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Abstract

We study conditional expectations generated by an abelian C*-subalgebra in
the centralizer of a positive functional. We formulate and prove Jensen’s in-
equality for functions of several variables with respect to this type of conditional
expectations, and we obtain as a corollary Jensen’s inequality for expectation
values.
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An n-tuplez = (x4, ..., x,) of elements in &@*-algebraA is said to be abelian

if the elementsy, .. ., z,, are mutually commuting. We say that an abelian
tuple z of self-adjoint elements is in the domain of a real continuous function
f of n variables defined on a cube of real intervals= I; x --- x I, if the
spectrunmu (z;) of x; is contained in/; for eachi = 1,..., n. In this situation
f(z) is naturally defined as an element.hin the following way. We may
assume thatl is realized as operators on a Hilbert space and let

,n

denote the spectral resolutions of the operatqts. ., z,,. Since then-tuple

z = (z1,...,x,) is abelian, the spectral measurgs, .. ., £, are mutually
commuting. We may thus set

E(Sl X e X Sn) = El(Sl) N En(Sn)

for Borel setsSy, ..., .S, in R and extendr to a spectral measure @i with
support in/. Setting

flz) = /f(Al,...,)\n) dE(M, ..., \n)

and sincef is continuous, we finally realize thgtx) is an element inA.
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Let C be a separable abeli@rn-subalgebra of &*-algebraA, and lety be a
positive functional ond such that is contained in the centralizer

A7 ={y € Al p(zy) = p(yz) Yz € A}

The subalgebra is of the foréh= C;(.S) for some locally compact metric space
S.

Theorem 2.1. There exists a positive linear mapping
(2.1) 2 M(A) — L=(S, 1)
on the multiplier algebral/(.4) such that
B(ry) = (yz) = B(a)y, 1z € M(A), yeC

almost everywhere, and a finite Radon meagyen S such that

/Sz(s)(I)(x)(s) dp,(s) = ¢(zx), zeC,xe M(A).

Proof. By the Riesz representation theorem there is a finite Radon measure
on S such that

o) = [ v dung(s) wec= )
For each positive elementin the multiplier algebra/(.A) we have

0 < p(yr) = p(y"?zy*?) < ||zlle(y),  y€Cy.
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The functionaly — ¢(yx) onC consequently defines a Radon measure&Son
which is dominated by a multiple ¢f,, and itis therefore given by a unique ele-
ment®(x) in L>(S, u,,). By linearization this defines a positive linear mapping
defined on the multiplier algebra

(2.2) ®: M(A) — L=(S, 1)

such that
/Sz(s)CI)(:L’)(s) dup(s) = ¢(zx), zeC,xe M(A).

Furthermore, since

/S 2(5)®(y2)(s) duy(s) = p(zy) = / 2()y ()@ () (s) dpr,(s)
forz € M(A)andz,y € C we derive®(yx) = y®(z) = ®(r)y almost
everywhere. Sincé€ is contained in the centralize4¥ and thusy(zzy) =
w(yzx), we similarly obtain®(zy) = ®(x)y almost everywhere. O

Note that®(z)(s) = z(s) almost everywhere i$ for eachz € C, cf. [6,
, 5]. With a slight abuse of language we célla conditional expectation even
though its range is not a subalgebraléf.A).
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Following the notation in] we consider a separahl¢ -algebraA of operators
on a (separable) Hilbert spageand a field a, ), of operators in the multiplier
algebra

M(A) = {a € B(H) | aA+ Aa C A}

defined on a locally compact metric spacequipped with a Radon measure
We say that the fielda,);cr is weak*-measurable if the functign— ¢(a,) is
v-measurable off’ for eachy € A*; and we say that the field is continuous if
the functiont — a; is continuous{].

As noted in ] the field (a,),cr is weak*-measurable, if and only if for each
vector¢ € §the functiont — a,£ is weakly (equivalently strongly) measurable.
In particular, the composed field;b;).cr is weak*-measurable if botfu;):cr
and(b;)cr are weak*-measurable fields.

If for a weak*-measurable fielt; )7 the functiont — |p(a;)| is integrable
for every statep € S(.A) and the integrals

[lalae <k voes
T
are uniformly bounded by some constdiit then there is a unique element

(a C*-integral in Pedersen’s terminolog¥,[2.5.15]) in the multiplier algebra
M (A), designated by
/ ay dv(t),
T

such that
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© (/T a du(t)> :/TSO(at) dv(t), Ve A

We say in this case that the figld; )< is integrable. Finally we say that a field
(at)er IS @ unital column field ], 4, 5], if it is weak*-measurable and

/afat dv(t) = 1.
T

We note that &’*-subalgebra of a separalfl&-algebra is automatically sepa-
rable.

Theorem 3.1. Let C be an abelianC*-subalgebra of a separablé*-algebra
A, p be a positive functional ol such thatC is contained in the centralizer
A? and let

Q: M(A) — L*=(S, 1)
be the conditional expectation defined in1). Let furthermoref : I — R be a
continuous convex function efvariables defined on a cube, and tet> a, €
M (.A) be a unital column field on a locally compact Hausdorff spaosith a
Radon measure. If t — z, is an essentially bounded, weak*-measurable field
on T of abeliann-tuples of self-adjoint elements # in the domain off, then

(3.1) @), o) < @ ([ aifiahadnty))

almost everywhere, where thetupley in M (A) is defined by setting

Y=, Yn) = / ayx,a; dv(t).
T
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Proof. The subalgebrg& is as noted above of the forth = Cy(S) for some

locally compact metric space and since thé€'*-algebraC(I) is separable we

may for almost every in S define a Radon measugg on I by setting

o) = [0 ) =@ ( [ atoteinan) o). g€ G

L

o wv) = ( [ diacdn(t)) = o) =1

we observe that, is a probability measure. If we pyt()\) = \; then

[ dn) = [ ataocdut)) ) = 2o

/I ga(N) dus@))

élf@m&~w%QDwMM

fori=1,...,n and sincef is convex we obtain

.ﬂﬂmﬂﬁwwéwwﬁﬂ=f<[m@ﬁw&&~w

=[f@m%@>

—o ([ astwadn)

for almost alls in S. O
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The following corollary is known as “Jensen’s inequality for expectation
values”. It was formulated (for continuous fields) in the referengevhere
a more direct proof is given.

Corollary 3.2. Let f : I — R be a continuous convex function.ovariables
defined on a cube, and let— a; € B(H) be a unital column field on a locally
compact Hausdorff spacg with a Radon measure. If ¢ — z, is a bounded
weak*-measurable field df of abeliann-tuples of self-adjoint operators o
in the domain off, then

32 F(0E] ). (1 | O) < ( /T ! fz))ar ()€ | 5)

for any unit vectol € H, where then-tupley is defined by setting

Q - (yl) s 7yn) - / a:&tat dl/(t)
T

Proof. The statement follows from Theore®nl by choosingy as the trace and
letting C be theC*-algebra generated by the orthogonal projectioon the
vectoré. ThenC = Cy(S) whereS = {0,1}, and an element € C has the
representation

z=2z(0)P+ z(1)(1 — P).

The measuréy., gives unit weight in each of the two points, and the conditional
expectationbd is given by

x s=0
o)) = { (Tr§:c| f)P:c) s=1.
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Indeed,

p(z2) = Tr((2(0)P + 2(1)(1 - P))x)
= 2(0)®(2)(0) + 2(1)®(2)(0)
:/Sz(s)q)(x)(s) ds

as required. The statement follows by evaluating the functions appearing on
each side of the inequalityd (1) at the points = 0. O

Remark 1. If we choose’ as a probability measure dh, then the trivial field
a; = 1fort € T is unital and (3.2) takes the form

f((éyuw@kmﬁ,nw(Aﬁmdwwmg))s(Zj@amﬁﬁ|g

for bounded weak*-measurable fields of abeliatuplesz, = (zy;, . .., z,) Of
self-adjoint operators in the domain gfand unit vectorg. By choosing’ as
an atomic measure with one atom we get a version

(3.3) F@€] ), (@l ]6) < (f@)E|€)

of the Jensen inequality by Mond and Pecarig. [ By further considering a
direct sum

gz@gj and z = (zq,...,x,) :@(xlj,...,xnj)
j=1
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we obtain the familiar version

f (Z(xljé“j 16050 > (@i |€j)> < Z(f(l“lj’ s )& | 5;‘)

j=1 j=1 j=1

valid for abeliann-tuples(zy;, . .., z,;), 7 = 1, ..., m of self-adjoint operators
in the domain off and vectors, . .., &, with ||&|]> + - + ||&.]|° = 1.
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