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Abstract

One of the most fundamental problems in submanifold theory is to establish
simple relationships between intrinsic and extrinsic invariants of the subman-
ifolds (cf. [6]). A general optimal inequality for submanifolds in Riemannian
manifolds of constant sectional curvature was obtained in an earlier article [5].
In this article we extend this inequality to a general optimal inequality for arbi-
trary Riemannian submanifolds in an arbitrary Riemannian manifold. This new
inequality involves only the δ-invariants, the squared mean curvature of the
submanifolds and the maximum sectional curvature of the ambient manifold.
Several applications of this new general inequality are also presented.

2000 Mathematics Subject Classification: 53C40, 53C42, 53B25
Key words: δ-invariants, Inequality, Riemannian submanifold, Squared mean curva-

ture, Sectional curvature.
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1. Introduction
According to the celebrated embedding theorem of J.F. Nash [23], every Rie-
mannian manifold can be isometrically embedded in some Euclidean spaces
with sufficiently high codimension. The Nash theorem was established in the
hope that if Riemannian manifolds could always be regarded as Riemannian
submanifolds, this would then yield the opportunity to use extrinsic help. How-
ever, as observed by M. Gromov [18], this hope had not been materialized. The
main reason for this is due to the lack of controls of the extrinsic properties of
the submanifolds by the known intrinsic data.

In order to overcome the difficulty mentioned above, the author introduced
in [4, 5] some new types of Riemannian invariants, denoted byδ(n1, . . . , nk).
Moreover, he was able to establish in [5] an optimal general inequality for sub-
manifolds in real space forms which involves hisδ-invariants and the main ex-
trinsic invariant; namely, the squared mean curvature. Such inequality pro-
vides prima controls on the most important extrinsic curvature invariant by
the initial intrinsic data of the Riemannian submanifolds in real space forms.
As an application, he was able to discover new intrinsic spectral properties of
homogeneous spaces via Nash’s theorem. Such results extend a well-known
theorem of Nagano [22]. Since then theδ-invariant and the inequality estab-
lished in [5] have been further investigated by many geometers (see for instance,
[2, 8, 9, 10, 11, 14, 12, 13, 15, 17, 20, 21, 24, 25, 26, 27, 28, 29, 30]). Recently,
theδ-invariants have also been applied to general relativity theory as well as to
affine geometry (see for instance, [7, 16, 19]).

In this article we use the same idea introduced in the earlier article [5] to
extend the inequality mentioned above to a more general optimal inequality for
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an arbitrary Riemannian submanifold in an arbitrary Riemannian manifold.
Our general inequality involves theδ-invariant, the squared mean curvature

of the Riemannian submanifold and the maximum of the sectional curvature
function of the ambient Riemannian manifold (restricted to plane sections of
the tangent space of the submanifold at a point on the submanifold). More pre-
cisely, we prove in Section3 that, for anyn-dimensional submanifoldM in a
Riemannianm-manifoldM̃m, we have the following general optimal inequal-
ity:

(1.1) δ(n1, . . . , nk) ≤ c(n1, . . . , nk)H
2 + b(n1, . . . , nk) max K̃

for anyk-tuple (n1, . . . , nk) ∈ S(n), wheremax K̃(p) denotes the maximum
of the sectional curvature function of̃Mm restricted to 2-plane sections of the
tangent spaceTpM of M at p. (see Section3 for details). (Whenk = 0,
inequality (1.1) can be found in B. Suceavă’s article [27]).

In the last section we provide several immediate applications of inequal-
ity (1.1). In particular, by applying our inequality we conclude that ifM is a
Riemanniann-manifold with δ(n1, . . . , nk) > 0 at some point inM for some
k-tuple (n1, . . . , nk) ∈ S(n), thenM admits no minimal isometric immersion
into any Riemannian manifold with non-positive sectional curvature. In this
section, we also apply inequality (1.1) to derive two inequalities for submani-
folds in Sasakian space forms. In fact, many inequalities for submanifolds in
various space forms obtained by various people can also be derived directly
from inequality (1.1).
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2. Preliminaries
LetM be ann-dimensional submanifold of a Riemannianm-manifoldM̃m. We
choose a local field of orthonormal frame

e1, . . . , en, en+1, . . . , em

in M̃m such that, restricted toM , the vectorse1, . . . , en are tangent toM and
henceen+1, . . . , em are normal toM . Let K(ei ∧ ej) andK̃(ei ∧ ej) denote
respectively the sectional curvatures ofM andM̃m of the plane section spanned
by ei andej.

For the submanifoldM in M̃m we denote by∇ and∇̃ the Levi-Civita con-
nections ofM andM̃m, respectively. The Gauss and Weingarten formulas are
given respectively by (see, for instance, [3])

∇̃XY = ∇XY + h(X, Y ),(2.1)

∇̃Xξ = −AξX + DXξ(2.2)

for any vector fieldsX,Y tangent toM and vector fieldξ normal toM , where
h denotes the second fundamental form,D the normal connection, andA the
shape operator of the submanifold.

Let {hr
ij}, i, j = 1, . . . , n; r = n + 1, . . . ,m, denote the coefficients of the

second fundamental formh with respect toe1, . . . , en, en+1, . . . , em. Then we
have

hr
ij = 〈h(ei, ej), er〉 = 〈Aerei, ej〉 ,

where〈·, ·〉 denotes the inner product.
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The mean curvature vector
−→
H is defined by

(2.3)
−→
H =

1

n
traceh =

1

n

n∑
i=1

h(ei, ei),

where{e1, . . . , en} is a local orthonormal frame of the tangent bundleTM of

M . The squared mean curvature is then given byH2 =
〈−→

H,
−→
H
〉

. A sub-

manifold M is called minimal inM̃m if its mean curvature vector vanishes
identically.

Denote byR andR̃ the Riemann curvature tensors ofM andM̃m, respec-
tively. Then theequation of Gaussis given by

(2.4) R(X,Y ; Z,W )

= R̃(X,Y ; Z,W ) + 〈h(X, W ), h(Y, Z)〉 − 〈h(X,Z), h(Y, W )〉 ,

for vectorsX, Y, Z, W tangent toM .
For any orthonormal basise1, . . . , en of the tangent spaceTpM , the scalar

curvatureτ of M atp is defined to be

(2.5) τ(p) =
∑
i<j

K(ei ∧ ej),

whereK(ei ∧ ej) denotes the sectional curvature of the plane section spanned
by ei andej.

Let L be a subspace ofTpM of dimensionr ≥ 1 and{e1, . . . , er} an or-
thonormal basis ofL. The scalar curvatureτ(L) of the r-plane sectionL is

http://jipam.vu.edu.au/
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defined by

(2.6) τ(L) =
∑
α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r.

Whenr = 1, we haveτ(L) = 0.
For integersk ≥ 0 andn ≥ 2, let us denote byS(n, k) the finite set consist-

ing of unorderedk-tuples(n1, . . . , nk) of integers≥ 2 which satisfies

n1 < n and n1 + · · ·+ nk ≤ n.

Let S(n) be the union∪k≥0 S(n, k).
For any(n1, . . . , nk) ∈ S(n), the Riemannian invariantsδ(n1, . . . , nk) intro-

duced in [5] are defined by

(2.7) δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)},

whereL1, . . . , Lk run over allk mutually orthogonal subspaces ofTpM with
dim Lj = nj, j = 1, . . . , k.

We recall the following general algebraic lemma from [4] for later use.

Lemma 2.1. Leta1, . . . , an, η ben + 1 real numbers such that(
n∑

i=1

ai

)2

= (n− 1)

(
η +

n∑
i=1

a2
i

)
.

Then2a1a2 ≥ η, with equality holding if and only if we have

a1 + a2 = a3 = · · · = an.

http://jipam.vu.edu.au/
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3. A General Optimal Inequality
For each(n1, . . . , nk) ∈ S(n), let c(n1, . . . , nk) andb(n1, . . . , nk) be the posi-
tive numbers given by

c(n1, . . . , nk) =
n2(n + k − 1−

∑k
j=1 nj)

2(n + k −
∑k

j=1 nj)
,(3.1)

b(n1, . . . , nk) =
1

2
(n(n− 1)−

k∑
j=1

nj(nj − 1)).(3.2)

For an arbitrary Riemannian submanifold we have the following general op-
timal inequality.

Theorem 3.1. Let M be ann-dimensional submanifold of an arbitrary Rie-
mannianm-manifoldM̃m. Then, for each pointp ∈ M and for eachk-tuple
(n1, . . . , nk) ∈ S(n), we have the following inequality:

(3.3) δ(n1, . . . , nk)(p) ≤ c(n1, . . . , nk)H
2(p) + b(n1, . . . , nk) max K̃(p),

wheremax K̃(p) denotes the maximum of the sectional curvature function of
M̃m restricted to 2-plane sections of the tangent spaceTpM of M at p.

The equality case of inequality(3.3) holds at a pointp ∈ M if and only the
following two conditions hold:

(a) There exists an orthonormal basise1, . . . , em at p, such that the shape

http://jipam.vu.edu.au/
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operators ofM in M̃m at p take the following form :

(3.4) Aer =


Ar

1 . . . 0
...

...
... 0

0 . . . Ar
k

0 µrI

 , r = n + 1, . . . ,m,

whereI is an identity matrix and eachAr
j is a symmetricnj × nj submatrix

such that

(3.5) trace(Ar
1) = · · · = trace(Ar

k) = µr.

(b) For anyk mutual orthogonal subspacesL1, . . . , Lk of TpM which satisfy

δ(n1, . . . , nk) = τ −
k∑

j=1

τ(Lj)

at p, we have

(3.6) K̃(eαi
, eαj

) = max K̃(p)

for anyαi ∈ ∆i, αj ∈ ∆j with i 6= j, where

∆1 = {1, . . . , n1},
. . .

∆k = {n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk}.
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Proof. Let M be ann-dimensional submanifold of a Riemannianm-manifold
M̃m andp be a point inM . Then the equation of Gauss implies that atp we
have

(3.7) 2τ(p) = n2H2 − ||h||2 + 2τ̃(TpM),

where||h||2 is the squared norm of the second fundamental formh andτ̃(TpM)
is the scalar curvature of the ambient spaceM̃m corresponding to the subspace
TpM ⊂ TpM̃

m, i.e.

τ̃(TpM) =
∑
i<j

K̃(ei, ej)

for an orthonormal basise1, . . . , en of TpM .
Let us put

(3.8) η = 2τ(p)− n2(n + k − 1−
∑

nj)

n + k −
∑

nj

H2 − 2τ̃(TpM).

Then we obtain from (3.7) and (3.8) that

(3.9) n2H2 = γ
(
η + ||h||2

)
, γ = n + k −

∑
nj.

At p, let us choose an orthonormal basise1, . . . , em such thateαi
∈ Li for

eachαi ∈ ∆i. Moreover, we choose the normal vectoren+1 to be in the direction
of the mean curvature vector atp (When the mean curvature vanishes atp, en+1

http://jipam.vu.edu.au/
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can be chosen to be any unit normal vector atp). Then (3.9) yields

(3.10)

(
n∑

A=1

aA

)2

= γ

[
η +

∑
A6=B

(hn+1
AB )2 +

n∑
A=1

(aA)2 +
m∑

r=n+2

n∑
A,B=1

(hr
AB)2

]
,

whereaA = hn+1
AA with 1 ≤ A, B ≤ n. Equation (3.10) is equivalent to

(3.11)

(
γ+1∑
i=1

āi

)2

= γ

[
η +

γ+1∑
i=1

(āi)
2 +

∑
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hr
ij)

2

−
∑

1≤α1 6=β1≤n1

aα1aβ1 −
∑

α2 6=β2

aα2aβ2 − · · ·
∑

αk 6=βk

aαk
aβk

]
,

whereα2, β2 ∈ ∆2, . . . , αk, βk ∈ ∆k and

ā1 = a1, ā2 = a2 + · · ·+ an1 ,

ā3 = an1+1 + · · ·+ an1+n2 ,(3.12)

· · ·(3.13)

āk+1 = an1+···+nk−1+1 + · · ·+ an1···+nk
,(3.14)

āk+2 = an1···+nk+1, . . . , āγ+1 = an.(3.15)

http://jipam.vu.edu.au/
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By applying Lemma2.1to (3.11) we obtain

(3.16)
∑

α1<β1

aα1aβ1 +
∑

α2<β2

aα2aβ2 + · · ·+
∑

αk<βk

aαk
aβk

≥ η

2
+
∑
A<B

(hn+1
AB )2 +

1

2

m∑
r=n+2

n∑
A,B=1

(hr
AB)2,

whereαi, βi ∈ ∆i, i = 1, . . . , k.

On the other hand, equation (2.6) and the equation of Gauss imply that, for
eachj ∈ {1, . . . , k}, we have

τ(Lj) =
m∑

r=n+1

∑
αj<βj

(
hr

αjαj
hr

βjβj
− (hr

αjβj
)2
)

+ τ̃(Lj),(3.17)

αj, βj ∈ ∆j.

whereτ̃(Lj) is the scalar curvaturẽMm asociated withLj ⊂ Tp.
Let us put∆ = ∆1 ∪ · · · ∪ ∆k and∆2 = (∆1 × ∆1) ∪ · · · ∪ (∆k × ∆k).

Then we obtain by combining (3.8), (3.16) and (3.17) that

τ(L1) + · · ·+ τ(Lk)(3.18)

≥ η

2
+

1

2

m∑
r=n+1

∑
(α,β)/∈∆2

(hr
αβ)2

+
1

2

m∑
r=n+2

k∑
j=1

 ∑
αj∈∆j

hr
αjαj

2

+
k∑

j=1

τ̃(Lj)
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≥ η

2
+

k∑
j=1

τ̃(Lj)

= τ − n2(n + k − 1−
∑

nj)

2(n + k −
∑

nj)
H2 −

(
τ̃(TpM)−

k∑
j=1

τ̃(Lj)

)
.

Therefore, by (2.7) and (3.18), we obtain

(3.19) τ −
k∑

j=1

τ(Lj) ≤
n2(n + k − 1−

∑
nj)

2(n + k −
∑

nj)
H2 + τ̃(TpM)−

k∑
j=1

τ̃(Lj),

which implies that

(3.20) δ(n1, . . . , nk) ≤
n2(n + k − 1−

∑
nj)

2(n + k −
∑

nj)
H2 + δ̃M(n1, . . . , nk),

where

(3.21) δ̃M(n1, . . . , nk) := τ̃(TpM)− inf{τ̃(L̃1) + · · ·+ τ̃(L̃k)}

with L̃1, . . . , L̃k run over allk mutually orthogonal subspaces ofTpM such that
dim L̃j = nj; j = 1, . . . , k. Clearly, inequality (3.21) implies inequality (3.3).

It is easy to see that the equality case of (3.3) holds at the pointp if and only
if the following two conditions hold:

(i) The inequalities in (3.16) and (3.18) are actually equalities;
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(ii) For anyk mutual orthogonal subspacesL1, . . . , Lk of TpM which satisfy

(3.22) δ(n1, . . . , nk) = τ −
k∑

j=1

τ(Lj)

atp, we have

(3.23) K̃(eαi
, eαj

) = max K̃(p)

for anyαi ∈ ∆i, αj ∈ ∆j with i 6= j.
It follows from Lemma2.1, (3.16) and (3.18) that condition (i) holds if and

only if there exists an orthonormal basise1, . . . , em at p, such that the shape
operators ofM in M̃m atp satisfy conditions (3.4) and (3.5).

The converse can be easily verified.
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4. Some Applications
The following results follow immediately from Theorem3.1

Theorem 4.1. LetM be ann-dimensional submanifold of the complex projec-
tive m-spaceCPm(4ε) of constant holomorphic sectional curvature4ε (or the
quaternionic projectivem-spaceQPm(4ε) of quaternionic sectional curvature
4ε). Then we have

(4.1) δ(n1, . . . , nk)(p) ≤ c(n1, . . . , nk)H
2(p) + 4b(n1, . . . , nk)ε

for anyk-tuple(n1, . . . , nk) ∈ S(n).

Theorem 4.2. Let M be ann-dimensional submanifold of the complex hyper-
bolicm-spaceCHm(4ε) of constant holomorphic sectional curvature4c (or the
quaternionic hyperbolicm-spaceQHm(4ε) of quaternionic sectional curvature
4ε). Then we have

(4.2) δ(n1, . . . , nk)(p) ≤ c(n1, . . . , nk)H
2(p) + b(n1, . . . , nk)ε

for anyk-tuple(n1, . . . , nk) ∈ S(n).

Theorem 4.3. Let M̃m be a Riemannian manifold whose sectional curvature
function is bounded above byε. If M is a Riemanniann-manifold such that

δ(n1, . . . , nk)(p) >
1

2

(
n(n− 1)−

∑
nj(nj − 1)

)
ε

for somek-tuple(n1, . . . , nk) ∈ S(n) at some pointp ∈ M , thenM admits no
minimal isometric immersion iñMm.
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In particular, we have the following non-existence result.

Corollary 4.4. If M is a Riemanniann-manifold with

δ(n1, . . . , nk) > 0

at some point inM for somek-tuple (n1, . . . , nk) ∈ S(n), thenM admits no
minimal isometric immersion into any Riemannianm-manifoldM̃m with non-
positive sectional curvature, regardless of codimension.

A (2m + 1)-dimensional manifold is calledalmost contactif it admits a
tensor fieldφ of type(1, 1), a vector fieldξ and a 1-formη satisfying

(4.3) φ2 = −I + η ⊗ ξ, η(ξ) = 1,

whereI is the identity endomorphism. It is well-known that

φξ = 0, η ◦ φ = 0.

Moreover, the endomorphismφ has rank2m.
An almost contact manifold(M̃, φ, ξ, η) is called analmost contact metric

manifoldif it admits a Riemannian metricg such that

(4.4) g(φX, φY ) = g(X,Y )− η(X)η(Y )

for vector fieldsX, Y tangent toM̃ . SettingY = ξ we have immediately that

η(X) = g(X, ξ).
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By a contact manifoldwe mean a(2m + 1)-manifold M̃ together with a
global 1-formη satisfying

η ∧ (dη)m 6= 0

onM . If η of an almost contact metric manifold(M̃, φ, ξ, η, g) is a contact form
and ifη satisfies

dη(X, Y ) = g(X, φY )

for all vectorsX, Y tangent toM̃ , thenM̃ is called acontact metric manifold.
A contact metric manifold is calledK-contactif its characteristic vector field

ξ is a Killing vector field. It is well-known that aK-contact metric(2n + 1)-
manifold satisfies

(4.5) ∇Xξ = −φX, K̃(X, ξ) = 1

for X ∈ ker η, whereK̃ denotes the sectional curvature onM .
A K-contact manifold is calledSasakianif we have

Nφ + 2dη ⊗ ξ = 0,

whereNφ is the Nijenhuis tensor associated toφ. A plane sectionσ in TpM̃
2m+1

of a Sasakian manifold̃M2m+1 is calledφ-section if it is spanned byX and
φ(X), whereX is a unit tangent vector orthogonal toξ. The sectional curvature
with respect to aφ-sectionσ is called aφ-sectional curvature. If a Sasakian
manifold has constantφ-sectional curvature, it is called a Sasakian space form.

An n-dimensional submanifoldMn of a Sasakian space form̃M2m+1(c) is
called aC-totally real submanifold ofM̃2m+1(c) if ξ is a normal vector field on
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Mn. A direct consequence of this definition is thatφ(TMn) ⊂ T⊥Mn, which
means thatMn is an anti-invariant submanifold of̃M2m+1(c)

It is well-known that the Riemannian curvature tensor of a Sasakian space
form M̃2m+1(ε) of constantφ-sectional curvatureε is given by [1]:

(4.6) R̃(X,Y )Z =
ε + 3

4
(〈Y, Z〉X − 〈X, Z〉Y )

+
ε− 1

4
(η(X)η(Z)Y − η(Y )η(Z)X + 〈X, Z〉 η(Y )ξ

− 〈Y, Z〉 η(X)ξ + 〈φY, Z〉φX − 〈φX, Z〉φY − 2 〈φX, Y 〉φZ)

for X, Y, Z tangent toM̃2m+1(ε). Hence ifε ≥ 1, the sectional curvature func-
tion K̃ of M̃2m+1(ε) satisfies

(4.7)
ε + 3

4
≤ K̃(X,Y ) ≤ ε

for X,Y ∈ ker η; if ε < 1, the inequalities are reversed.
From Theorem3.1and these sectional curvature properties (4.5) and (4.7) of

Sasakian space forms, we obtain the following results for arbitrary Riemannian
submanifolds in Sasakian space forms.

Corollary 4.5. If M is an n-dimensional submanifold of a Sasakian space
form M̃(ε) of constantφ-sectional curvatureε ≥ 1, then, for anyk-tuple
(n1, . . . , nk) ∈ S(n), we have

(4.8) δ(n1, . . . , nk)(p) ≤ c(n1, . . . , nk)H
2(p) + b(n1, . . . , nk)ε.
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Corollary 4.6. If M is an n-dimensional submanifold of a Sasakian space
form M̃(ε) of constantφ-sectional curvatureε < 1, then, for anyk-tuple
(n1, . . . , nk) ∈ S(n), we have

(4.9) δ(n1, . . . , nk)(p) ≤ c(n1, . . . , nk)H
2(p) + b(n1, . . . , nk).

Corollary 4.7. If M is ann-dimensionalC-totally real submanifold of a Sasakian
space formM̃(ε) of constantφ-sectional curvatureε ≤ 1, then, for anyk-tuple
(n1, . . . , nk) ∈ S(n), we have

(4.10) δ(n1, . . . , nk)(p) ≤ c(n1, . . . , nk)H
2(p) + b(n1, . . . , nk)

ε + 3

4
.

Corollary4.7has been obtained in [13].

http://jipam.vu.edu.au/
mailto:bychen@math.msu.edu
http://jipam.vu.edu.au/


A General Optimal Inequality for
Arbitrary Riemannian

Submanifolds

Bang-Yen Chen

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 20 of 23

J. Ineq. Pure and Appl. Math. 6(3) Art. 77, 2005

http://jipam.vu.edu.au

References
[1] D.E. BLAIR, Riemannian Geometry of Contact and Symplectic Manifolds,

Birkhäuser, Boston, 2002.

[2] D.E. BLAIR, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN,
Calabi curves as holomorphic Legendre curves and Chen’s inequality,
Kyungpook Math. J.,35 (1996), 407–416.

[3] B.Y. CHEN,Geometry of Submanifolds, M. Dekker, New York, 1973.

[4] B.Y. CHEN, Some pinching and classification theorems for minimal sub-
manifolds,Arch. Math.,60 (1993), 568–578.

[5] B.Y. CHEN, Some new obstructions to minimal and Lagrangian isometric
immersions,Japan. J. Math.,26 (2000), 105–127.

[6] B.Y. CHEN, Riemannian Submanifolds, in Handbook of Differential Ge-
ometry, Volume I, North Holland, (edited by F. Dillen and L. Verstraelen)
2000, pp. 187–418.

[7] B.Y. CHEN, F. DILLEN AND L. VERSTRAELEN, Affine δ-invariants
and their applications to centroaffine geometry,Differential Geom. Appl.,
23 (2005), 341–354.

[8] B.Y. CHEN AND I. MIHAI, Isometric immersions of contact Riemannian
manifolds in real space forms,Houston J. Math.,31 (2005), 743–764.

[9] D. CIOROBOIU, B. Y. Chen inequalities for bi-slant submanifolds in
Sasakian space forms,Demonstratio Math.,36 (2003), 179–187.

http://jipam.vu.edu.au/
mailto:bychen@math.msu.edu
http://jipam.vu.edu.au/


A General Optimal Inequality for
Arbitrary Riemannian

Submanifolds

Bang-Yen Chen

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 21 of 23

J. Ineq. Pure and Appl. Math. 6(3) Art. 77, 2005

http://jipam.vu.edu.au

[10] D. CIOROBOIU, B. Y. Chen inequalities for semislant submanifolds in
Sasakian space forms,Int. J. Math. Math. Sci.,2003no. 27, 1731–1738.

[11] M. DAJCZER AND L.A. FLORIT, On Chen’s basic equality,Illinois J.
Math., 42 (1998), 97–106.

[12] F. DEFEVER, I. MIHAI AND L. VERSTRAELEN, B. Y. Chen’s inequal-
ity for C-totally real submanifolds in Sasakian space forms,Boll. Un. Mat.
Ital., Ser. B,11 (1997), 365-374.

[13] F. DEFEVER, I. MIHAI AND L.VERSTRAELEN, B.-Y. Chen’s inequali-
ties for submanifolds of Sasakian space forms,Boll. Unione Mat. Ital. Sez.
B Artic. Ric. Mat., (8)4 (2001), 521–529.
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