal ta\l. Let K (e; A e;) andK (e; A e;) denote respectively the sectional curvatures of
M andM™ of the plane section spanned dyande;.

For the submanifold\/ in A/™ we denote byv andV the Levi-Civita connections of/
andM™, respectively. The Gauss and Weingarten formulas are given respectively by (see, for
instance,[[B])

(2.1) VxY = VxY +h(X,Y),
(2.2) Vx€=—AcX + Dxé

for any vector fieldsX, Y tangent toM and vector fieldd normal toM, whereh denotes the
second fundamental forni) the normal connection, andl the shape operator of the submani-
fold.
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Let {h};},4,j = 1,...,n; 7 = n+1,...,m, denote the coefficients of the second funda-
mental formh with respect te;, ..., e, €,41, - .., €,. Then we have
hzj = <h(ei7€j>7e7"> = <Aer€i7 €j> )
where(-, -) denotes the inner product.
_)
The mean curvature vectdf is defined by

(2.3) H = —traceh Z hiei,e;),

where{ey, ..., e,} is alocal orthonormal frame of the tangent bundl& of M. The squared
mean curvature is then given b = <ﬁ, ﬁ> A submanifold)/ is called minimal ind/™ if

its mean curvature vector vanishes identically. )
Denote byR and R the Riemann curvature tensors &f and M™, respectively. Then the
equation of Gauss given by

(24) RX,Y;ZW)=RX,Y:Z W)+ (WM(X,W), WY, Z)) — (h(X,Z),h(Y,WV)),

for vectorsX, Y, Z, W tangent tal/.
For any orthonormal basis, . . ., e,, of the tangent spacg,M, the scalar curvature of M/
atp is defined to be

(2.5) T(p) = Z K(e; Nej),
1<J
whereK (e; A e;) denotes the sectional curvature of the plane section spanngdbyle;.

Let L be a subspace @i, of dimension- > 1 and{e, ..., e, } an orthonormal basis df.
The scalar curvature(L) of ther-plane sectiorl. is defined by

(2.6) T(L) = Z K(eaNeg), 1<a,f<r.
a<p

Whenr = 1, we haver(L) = 0.
For integerst > 0 andn > 2, let us denote by (n, k) the finite set consisting of unordered
k-tuples(ny, ..., n;) of integers> 2 which satisfies

ni<n and n; +---+n; <n.
Let S(n) be the unionJ,>o S(n, k).

For any(ni,...,n;) € S(n), the Riemannian invariant§n, . . ., ny) introduced in[[5] are
defined by
(2.7) d(ni,...,ng)(p) = 7(p) — inf{r(Ly) + -+ 7(Lg)},
whereL,, ..., L; run over allk mutually orthogonal subspacesBfM/ with dim L; = n;, j =
1,..., k.

We recall the following general algebraic lemma from [4] for later use.

Lemma 2.1. Letay,...,a,,n ben + 1 real numbers such that

(Zai> =(n-1) (7}+Za?).

Then2a,a5 > 1, with equality holding if and only if we have

a1+ G = A3 =+ = Ay,
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3. A GENERAL OPTIMAL |NEQUALITY

For each(ny,...,nx) € S(n), letce(ny,...,ng) andb(ny,...,n;) be the positive numbers
given by
n2n+k—1-%"% n)
(31) C(n17"'7nk) = k =7 ’
2(n+k — ijl n;)

(3.2) b, mg) = %(n(n 1) =Y sl — 1),

For an arbitrary Riemannian submanifold we have the following general optimal inequality.

Theorem 3.1.Let M be ann-dimensional submanifold of an arbitrary Riemanniarmanifold
M™. Then, for each poinp € M and for eachk-tuple (n4,...,n;) € S(n), we have the
following inequality:

(3.3) S(ni,...,n.)(p) < clng,...,ne)H*(p) +b(ny,. .. ,nk)maxff(p),

wheremax K (p) denotes the maximum of the sectional curvature function ®frestricted to
2-plane sections of the tangent spa¢é/ of M atp.

The equality case of inequalif.3) holds at a pointp € M if and only the following two
conditions hold:

(a) There exists an orthonormal basis . . ., e, at p, such that the shape operatorsaf in
M™ at p take the following form :

AT ... 0
o 0 0
(3.4) A =0 ... A , r=n+1...,m,
0 i
where! is an identity matrix and eacH’ is a symmetrie;; x n; submatrix such that
(3.5) tracg A]) = - - - = trace(A4}) = u,.

(b) For anyk mutual orthogonal subspacés, . . ., L;, of 7,M which satisfy

S(ny,...onp) =7 7(L;)

j=1
at p, we have
(3.6) f((eai,eaj) = max K (p)
foranyo; € A;, a; € A withi # j, where

Ay ={1,...,n},

Ag={ni+-4+ne1+1,...0n+- +ng}

Proof. Let M be ann-dimensional submanifold of a Riemanniarmanifold A/ andp be a
point in M. Then the equation of Gauss implies thap ate have

(3.7) 27(p) = n*H? — ||n||* + 27(T,M),
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where||h||? is the squared norm of the second fundamental foramd 7 (7, /) is the scalar
curvature of the ambient spadé™ corresponding to the subspaEe\/ C T,M™, i.e.

T(T,M) = Z K(ese;)

i<j

for an orthonormal basis,, . . ., e,, of T,,M.
Let us put
n*(n+k—1->ny)
3.8 =27(p) — Y H? - 27(T,M).
(3.8) n=27(p) Py T(T,M)
Then we obtain from{ (3]7) anf (3.8) that
(3.9) n’H? =~ (n+||h]]), 7:n+k—2nj.

At p, let us choose an orthonormal basis. .., e,, such that,, € L; for eacha; € A,.
Moreover, we choose the normal vectqr ; to be in the direction of the mean curvature vector
atp (When the mean curvature vanishegat, . ; can be chosen to be any unit normal vector

atp). Then [3.9) yields

(3.10) <Z CLA> =7
A=1

wherea, = b1 with 1 < A, B < n. Equation[(3.10) is equivalent to

S IS ST Sl o ;Bv],
A=1

A#B r=n+2 A,B=1

y+1 2 v+1 m n
- (z ) o [ @ S YD S0
i=1 i=1 i#] r=n+2i,j=1
- Z (o Op — Z Qaxdpy, — * Z aakaﬁk] )
1<a1#B1<n a2 #B2 ap 7B
whereas, B, € Ay, ..., ag, Br € Ay and

a; = ay, Gz = Q2 + -+ + Ay,

(3.12) a3 = Qpy+1 + ** + Qnytnys

(3.13)

(3.14) (k41 = Opytootng_y+1 T 00 Aoy,
(3.15) Aft2 = Qpyecggt 1y - - -5 Ayl = G

By applying Lemma 2]1 tqd (3.11) we obtain

(3.16) Z Aoy Apy + Z e e Z Gay, Ay,

a1<f1 o< B2 ap <Py
n 1 m n
25+ > (g + 3 > (hap)?,
A<B r=n+2 A,B=1

whereo;, 5; € A, i=1,... k.
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On the other hand, equatiop (R.6) and the equation of Gauss imply that, forjeach
{1,...,k}, we have

(3.17) (L) = D0 Y (Mg — (Bhs)?) +F(Ls),
ozj,ﬁj € A]’.

where7(L,) is the scalar curvaturg/™ asociated with; C T,,.
Letus putA = Ay U---UA, andA? = (A} x Aj)U--- U (A x Ag). Then we obtain by
combining [(3.8),[(3.16) and (3.1L7) that

(318) T(L1)+_|_7—(Lk) > g_‘_% Z Z (h;B)Q

i
3
+
—
:5
=
ALY
B>
S

Therefore, by[(2]7) andl (3.1L8), we obtain

4 n2(n+k—1-3n))
(3.19) T — ZT(LJ-) < k=S n)

j=1
which implies that

H? + #(T,M) = > 7(Ly),

n?(n+k—1-3%n)

(3.20) o(ny,...,ng) < H2+5M(n1,...,nk),

2(n+k—> nj)
where
(3.21) M(ny, ... ng) = 7(T,M) —inf{7(Ly) + - - - + 7(Ly)}
with Ly, ..., L; run over allk mutually orthogonal subspaces Bf\M such thatdim L; =

nj; j =1,..., k. Clearly, inequality[(3.21) implies inequality (3.3).
It is easy to see that the equality cas€ of](3.3) holds at the pdiiaind only if the following
two conditions hold:

(i) The inequalities in[(3.16) an@ (3]18) are actually equalities;
(if) For any &k mutual orthogonal subspaces, . . ., L, of 7,M which satisfy

(3.22) Sy, .. om) =7 =Y 7(L))
j=1

atp, we have

(3.23) K (€q,, €a;) = max K (p)

foranya; € A;, a; € Aj with ¢ # 5.
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It follows from Lemma 2.11,[(3.16) and (3.18) that condition (i) holds if and only if there

exists an orthonormal basis, ..., e,, at p, such that the shape operatorsidgfin M™ atp
satisfy conditiong[(3]4) and (3.5).
The converse can be easily verified. O

4. SOME APPLICATIONS
The following results follow immediately from Theorém [3.1

Theorem 4.1. Let M be ann-dimensional submanifold of the complex projectivespace
C'P™(4e) of constant holomorphic sectional curvatute (or the quaternionic projectiven-
spaceQ) P™(4¢) of quaternionic sectional curvaturg). Then we have

(4.1) S(ni,...,nx)(p) <clny,...,ng)H?(p) +4b(ny, ..., ng)e
for anyk-tuple (ny, ..., ng) € S(n).

Theorem 4.2. Let M be ann-dimensional submanifold of the complex hyperbaliespace
C' H™(4¢) of constant holomorphic sectional curvatute (or the quaternionic hyperbolie-
space() H™ (4¢) of quaternionic sectional curvature). Then we have

(4.2) d(n,...,nk)(p) < c(ng,... ,nk)H2(p) +b(ny, ..., ng)e
for anyk-tuple (nq,...,n;) € S(n).

Theorem 4.3.Let M™ be a Riemannian manifold whose sectional curvature function is bounded
above by. If M is a Riemanniam-manifold such that

S(n, . ) (p) > % (n(n—1) = Y ny(n, 1)) €
for somek-tuple (ny, ..., ny) € S(n) at some poinp € M, thenM admits no minimal isomet-
ric immersion inM™.
In particular, we have the following non-existence result.
Corollary 4.4. If M is a Riemanniam-manifold with
d(ny,...,ng) >0

at some point inM/ for somek-tuple (ny,...,ng) € S(n), then M admits no minimal iso-
metric immersion into any Riemannian-manifold M/™ with non-positive sectional curvature,
regardless of codimension.

A (2m+ 1)-dimensional manifold is callealmost contacif it admits a tensor field of type
(1,1), a vector fields and a 1-formy satisfying

(4.3) P =—-I+n®E n(E) =1,
wherel is the identity endomorphism. It is well-known that
9§ =0, nogp=0.

Moreover, the endomorphisthas rankm.
An almost contact manifoldM, ¢, &, n) is called analmost contact metric manifold it
admits a Riemannian metricsuch that

(4.4) 9(¢X,0Y) = g(X,Y) — n(X)n(Y)
for vector fieldsX, Y tangent tal/. SettingY” = £ we have immediately that
n(X) = g(X, ).
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By a contact manifoldwe mean a2m + 1)-manifold A/ together with a global 1-formy

satisfying
nA (dn)™ #0
on M. If n of an almost contact metric manifo(d\Z,qﬁ,f,n,g) is a contact form and ify
satisfies
dn(X,Y) = g(X, ¢Y)

for all vectorsX, Y tangent tal/, then)M is called acontact metric manifold

A contact metric manifold is called -contactif its characteristic vector field is a Killing
vector field. It is well-known that & -contact metrig2n + 1)-manifold satisfies

(4.5) Vxé=—¢X, K(X, =1

for X € kern, whereK denotes the sectional curvature bh
A K-contact manifold is calle®&asakianf we have

Ny +2dn®@ & =0,

whereN, is the Nijenhuis tensor associatedstoA plane sectiow in 7, M/>"+! of a Sasakian
manifold /7?1 is called¢-section if it is spanned by and¢(X), whereX is a unit tangent
vector orthogonal t@. The sectional curvature with respect t@yaectiono is called a¢-
sectional curvature. If a Sasakian manifold has constesgctional curvature, it is called a
Sasakian space form.

An n-dimensional submanifold/™ of a Sasakian space forid>™*1(¢) is called aC-totally
real submanifold ofl/2™+1(c) if ¢ is a normal vector field on/”. A direct consequence of this
definition is thaty(TM™) c T+M™, which means that/" is an anti-invariant submanifold of
M2m+l(c)

It is well-known that the Riemannian curvature tensor of a Sasakian spacéfgtm' (¢) of
constant-sectional curvatureis given by [1]:

4.6) R(X,v)z= "3

(Y, Z)X —(X,Z)Y)
e—1

+ ((X)n(2)Y —n(Y)n(Z)X + (X, Z) n(Y)§
= (Y, Z)n(X)§ + (Y, Z) 9 X — (90X, Z) oY — 2(0X,Y) ¢Z)
for X,Y,Z tangent toM>"+1(¢). Hence ife > 1, the sectional curvature functioR’ of
M?*™*1(¢) satisfies
e+ 3

(4.7) <K(X,)Y)<e

for X, Y € kern; if € < 1, the inequalities are reversed.

From Theorem 3|1 and these sectional curvature propertiés (4.5) and (4.7) of Sasakian space
forms, we obtain the following results for arbitrary Riemannian submanifolds in Sasakian space
forms.

Corollary 4.5. If M is ann-dimensional submanifold of a Sasakian space fofift) of con-
stant¢-sectional curvature > 1, then, for anyk-tuple (n4, ..., n;) € S(n), we have

(4.8) S(ni,...,m)(p) < clny,...,ng)H*(p) +b(ny, ..., np)e.

Corollary 4.6. If M is ann-dimensional submanifold of a Sasakian space fafift) of con-
stant¢-sectional curvature < 1, then, for anyk-tuple (ny, ..., nx) € S(n), we have

(4.9) S(ni,...,nx)(p) <c(ng,...,ne)H*(p) +b(ny,...,nx).
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Corollary 4.7. If M is ann-dimensionalC'-totally real submanifold of a Sasakian space form

M (€) of constantp-sectional curvature < 1, then, for anyk-tuple (nq,...,n;) € S(n), we
have

2 €+3
(410) 5(”17"‘7”19)(])) Sc(nla"'vnk)H (p)+b(n177nk) 4 :

Corollary[4.T has been obtained in [13].
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