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ABSTRACT. For some given positive, a functionf is called outery-convex if it satisfies the
Jensen inequality (z;) < (1 — X)) f(zo) + \if (z1) for somezg: = xg,21,...,2k: = x1 €

[1110,1'1] Satleylng”Zl — Zi+1|| <7, where);: = HZL’O — ZZH/”ICO — £L'1H,i =12, .., k— 1.
Though the Jensen inequality is only required to hold true at some points (although the location of
these points is uncertain) on the segniept x|, such a function has many interesting properties
similar to those of classical convex functions. Among others it is shown that, if the infimum limit
of an outery-convex function attains-oo at some point then this propagates to other points, and

under some assumptions, a function is oyt@onvex iff its epigraph is an outerconvex set.

Key words and phrasesConvexity, Epigraph, Jensen inequality, Outeconvex set, Outer-convex function.

2000Mathematics Subject Classificat 086A51, 26B25, 52A41.

1. INTRODUCTION

Convex functions belong to the most important objects investigated in mathematical pro-
gramming. They have many interesting properties, for example, if a convex function attains
—oco at some point then it attainsoo at every relative interior point of the domain, all lower
level sets are convex and a function is convex iff its epigraph is convex; see [8]. It is worth
mentioning that all of them follow from a single algebraic condition, namely the satisfaction of
the Jensen inequality

(1.1) f(xy) < (1= A)f(xo) + Af(21)

zx=(1=Nzo+ Az, X€]0,1]
everywhere on the segment connecting two arbitrary points of the domain. In a generalization
of the classical convexity, for allowing small nonconvex blips, convexity is required to hold true
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2 PHAN THANH AN

between points, the distance between which is greater than some given positive real number,
say, the roughness degree. Suppbses a nonempty convex set in the normed linear space
(X, - ]|). According to Klotzler and Hartwig [([1]), a functiofi : D € X — R is called
roughly p-convex if the Jensen inequality (L.1) is satisffedall points =, € [zo,z1] C D
whenever|z; — z0| > p, for some giverp > 0. But the requirement of (1.1t all pointsis
sometimes too hard (se€€ [7]). In the concept of Hu, Klee, and Larman [2], a furfcisacalled
d-convex if ) is fulfilledat each pointz) € [z, z1] with

o
s —zoll = 5 and oy — i) 2 5

for some givery > 0, which means that at lealt; — || > J. According to H. X. Phu, for a
fixedy > 0, a functionf is called~-convex if

|1 = ol| = v implies  f(xg) + f(21) < f(xo) + f (1)
with ) € [xo, 1], [|z; — 2} =, i=0,1
([6]). It follows that f must fulfill the Jensen inequality (1.4} least atz;, or 2. In addition
to this trend,y-convexlikeness and outerconvexity were introduced respectively in [4] and

[5] (and they are equivalent for lower semicontinuous functions). We recall that a furfcison
called outery-convex if (1.1) holds truéor some points

200 = To,21,..-, 2k = X1 € [xo,x1] satisfying ||zii1 — 2zl <

(but the location of these pointsusicertain). It was shown in[[4] that, under some assumptions,
a function is outery-convex (convex, respectively) iff the sum of this function and an arbitrary
continuous linear functional always fulfills the property “each lower level set is outenvex”
(“each lower level set is convex”, respectively) (see the definition of opEwnvex sets in
Section ).

In this paper we show that although the demand “satisfyiing (1.1) at some points which are
uncertain where" of outey-convexity is very weak it could conclude some more similar prop-
erties of classical convexity. In Sectiph 2 some similar properties of classical convexity are
given. Among others we get the nearest-point properties (Propdsition 2.2). Some properties of
outery-convex functions are given in Sectiph 3. In particular, if the infimum limit of an outer
~-convex function attains-oo at some point then this propagates to other points (the so-called
infection property) (Propositign 3.4). Finally, under some assumptions, Corpllary 4.2 says that
a function is outery-convex iff it its epigraph is outey-convex.

2. OUTER 7-CONVEX SETS

Let (X, | - ||) be a normed linear space andde a fixed positive real number. For any,
r; € X andA € [0, 1], we denote

= (1 — Nz + Ay,
[ZL‘(),ZEl] { Ty - O<)\<1}
[xo, 21[ == [0, 21] \ {21},
[0, x1[ == [0, 21[ \{70 }.
Asusual,B (z,r): ={y € X : ||z —y|| < r} denotes the closed ball with centr@nd radius
r > 0. Let us recall the notion of outer-convex sets ([5]). A se/ C X is said to beouter
v-convexf for all =y, z, € M, there existy: = x,21,...,2x: = 1 € [To, 1] N M such that
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Obviously, every convex set is outerconvex for ally > 0. Conversely, if a closed séf is
outer~-convex for ally > 0 thenM must be convex. It follows directly from the following.

Proposition 2.1([9]). Let M C X be outery-convex, and let, andx; belong toM. Then
[z6, 21 [ C [xo, 1) \ M implies ||xy — 2| < 7.

By virtue of this proposition, such a s#f is called outery-convex because a segment con-
necting two points ofl/ may contain at most gaps (i.e., subsegments oufsiyle’hose length
is smaller thany.

Foreachr € X, setMz: = {y* € M : ||z — y*|| = infyenm ||z — y||}.

Proposition 2.2. Suppose that/ is nonempty and outey-convex inX whose unit closed ball
B(0,1) is strictly convex. Thediam Mz < ~ for eachz € X.

Proof. Assume the contrary thatiam Mz > ~. Then, there existy,x; € Mz such that
|zo — z1]] > 7. By the outery-convexity of M, there exists: € |zq, z1[NM. The strict
convexity of B(0, 1) implies||z — z|| < max{||z — x|, ||z — x1]|} = ||z — x|, which conflicts
with ¢y € M. [

Note that the assumption of the strict convexity®0, 1) is really needed. Moreover, the
converse of Propositign 2.2 is false in calse. X > 2. For example, the compact set

M: ={(z,y) eR* v e [-1,1,ye [-1,1]}\{(z,y) eR*: 0 <y <z}

satisfiesdiam M (x,y) < v for all (z,y) € R?, wherey: = 1. But M is not outery-convex.
As can be seen later, the converse of Proposition 2.2 holds tdie ik = 1 and} is closed.

In view of Proposition 22, we get the following classical result which is a part of Motzkin’s
Theorem (see [9]).

Corollary 2.3. Suppose that/ is nonempty and convex i whose unit closed balB (0, 1) is
strictly convex. Then, for eache X, if the setM z is nonempty, it is a singleton.

Proof. Since)M is convex, it is outefy-convex for ally > 0. By Proposition 2.Rdiam Mz < v
for all v > 0. It follows thatdiam Mz = 0, i.e., Mx is a singleton. O

We recall that a set/ C X is vy-convexlikéf |xq, x1[NM # () holds true for allxg, x; in M
satisfying||zo — 1| > ~ ([5])-

Clearly, each outey-convex set igy-convexlike. In general the converse does not hold. The
situation is quite different if\/ is closed.

Proposition 2.4([5]). Suppose that/ is closed. Thei/ is outery-convex iff it isy-convexlike.

Note that ifdim X = 1 anddiam Mx < ~ for eachr € X thenM is~-convexlike (Indeed, if
M were noty-convexlike, i.e., there were), x; € M, xo —x1 > ~ such that|zg, x:[NM = 0,
thenM 232 — {zo, 2, } and thereforeliam M/ 20321 > ~, a contradiction). Consequently, by
Propositior) 2.4, the converse of Proposifiorj 2.2 holds trdenif X' = 1 and/ is closed.

From Proposition 2|4 we have the following.

Proposition 2.5. If M is outerv-convex therx4, ..., z,, € M and

, — || > foralli=1....
weconwxl,...,wi,1,$i+1 ,,,,, (Em} ||xz .TH /y 7 , ,m

andm > 2imply that there exisk; > 0,7 =1,...,m,suchthady " A\, =1land> " \z; €
M. If additionally M is closed, the converse is true.
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Proof. Suppose thad/ is outery-convex. Then the above condition holds true dor= 2. It
remains to prove that the above condition holds truerior- 2. The proof is by induction on
m. Assume that the assertion holds for— 1. Letz,,...,z,, € M and

inf ||z; — x| >
inf flz — ] >
foralli =1,...,m, whereF;: =confxy,...,z;_1,%it1,...,Tn}. Iltimplies that

Inf fla; — 2l >~

foralli =1,...,m — 1. Therefore, by the induction assumption, we conclude that
m—1
y: = Z Nx; €M
=1
with some); > 0,7 = 1,...,m — 1 and>.7";' \; = 1. Sincelly — z,,|| > 7, there exists

Am € 10, 1] such tha{l — \,,)y + Az € M. Hence,
m—1
D (L= A)i + A € M.
=1

That is, the above condition always holds true.
Conversely, since the above condition holds truerfoe= 2, M is y-convexlike. It follows
from Proposition 2}4 that/ is outery-convex. O

3. OUTER ~-CONVEX FUNCTIONS

SupposeD is a nonempty convex set in the normed linear spacgd| - ||). We recall that
f: D C X — Ris outer~-convexif for all distinct pointsz, z; € D, there existzy: =
To, 21, .., 2kt = T1 € (20, 21] Satisfying [2.1) and
(3.1) f(zi) < (L= N)f(wo) + Aif (1)
where);: = ||lxo — zi||/||lxo — z1]|, i=1,2,...,k — 1 (seel5]).

Clearly, a convex function is outerconvex for ally > 0. Conversely, if a lower semicon-
tinuous function is outey-convex for ally > 0 then it must be convex. Indeed, if a function is
outer~-convex for ally > 0 then it is convexlike (seé [1]) and therefore, by lower semicontin-
uouity, this function is convex.

In [4], a weaker notion of generalized convexity, namelgonvexlikeness was introduced.
We recall that a functiorf is y-convexlikef for all z¢, 2, in D, satisfying||zo — x| > ~, there
existsz € |xg, z;[ such that

(3.2) f(2) < (L= A)f(zo) + Af(21),
where\: = ||zo — z||/||xo — x1]|-

Then, outery-convexity andy-convexlikeness are equivalent for lower semicontinuous func-
tions.

Proposition 3.1 ([5]). Let f be lower semicontinuous. Thefi,is outer~y-convex iff it isy-
convexlike.

It is easy to see that a polynomifllz) = ax* + bx® + cx?® + dx + e of order 4 is not convex
onR!iff 0 < 3b* — 8ac. But f is outery-convex for a suitable as the following shows.

Corollary 3.2. Suppose that a polynomiglz) = az* + bz + cx? + dx + e of order 4 is not

3(3b%2—8ac)

convex orR!. Thenf is outery-convex iffa > 0 and~y > 2i
a 2
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Proof. Propositiorj 3.]L allows us to conclude that outezonvexity of a polynomial is equiva-
lent toy-convexlikeness. Thereforé,is outery-convex iff for all zy, ; € R! andz; — 2 > 7,
there exists\ €0, 1| such that

f(@o+ A1 — x9)) < (1= A)f(2o) + Af(z1).
This inequality is equivalent to
g(z1) = 6ax] — (4a(2 — A\)p — 3b) 21 + a(3 — 3A + A*)p* — b(2 — A\)p + ¢ > 0,

wherep: = x; — xy. Fix p and . Then, the polynomiaj(x;) of order 2 is greater than O for
all z; € R'iff a > 0 and

(3.3) 8a*(1 — A+ A (w1 — x0)? > 9b* — 24ac

holds true for alkyy, z; € R! satisfyingz; — 2 > .

Now suppose that is outery-convex. It follows from the above that> 0 and [3.8) holds
for all zg, z; € R! satisfyingz; — 2y > 7. SinceX € [0,1],0 < 1 — A+ A? < 1. Hence, by
(3.9),9v* — 24ac < 8a?(x1 — w)? for all zg, z; € R satisfyingz; — zy > ~. It follows that
0 < 3(3b* — 8ac) < 8a*y2.

Conversely, suppose that> 0 and0 < 3(3b* — 8ac) < 8a*y2. We prove thatf is outer
y-convex. Assume the contrary thats not outery-convex. Then, by (3]3), there exisf, z;, €
R! satisfyingz; — zo > v and

8a*(1 — A+ A?)(x1 — 70)* < 9b* — 24ac
forall A €]0,1[. Itimplies that(x; — z4)? < ~?%, a contradiction. O

It is well known thatf is convex iff the Jenssen inequality holds, namely. ...z, € D
imply that f (3°1%, Nizy) < >t Aif(x) forall A; > 0,0 =1,...,msatisfyingd """ | \; = 1
(see, e.q. 18]).

Proposition 3.3. If f is outery-convex then, ..., z,, € D and

|zi —z|| >~ foralli=1,...,m
xGCOﬂ\f{xl,...,xi,l,le ..... Im}
andm > 2 imply t_h_at there _exism- >0,i=1..,m, YA = 1, FOom Niry) <
o Aif (x;). If additionally f is lower semicontinuous, the converse is true.

Proof. Suppose thaf is outery-convex. We apply the argument given in the proof of Propo-
sition[2.5 again, with 3~ \;z; € M” replaced by (3" A\iz;) < Y A f(z;)", to obtain the
desired result.

Conversely, since the above condition holds truerfor= 2, f is y-convexlike. Hence, by
Propositior 3.JLf is outery-convex. O

Note that the sufficiency of Propositipn B.3 fails to be true without the assumption on the
lower semi continuity off.

A property of generalized convex functions is called an infection property if this property
transmits to other places after once appearing somewhere. Phu and/Hai ([6]) showed that
convex functions oiR possess some infection properties. Ogteponvex functions also possess
an infection property as the following proposition shows.

Proposition 3.4.Letf : D C X — R be outery-convex and, € D satisfyliminf, .., f(z) =
—o0. If there existg; € D satisfying

(3.4) ly — xoll > 27
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then there is some

Yy — 2o — Xy
z2 € |xg+y x +27—
’ |y — zoll’ ’ |y — o]
such thatiminf,_,, f(z) = —occ.
Proof. Assume thatry = lim,, ., x,, andlim,, ... f(z,,) = —oo with some{z,,} C D.

Since||y — 20|l > 27, we also assume thfy — z,,|| > v for all m. Sets,,: = (y —zm)/lly —
T,,|. Because is outery-convex, there exist/, = (1 — X )z, + M y,j = 1,2 satisfying

(3.5) Iz = 2mll <7, T+ V8m € [z, 25

and

(3.6) flam) < (=N f(@m) + X, f (),

whereN,: = |z, —2),Il/ly—2n|- Since{N,} C [0, 1], we can assume thag, — N € [0,1]
asm — +oo. Itfollows thatz!, — 27: = (1 — M)zg + My asm — +oo, j = 1,2. We now

consider the following cases:
a) If \? £1,i.e.,22 4 yasm — +oo. This together with[(3]6) yields

liminff(zgl) < limJirnf{(l — X)) f(zm) + X2 f ()}
< limJirnf(l — A2 f(xm) + limsup A2, f(y)

m——+00
= —CQ.
Therefore
li f —00.
fm it f(om) = o0
That is,

hggff( x) = —00.
Sincez?, € [Ty + VSm, Tm + 275w, We conclude that? € [zy + vso, o + 27S0]-
b) If )\2 = 1,i.e.,22, — yasm — +oo. Then, by|(3.5), we conclude that, — y|| = 27,
2zl — 2t = 2y + ysp asm — +oo and therefore\! # 1. Applying the argument given in case
a) again, with 2" replaced by %! ”, we get

liminf f(z) = —oo.

$—>Z

This completes our proof. O
Note that the numbey in (3.4) is best possible. This is illustrated by

0 if v € {0} U [a,b
) ={

z(z—a)

if x €]0,q]

(1 <b<2andb—1 < a < 1). Obviously, f is outery-convex onD: = [0,b] with v: = 1.
Chooser,: = 0andy: = bthenliminf, ., f(z) = —oo andy — xy = b < 2. In this case,
lim,_.. f(z) = 0forall z € [zy + v, y] and the conclusion of Propositipn B.4 is false.

In the next section, a Lipschitz condition is assumed and therefore, the infection property
above does not occur.
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4. THE OUTER 7-CONVEXITY OF FUNCTIONS AND THEIR EPIGRAPHS
Similar to convex functions, outerconvex functions can be characterized by their epigraphs.

Theorem 4.1. Suppose that(x, t)||;: = max{||z|, |t|} forall z € Xt € R. If epi f is outer

~v-convex thery is outery-convex. Conversely, if an outgrconvexf is Lipschitz continuous
with constante > 1 (o € [0, 1], respectively) therpi f is outeray-convex (outery-convex,

respectively).

Proof. Suppose thatpi f is outery-convex andry, z; € D such that|z; — x¢|| > ~. Then

| (z1, f(z1)) = (zo, f(0)) [[1 = [|71 — @0l > 7.
It follows that there exist

Ao: = (w0, f(20)), Ar, ..., Axr = (21, f21)) € [(20, f(20)) , (21, f(1))] Nepi f
such that
A1 — Aillh <~y with ¢=0,1,...,k—1.
Suppose thatl; = (z;,t;). Then
|zic1 — zil| < ||Aiz1 — Al <~ with i=0,1,...,k— 1.
On the other hand, since

Ai = (21, 1) € [(wo, f(20)) , (w1, f(21))] Nepi f,
we get
f(zi) <ti= (1= X)f(xo) + Aif(21)
where);: = ||lxo — z||/||lxo — z1]|, i =1,2,...,k — 1. Thatis,f is outery-convex.
Conversely, if an outefi-convex functionf is Lipschitz continuous with constant > 1

(a € [0, 1], respectively) thempi f is outera-y-convex (outery-convex, respectively). Indeed,
let

Yo = (xo,t0), Y1 = (x1,t1) € epi f.
Obviously, f is continuous ofiz, x1].
Hence{(z,t) € epi f : © € [z, x1]} is closed. Assume without loss of generality, that
Yo = (20, f(20)), Y1 = (21, f(21)).
Suppose
IY1 — Yoli >y with a>1
(Y1 — Yol|1 > ywith 0 < a < 1, respectively). Then, by(z,t)||:: = max{||z|, |t

allzy — xol| > [f(21) — f(20)]

2

implies

with a>1

Y, — Y,
R

(llx1 = xo|| = ||Y1 — Yoll1 > v with 0 < « < 1, respectively). By the outey-convexity of f,
there existo: = x¢, 21,..., 2k = 1 € 20, 1] Satisfying [2.1) and (3]1). Set
Air = (25, (1= N) fmo) + Aif (1)),
where);: = ||zg — z||/||lxo — z1]|, i =0,1,..., k. It follows that
A, Av, .. Ag € [Yo, Y1 Nepi f

and
||Ai+1—Ai||1§0z'y,i:(),1,...,k‘—1 with o >1
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(|41 — Ail|1 < v,i=0,1,...,k—1with0 < a < 1, respectively). Henceypi f is outer
ay-convex witha > 1 (epi f is outery-convex with0 < o < 1, respectively), and the proof is
complete. 0

Corollary 4.2. Suppose thal/(z,t)||;: = max{||z|,|t|} forall z € X, ¢t € R andf is
Lipschitz continuous with constant € [0,1]. Then, f is outer~-convex iffepi f is outer
~-convex.

Note that the assumptions of norm and Lipschitz condition in Theprem 4.1 and Cofollary 4.2
are really needed.

5. CONCLUDING REMARKS

Some sufficient conditions for some kinds of outeconvex functions, namely stricthy-
convex functions and-convex functions, were given in![3] and [6]. Some sufficient conditions
for outer~y-convex function will be a subject of another paper.
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