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Abstract

One of the most fundamental problems in submanifold theory is to establish
simple relationships between intrinsic and extrinsic invariants of the subman-
ifolds (cf. [6]). A general optimal inequality for submanifolds in Riemannian
manifolds of constant sectional curvature was obtained in an earlier article [5].
In this article we extend this inequality to a general optimal inequality for arbi-
trary Riemannian submanifolds in an arbitrary Riemannian manifold. This new A General Optimal Ineguality for
inequality involves only the é-invariants, the squared mean curvature of the Arbitrary Riemannian
submanifolds and the maximum sectional curvature of the ambient manifold. Submanifolds
Several applications of this new general inequality are also presented. Bang-Yen Chen
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According to the celebrated embedding theorem of J.F. Nagh ¢very Rie-
mannian manifold can be isometrically embedded in some Euclidean spaces
with sufficiently high codimension. The Nash theorem was established in the
hope that if Riemannian manifolds could always be regarded as Riemannian
submanifolds, this would then yield the opportunity to use extrinsic help. How-
ever, as observed by M. Gromai4], this hope had not been materialized. The
main reason for this is due to the lack of controls of the extrinsic properties of . .
. . L. A General Optimal Inequality for

the submanifolds by the known intrinsic data. Arbitrary Riemannian

In order to overcome the difficulty mentioned above, the author introduced Submanifolds
in [4, 5] some new types of Riemannian invariants, denoted by, . . ., nx). Bang-Yen Chen
Moreover, he was able to establish i} §n optimal general inequality for sub-
manifolds in real space forms which involves himvariants and the main ex-

.. . . . Title Page
trinsic invariant; namely, the squared mean curvature. Such inequality pro-
vides prima controls on the most important extrinsic curvature invariant by Contents
the initial intrinsic data of the Riemannian submanifolds in real space forms. <« S
As an application, he was able to discover new intrinsic spectral properties of
homogeneous spaces via Nash’s theorem. Such results extend a well-known < >
theorem of Nagano”[]. Since then thé&-invariant and the inequality estab- Go Back
lished in [5] have been further investigated by many geometers (see for instance,
[2,8,9,10,11,14,12,13,15,17,20, 21, 24, 25, 26, 27, 28, 29, 30]). Recently, Close
thed-invariants have also been applied to general relativity theory as well as to Quit
affine geometry (see for instance, .6, 19)). Page 3 of 23

In this article we use the same idea introduced in the earlier arti¢h® [
extend the inequality mentioned above to a more general optimal inequality for
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an arbitrary Riemannian submanifold in an arbitrary Riemannian manifold.

Our general inequality involves theinvariant, the squared mean curvature
of the Riemannian submanifold and the maximum of the sectional curvature
function of the ambient Riemannian manifold (restricted to plane sections of
the tangent space of the submanifold at a point on the submanifold). More pre-
cisely, we prove in Sectiofi that, for anyn-dimensional submanifold/ in a
Riemanniann-manifold /7™, we have the following general optimal inequal-

ity:

A General Optimal Inequality for

2 g . . .
(1.1) d(n,...,ng) <c(ng,...,ng)H* 4+ b(ny,...,ng) max K Afb'tsfifg’mgre‘&?gg'a“

for any k-tuple (ny,...,n;) € S(n), wheremax K (p) denotes the maximum Bang-Yen Chen
of the sectional curvature function af™ restricted to 2-plane sections of the
tangent spacéd, M of M atp. (see Sectior8 for details). (Whenk = 0,

inequality (L.1) can be found in B. Suceais article P 7]). Title Page

In the last section we provide several immediate applications of inequal- Contents
ity (1.1). In particular, by applying our inequality we conclude thadifis a pp >
Riemanniam-manifold with§(n,,...,ng) > 0 at some point in\/ for some
k-tuple (ny,...,n;) € S(n), thenM admits no minimal isometric immersion < >
into any Riemannian manifold with non-positive sectional curvature. In this Go Back
section, we also apply inequality.(l) to derive two inequalities for submani-
folds in Sasakian space forms. In fact, many inequalities for submanifolds in Close

p , y Ineq

various space forms obtained by various people can also be derived directly Quit
from inequality (L.1). Page 4 of 23
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Let M be ann-dimensional submanifold of a Riemannianmanifold M/™. We
choose a local field of orthonormal frame

€1y 5€nyEn41y.- -, Em
in M™ such that, restricted td/, the vectorsy, . .., e, are tangent tal/ and
hencee,,1,...,e, are normal toM. Let K(e; A ;) and K (e; A e;) denote

respectively the sectional curvaturesiéfand M ™ of the plane section spanned A General Optimal Inequality for
Arbitrary Riemannian
by e; and €. R R Submanifolds
For the submanifold/ in M™ we denote by andV the Levi-Civita con-
nections ofA/ and M™, respectively. The Gauss and Weingarten formulas are

given respectively by (see, for instance]) [

Bang-Yen Chen

B Title Page
(2.1) VxY =VxY +h(X,Y), Contents
2.2 Vyé=—AX+D
(2.2) Vx¢ eX + Dx¢ <« N
for any vector fieldsX, Y tangent tol/ and vector field normal toM, where < >
h denotes the second fundamental folbhthe normal connection, and the
shape operator of the submanifold. SOl
Let{n;;},i,5 =1,...,n;r =n+1,...,m, denote the coefficients of the Close
second fundamental forra with respect tce;,...,e,, e,11,...,€,. Then we Quit
have
hi; = (h(ei, €5), €r) = (Ac,€i€5) Page 5 of 23
Where<7 > denOteS the Inner prOdUCt J. Ineq. Pure and Appl. Math. 6(3) Art. 77, 2005
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The mean curvature vectdf is defined by

- 1 I
2.3 H = —traceh = — h(ei,e;
(2.3) - - Z (es,e2),
where{ey, ..., e,} is a local orthonormal frame of the tangent bun@l&/ of

R R —_— —
M. The squared mean curvature is then giveniby = <H, H>. A sub-

manifold M is called minimal in}M™ if its mean curvature vector vanishes
identically.

Denote byR and R the Riemann curvature tensorslf and V™, respec-
tively. Then theequation of Gauss given by

(24) RX,Y;Z, W)
= R(X,Y; Z, W)+ (W(X, W), h(Y, Z)) — (h(X, Z), (Y, V),
for vectorsX, Y, Z, W tangent tal/.

For any orthonormal basis, . .., e, of the tangent spacé,)M, the scalar
curvaturer of M atp is defined to be

T(p) = Z K(e; Nej),

1<j

(2.5)

whereK (e; A e;) denotes the sectional curvature of the plane section spanned
by e; ande;.

Let L be a subspace df,M of dimensionr > 1 and{ey,...,e,} an or-
thonormal basis of.. The scalar curvature(L) of the r-plane section. is

A General Optimal Inequality for
Arbitrary Riemannian
Submanifolds
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defined by

(2.6) (L) = ZK(ea Neg), 1<a,f<r.

Whenr = 1, we haver(L) = 0.

For integerst > 0 andn > 2, let us denote by (n, k) the finite set consist-

ing of unordered:-tuples(n, ..., ny;) of integers> 2 which satisfies
ni<n and ny+---+n; <n.

Let S(n) be the uniorJ,>o S(n, k).

Forany(ny,...,n;) € S(n), the Riemannian invariantgn,, . . . , ny) intro-
duced in ] are defined by
(2.7) 0(ny, .., n)(p) = 7(p) — nf{7(Ly) + - +7(Li)},

whereLy, ..., L; run over allk mutually orthogonal subspaces BfM with
We recall the following general algebraic lemma frefhfpr later use.

Lemma2.1. Letay,...,a,,nben + 1 real numbers such that

(o) o (1 554).

=1
Then2a,a, > 7, with equality holding if and only if we have

ay +as =asz = -+ = Qy.
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For each(ni,...,n;) € S(n), lete(ny,...,nx) andb(ny, ..., n;) be the posi-
tive numbers given by

(3.1) c(ny, ... ng) = nin k-1 3 1)

Z(n—i-k—z. n;)
(3.2) b(ny,...,nk) = =(n(n —1) Zn]

For an arbitrary Riemannian submanifold we have the following general op-
timal inequality.

Theorem 3.1. Let M be ann-dimensional submanifold of an arbitrary Rie-
mannianm-manifold M™. Then, for each poing € M and for eachk-tuple
(n1,...,n,) € S(n), we have the following inequality:

(3.3) S(ny,...,n)(p) < c(na,...,np)H(p) + b(ng, ..., ng) max K(p),

wheremax K (p) denotes the maximum of the sectional curvature function of
M™ restricted to 2-plane sections of the tangent SpAcH of M at p.

The equality case of inequalif$?.3) holds at a poinjp € M if and only the
following two conditions hold:

(a) There exists an orthonormal basis . .., e, at p, such that the shape

A General Optimal Inequality for
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operators ofM in M™ at p take the following form :

(3'4) Ae'r: [;) .... 14.; ) T:n+17""m7

0 ol

where[ is an identity matrix and eachl] is a symmetricy; x n; submatrix
such that

(3.5) tracg A7) = --- = trace(A}) = p,.
(b) For anyk mutual orthogonal subspacés, .. ., L, of T, M which satisfy

d(ny,...,ng) =7 — ZT(Lj)

j=1

at p, we have

(3.6) K (€, €q;) = Max K(p)
foranyo; € A;, a; € A; withi # j, where

Alz{l,...,nl},

Ap={ni+-4+ne_1+1,...,0n+ - +ng}.
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Rroof. Let M be ann-dimensional submanifold of a Riemanniarmanifold
M™ andp be a point inM. Then the equation of Gauss implies thapate
have

(3.7) 27(p) = n*H?* — ||n||* + 27 (T, M),

where||h||? is the squared norm of the second fundamental foand7 (7, M)

is the scalar curvature of the ambient spa¢& corresponding to the subspace

T,M C T,M™,i.e.
FT,M) =Y Kleie))

for an orthonormal basis, . . ., e, of T, M.
Let us put
n(n+k—1->n;)
: =27(p) — L H? - 27(T,M).
Then we obtain from3.7) and @3.8) that
(3.9) nH? =~ (n+[hl[*), v=n+k-> n

At p, let us choose an orthonormal basis. . ., e,, such that,, € L; for
eachy; € A;. Moreover, we choose the normal vecatgr ; to be in the direction
of the mean curvature vectorafWhen the mean curvature vanishepat,
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can be chosen to be any unit normal vectgy)aifThen 3.9) yields

A=1

n

n_i_z hn+1 Z

A#B A=1

DI

r=n+2 A,B=1

wherea, = b1 with 1 < A, B < n. Equation 8.10) is equivalent to

7+1 2
(3.11) (Z ai>

whereas, #; € Ay, ...

(3.12)
(3.13)
(3.14)
(3.15)

7+1

Qa1 08, —

Z Aoy @By —

ao# B2

>

1<a1#B1<n

, Oék,ﬁk c Ak and

ay = a1, Gz = Az + -+ dy,,

asz = Anq+1 +---+ Qpy4ng s

A1 = Any+-Ang_1+1 +eeet Any - tny

Aft2 = Qpyegng4 1y - -+ Gyl = Q.

77+Zal + > (R + Z Z

i#£j r=n+21,j5=1

’ Z oy, Ay,

a7 Bk

.

] ,
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By applying Lemma2.1to (3.11) we obtain

(3.16) Z Aoy Apy + Z N e Z Gy, Ay,
a1<pB az<fB2 ap<pBk
> 5+ () + 5 Z > ()
A<B r=n+2 A,B=1

wherea;, 5; € A;,i=1,... k.
On the other hand, equatio.() and the equation of Gauss imply that, for

eachj € {1,...,k}, we have
(3.17) S (Wi, — (10,5)7) + 7L
r=n+1 a;<f;
Oy ﬁj S Aj.
where7(L;) is the scalar curvaturg/™ asociated with; C T,,.

Letus putA = Ay U--- UAg andA? = (A} X A) U -+ U (Ap X Ay).

Then we obtain by combining(8), (3.16 and @.17) that

>

N |3
_l_

DN | —
NE
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M k—1-%n) o, [ o
AT H —<T(TPM)—;T(LJ)>

Therefore, by2.7) and 3.18), we obtain

k

319) 7> 7(L)) <

j=1

n(n+k—1-> nj)
2(n+k—> nj)

H? + #(T,M) = > #(Ly),

j=1
which implies that

n*(n+k—1-3ny)

(3.20)  6(ny,...,ny) < H? 4+ 6M(ny, ..., np),

~ 2(n+k—>n,))
where
(3.21) M(ny, ... ) = 7(T,M) —inf{7(Ly) + - - - + 7(Ly)}
with Ly, ..., Ly run over allk mutually orthogonal subspacesBf}/ such that

dim L; = n;; j = 1,..., k. Clearly, inequality §.21) implies inequality 8.3).
It is easy to see that the equality case®8| holds at the poinp if and only
if the following two conditions hold:

(i) The inequalities in3.16 and (.18 are actually equalities;

A General Optimal Inequality for
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(if) For any k mutual orthogonal subspaces, . . ., L, of T, M which satisfy

(3.22) (i, .. .om) =7 = 7(Ly)
j=1

atp, we have

(3.23) K(€a, €q,) = max K (p)

foranyo; € A;, o5 € Aj withi # 5.

It follows from Lemma2.1, (3.16 and 3.18 that condition (i) holds if and
only if there exists an orthonormal basis ..., e, atp, such that the shape
operators of\/ in M™ atp satisfy conditions%.4) and (.5).

The converse can be easily verified. O

A General Optimal Inequality for
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The following results follow immediately from Theoresnl

Theorem 4.1. Let M be ann-dimensional submanifold of the complex projec-
tive m-spaceC P™ (4¢) of constant holomorphic sectional curvature (or the
quaternionic projectiven-space) P (4¢) of quaternionic sectional curvature
4¢). Then we have

41 S(m,. . n)(p) < cln, . ) HA (D) + 4b(ns, . .., mi)e
for any k-tuple (nq,...,ng) € S(n).

Theorem 4.2. Let M be ann-dimensional submanifold of the complex hyper-
bolic m-spaceC' H™(4¢) of constant holomorphic sectional curvature(or the
quaternionic hyperbolien-spacel) H™ (4¢) of quaternionic sectional curvature
4¢). Then we have

(4.2) S(ni,...,nk)(p) < c(ny,...,ng)H*(p) +b(ni,...,ny)e

for any k-tuple (nq,...,ng) € S(n).

Theorem 4.3. Let M™ be a Riemannian manifold whose sectional curvature
function is bounded above byIf M is a Riemanniam-manifold such that

(5(n1,...,nk)(p)>l< n—1) an )

for somek-tuple (n4, ..., n) € S(n) at some poinp € M, thenM admits no
minimal isometric immersion in/™.

A General Optimal Inequality for
Arbitrary Riemannian
Submanifolds

Bang-Yen Chen

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 15 of 23

J. Ineq. Pure and Appl. Math. 6(3) Art. 77, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:bychen@math.msu.edu
http://jipam.vu.edu.au/

In particular, we have the following non-existence result.

Corollary 4.4. If M is a Riemanniam-manifold with
d(ny,...,ng) >0

at some point inV/ for somek-tuple (ny, . ..,n;) € S(n), then M admits no
minimal isometric immersion into any Riemanniasmanifold A/ with non-
positive sectional curvature, regardless of codimension.

A (2m + 1)-dimensional manifold is calledimost contacif it admits a
tensor fieldy of type (1, 1), a vector field; and a 1-formy, satisfying

(4.3) o' =—I+n®& nE) =1,
where/ is the identity endomorphism. It is well-known that
€ =0, no¢p=0.

Moreover, the endomorphisthhas rank2m.
An almost contact manifold)M , ¢, £, ) is called analmost contact metric
manifoldif it admits a Riemannian metrig such that

(4.4) 9(¢ X, 9Y) = g(X,Y) — n(X)n(Y)
for vector fieldsX, Y tangent tal/. SettingY” = £ we have immediately that
n(X) = g(X, ).
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By a contact manifoldwe mean a2m + 1)-manifold M together with a
global 1-formn satisfying
n A (dn)™ # 0

on M. If 5 of an almost contact metric manifold/, ¢, £, 1, g) is a contact form
and ifn satisfies
dn(X,Y) = g(X, ¢Y)

for all vectorsX, Y tangent tal/, then)/ is called acontact metric manifold

A contact metric manifold is callef -contactif its characteristic vector field
¢ is a Killing vector field. It is well-known that d -contact metriq2n + 1)-
manifold satisfies

(4.5) Vxé=—0X, K(X, &) =1

for X € kern, whereK denotes the sectional curvature bh
A K-contact manifold is calle®asakianf we have

Ny +2dn® & =0,

wherel, is the Nijenhuis tensor associated/toA plane sectiom in TpM?m*1
of a Sasakian manifold/2™*! is called¢-section if it is spanned by and
»(X), whereX is a unit tangent vector orthogonalgoThe sectional curvature
with respect to ap-sectiono is called a¢-sectional curvature. If a Sasakian

manifold has constant-sectional curvature, it is called a Sasakian space form.

An n-dimensional submanifold/" of a Sasakian space fori?>"+1(c) is
called aC-totally real submanifold ofi/2™*!(c) if £ is a normal vector field on
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M™. A direct consequence of this definition is thd")/") ¢ 7M™, which
means thafl/" is an anti-invariant submanifold @f/>"*1(c)

It is well-known that the Riemannian curvature tensor of a Sasakian space
form M?™*1(¢) of constantp-sectional curvatureis given by [1]:

3
(4.6) R(X, Y)Z EZ (Y, 2) X — (X, 2)Y)
(n(X) (2)Y =n(Y)n(Z2)X + (X, Z) n(Y)§ _ _
A General Optimal Inequality for
_ Arbit Ri i
< ZYn(X)E+ (BY, Z) 9X — (6X, Z) ¢ — 2 (X, Y) $Z) bigary Riemannian
for X,Y, Z tangent tad/>™+!(€). Hence ife > 1, the sectional curvature func- Bang-Yen Chen
tion K of M?™*1(¢) satisfies
Title Page
€+ 3 ~
4.7) <KX)Y)<e Contents
for X, Y € kern; if € < 1, the inequalities are reversed. <44 44
From Theoren8.1and these sectional curvature propertie$)(and @.7) of < >
Sasakian space forms, we obtain the following results for arbitrary Riemannian
submanifolds in Sasakian space forms. Go Back
Corollary 4.5. If M is an n-dimensional submanifold of a Sasakian space Close
form M (e) of constantg-sectional curvaturee > 1, then, for anyk-tuple Quit

(n1,...,n%) € S(n), we have Page 18 of 23

(4.8) §(ny,...,nx)(p) <c(ny,...,ng)H*(p) +b(ni,...,np)e.
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Corollary 4.6. If M is an n-dimensional submanifold of a Sasakian space
form M (e) of constantp-sectional curvaturee < 1, then, for anyk-tuple
(n1,...,n;) € S(n), we have

(4.9 §(ny,...,nx)(p) <c(ny,...,ng)H*(p) +b(ni,...,ng).

Corollary 4.7. If M is ann-dimensional’-totally real submanifold of a Sasakian
space form\/(¢) of constanty-sectional curvature < 1, then, for anyk-tuple
(n1,...,n%) € S(n), we have

e+3

(4.10)  0(ny,...,m)(p) < c(ni,...,ne)H*(p) +blny,. .., ng) T

Corollary4.7 has been obtained i {].
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