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1. Introduction and Definitions

Let .4 denote the class of functiorfgz) of the form
(1.1) f(z)=z+ Z ;2!
j=2

which are analytic in the open did¢ = {z : |z| < 1}. LetS be the subclass oft
consisting of analytic and univalent functiofisz) in U. We denote byS*(a) and
K(a) the class of starlike functions of orderand the class of convex functions of
ordera, respectively, that is,

S*(a):{feA:Re(Z}t;z)) >a,0§a<1,z€U}
e K(a)z{féA:Re(lJrZﬂ(;))) >a,oga<1,zetu}.

For f(z) € A, Salagean 1] introduced the following operator which is called the
Salagean operator:

D°f(z) = f(2)
D'f(z) = Df(z) = 2f'(2)
D"f(z)=D(D" 'f(z)) (neN=1,23,..).

We note that,

D"f(z) :z—i—Zj"ajzj (n € Ngo =NuU{0}).
j=2
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Let M,...(a, §) denote the subclass of consisting of functiong'(z) which satisfy
the inequality
D"f (z D" f (=
re{ Br | = 2| B 1
forsomed = a<1,8>0,me N, neNyandallz € U. Also let M («, ()

(s =0,1,2,...) be the subclass o4 consisting of functiong(z) which sa{tisfy the
condition:

+ «

f(Z) S an,n(avﬁ) A DSf('Z) € Nm,n(&7ﬁ>'
It is easy to see that § = 0, then M}, (a,5) = Npn(a, ).
special cases of our classes are the following:
(i) Mio(,0) = S*(«) and Ny (e, 0)
[2].
(i) Nio(a, 8) = SD(a
Shams at all3].

(ii)) Nynn(@,0) = Ko@) and M, (a
Eker and Owa4].

Furthermore,

= K(«) which were studied by Silverman

,3) and M o(a, 3) = KD(a, 3) which were studied by

,0) = M;, . (a) which were studied by

Therefore, our present paper is a generalization of these papers. In view of the
coefficient inequalities fof (z) to be in the classe¥,, »(«, 3) and M;,  (a, 3), we

introduce two subclasseén (o, B) and/\/ls .(a, 3). Some distortion inequalities
for f(z) and some integral means mequalltles for fractional calculug of in the
above classes are discussed in this paper.
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2. Coefficient Inequalities for classesV,,, ,(a, 3) and M (a, 3)

Theorem 2.1.1f f(z) € A satisfies

(2.1) > U(m,n,j,a,8)la;] £ 2(1 - a)

j=2

where

(2.2) V¥(m,n,j,a,B) =" —j"—aj"|+ (" + 5" —aj") + 285" — j"|
for somen(0 < v < 1), 5 > 0, m € Nandn € Ny ,thenf(z) € N,,.(a, 5).

Proof. Suppose that( 1) is true fora(0 £ o < 1), > 0,m € N, n € Ny. For
f(z) € A, let us define the functiof'(z) by

PO~ B~ B |~
It suffices to show that
‘?i;;”<l (z € U).
We note that
‘F(z) -1
F(z)+1

'Dmf(Z) — e | D™ f(2) — D"f(z)| — aD" f(z) — D"f(2)
Dmf(z) — e |Dm f(z) — D" f(2)] — aD"f(2) + D" f(2)
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—o + Z;iz(jm i ijn)ajzjfl - ﬂ€i9| Z;‘).;Q(jm - jn)ajzjiw
(2—a)+252,0m + 5" — ajr)a;zi =t — Be®| 372, (™ — a2
a+ 3700 13™ = 5" = ag a2~ + Blel” 3272, 5™ = "l 2
T 2-a) =2, G — ag) a2 = Blel? S, 1 — a2l

a+ Y50, ™ — " — e ay + B35, 7™ — 5™l
T 2-a) =2, (g = ag) lag] = B2, 1™ = g ey

The last expression is bounded abovel bif

at+ D> 1" =it —ag gl + B8 1™ = 5" layl
j=2

j=2
S@2-a)= Y (" +"—ai) ]| =85 = i"lay]
Jj=2 j=2

which is equivalent to our conditior? (1). This completes the proof of our theorem.

]

By using Theoren2.1, we have:

Theorem 2.2.1f f(z) € A satisfies

> i (m,n, g0, 8) la;] < 2(1 - a),

=2

whereW¥ (m,n, j, «, ) is defined byZ.2) for somex(0 < o < 1), 3 >0, m € N
andn € Ny, thenf(z) € M5, (a,3).
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Proof. From
f(Z) e an,n(aaﬁ) < Dsf(z) E Nmﬂ’b(a?B)?

replacinga; by j°a; in Theorem2.1, we have the theorem. O

Example2.1 The functionf(z) given by

(24 0)(1 — a)e; ) SN
— — Al
Z+§:J+5J+4+ﬁ)0mmﬁaﬁf Z+;;JZ

with
s - 224 90)(1 — a)g
TG+ +1+0)Y(m,n,j a,f)

belongs to the clas¥/,, ,(a, 3) ford > —2,0 < a < 1,6 > 0,¢; € Cand|e;| = 1.

Because, we know that

2240)(1 — «)
U+®U+1+®

> 1 1
2+6)(1—
202+ 0)( (X22(3+5 j+1+5)

(1—a).
Example2.2 The functionf(z) given by

22+0)(1 — )EJ Jj— N J
—Z+Z G+ + 1+ 0)U(m,n,j,a, B) _Z+;sz

Z\D(m7n7j7avﬁ) |AJ| é
7j=2

Dﬂgntﬂg

Il
N .
[\o}

with
B — 2(240)(1 — w)e;
TG0+ 1+ 0)Y(m,n, g, a,0)
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belongs to the classt;, (o, 3) ford > 2,0 = a < 1,8 > 0,¢; € Candle;| = 1.
Because, the functiofi(z) gives us that

= . 222+ 0)(1—a)
Z] \P(m7n7]’0‘aﬁ) |B]| g Z (]+5)(]+1—|—(5) —2(1 —Od).

Jj=2 j=2

Title Page

Contents

:
:

Page 8 of 25
Go Back

Full Screen

Close



http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

3. Relation for AV, (e, ) andM;Ln< ,3)

In view of Theoren?.1 and Theoren?.2, we now introduce the subclasses
N, 8) C Nopn(er, 3)  and /\7fn,n(a, B) C M;, . (a, B)
which consist of functions

o ) Analytic Functions Involving
— ] . > Salagean Operator

(31) f (Z) zZ+ Z CLJZ (aj - 0> Sevtap Sumer Eker and
Jj=2 Shigeyoshi Owa

whose Taylor-Maclaurin coefficients satisfy the inequalities)(and ¢.2), respec- vol. 10, iss. 1, art. 22, 2009
tively. By the coefficient inequalities for the classgs, (., ) and/\/lS W, ),

we see: Title Page
Theorem 3.1. B _

Nm,n(aa 52) C Nm,n(aa 51) Contents
for somes; and5;, 0 < 5 < fs. <« >
Proof. For0 < 3, < 3, we obtain < >

Z\I/mnj,ozﬁl éz mn],ozﬁg) Page 9 of 25

j= Go Back

Therefore, iff(z) € Npn(a, 52), thenf(z) € N,..(o, (). Hence we get the Full Screen
required result. O Close

By using Theoren3.1, we also have
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4. Distortion Inequalities

Lemma4.1.If f(z) € /\7m,n(a, 3), then we have

>0 2(1 —a) = 30, ¥(m,n, j, a, B)a

Z ‘Il(m7/n’7p+]‘7a7/6)

Jj=p+1

II/\

Proof. In view of Theoren?.1, we can write

e}

(4.1) > W(mn,j o, B)a; £ 2(1—a) —

Jj=p+1 Jj=2

S

\Il(m> n>j> a, ﬁ)aj

Clearly ¥(m,n, j, a, 5) is an increasing function fof. Then from ¢.2) and ¢.1),

we have

p

U(m,n,p+1,a,0) i a; S2(1—a) — Z\If(m,n,j,a,ﬁ)aj.

Jj=p+1 J=2

Thus, we obtain

i i S 2(1 — ) = 370, U(m,n, j, v, B)a;

S =A;.
Jj=p+1 \I/(m,n,p+ 1a0576)
[l
Lemma 4.2.1f f(z) € N,,,.(a, ), then
Z - 2(1 — a) > o ¥(m,n,j,a, B)a; _ 3
]: _17n_17p+170575) -

Jj=p+1
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Corollary 4.3. If f(z) € M;, ,(a), then
- < 2(1-&)— ?ZQquj(manajaa7ﬁ)aj -

a; < —C.
]21 7= (p + 1)5\I](m7 n7p + ]'7 Oé, /8) !
and . . .
Z ja < 2(1 —a) =325, 7°¥(m,n, j, a, B)a; _p.
j=p+l (p+1)5\11<m_17n_17p+17a7ﬁ)

Theorem 4.4.Let f(z) € N,,.(cv, B). Then forz| = r < 1

p p
r— Zaj |z — AP S f(2) Sr+ Zaj |z} + AjrPtt
j=2 j=2
and
1= jaj |t =By S () S 1+ jaj|z’ + Byr?
j=2 j=2
whereA; and B; are given by Lemma.1and Lemmat.2.
Proof. Let f (z) given by (L.1). For|z| = r < 1,using Lemma!.1, we have

[e.9]

p
FEIS 2+ ailzl + ) aglef
j=2 Jj=p+1

p
S+ ag el + 7Y
j=2

Jj=p+1

p
r -+ Z aj |z + APt

Jj=2

A
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and

p . m .
If )] =2 = D alzl = Y ajlzf
Jj=2 Jj=p+1
p ] o0
>zl =) ajlelf = 2T DY
=2 j=p+1
p .
>r— Zaj |z]) — Ajrp“.
=2

Furthermore, fofz| = r < 1 using Lemmal.2, we obtain

p [ee]
OIS+ a7+ > a2
j=2

Jj=p+1

o0

P
S+ gl P Y jay

7j=2 j=p+1

p
S1+) jaglel’™" + By”
=2

and

P fe's)
F ()= 1= a2 = > jag |
j=2

Jj=p+1
p ) 00
>1=) ol = L2l Y da
j=2 Jj=p+1
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p
> 1= jaj|z~" = Byr?.

j=2
This completes the assertion of Theorém O

Theorem 4.5.Let f(z) € /\7;;7”(04, (). Then

P P
r— Z a; |2 = CirPTP S| f(2) Sr+ Zaj |z + CyrP !
=2

Jj=2

and
p

p
L= jajlzP ™" =Dy S|f() S 1+ ) jag |2 + Dy

j=2 j=2
whereC; and D, are given by Corollary}.3.

Proof. Using a similar method to that in the proof of Theorém and making use
Corollary4.3, we get our result. O

Takingp = 1 in Theorem4.4and Theorem.5, we have:
Corollary 4.6. Let f(z) € N,.(a, 8). Thenfor|z| = r < 1

2(1 — a) 2(1 — )
" \11(77”L,7L,2,oz,ﬁ)r2 = (@) =r+ \I/(m,n,Q,a,ﬁ)r2
and
R i) B Y7 7S W Cl)

U(im—1,n-1,2,a,0) \I/(m—l,n—l,Q,oz,ﬂ)T'
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Corollary 4.7. Let f(z) € /’\\/l/;m(a, B). Thenfor|z| =r <1

2(1 - «) 9 2(1 —«) 9
" mmza ) = ST S e )

and

2(1 — «)

2(1—a)
S| () <1 ’
r |f (Z)| = +25\Ij(m—1,n—1,2aaaﬂ)r

S 2U(m—1,n—1,2,0,08) =
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5. Extreme Points

The determination of the extreme points of a fanfilpf univalent functions enables
us to solve many extremal problems f6r Now, let us determine extreme points of

the classesV,, . («, 3) andM;, . (a, ).
Theorem 5.1. Let f;(z) = z and

2(1 —a)
W(m7 n?j’ a’ ﬁ)

fi(z) =2+ 0 (1=2,3,...).

whereW (m, n, j, o, ) is defined by4.2). Thenf € J\mem(a, @) if and only if it can
be expressed in the form

f(z) = Z Aifi(2),

where); > 0and) >, \; = 1.
Proof. Suppose that

=N Nf(2) = Aj -
1(2) z i i(2) +Z Wm0 8)
Then
I T

:iQ(l—a))\j:2(1—a)§:)\j:2(1—a)(1—)\1) <2(1—a)

Jj=2 Jj=2
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Thus, f(z) € N,,..(a, 3) from the definition of the class ¥/, ,.(a, 3).
Conversely, suppose thate N,, .(a, ). Since

2(1 — «)

< =2,3,..),
VW gy  UTE
we may set ———
. nalytic Functions Involving
N\ = \Il(m, n,J% ﬁ) Q. Salagean Operator
J 2(1 _ a) J Sevtap Stimer Eker and
Shigeyoshi Owa
and - vol. 10, iss. 1, art. 22, 2009
M=1-) "N
=2 Title Page
Then,
00 Contents
f(z) = ; Aifi(z2). « o
This completes the proof of the theorem. N 4 >
Corollary 5.2. Letg,(z) = z and Page 16 of 25
2(1 — ) A Go Back
(2) =2+ = : 2 (1=2,3,...).
g]( ) jS\IJ(m,n,j,a,ﬂ) U ) Full Screen
Theng € /\7;%”(@, B) if and only if it can be expressed in the form Close
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Corollary 5.3. The extreme points (ﬁfm,n(a, () are the functiongf;(z) = z and

2(1 — «)

fi(z) =2+ @(m7n7j7a76>zﬂ (j=2,3,..).

Corollary 5.4. The extreme points dff/vlfn,n(a, () are given byy, (z) = z and

Analytic Functions Involving
2(1 - OC) j . Salagean Operator
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6. Integral Means Inequalities

We shall use the following definitions for fractional derivatives by Owh(flso
Srivastava and Ow&]).

Definition 6.1. The fractional derivative of ordek is defined, for a functiorf(z),
by

6.1) DM (z) = ﬁdi / Z (Zf_(—%Adé 0<r<1),

where the functiory(z) is analytic in a simply-connected region of the complex
plane containing the origin, and the multiplicity of —¢)~* is removed by requiring
log(z — &) to be real wher(z — &) > 0.

Definition 6.2. Under the hypotheses of Definitiagnl, the fractional derivative of
order (p + \) is defined, for a functiorf(z), by
DI f(z) = o DA f(2)
z dzp  ~#
where0 = A < 1andp € Ny = NU {0}.
It readily follows from (.1) in Definition 6.1 that

Tk+1)
Ak _ k=X <
(6.2) D2z T A+ 1)2 0= A<1).

Further, we need the concept of subordination between analytic functions and a sub-

ordination theorem by Littlewood] in our investigation.
Let us consider two functiong(z) andg(z), which are analytic ifU. The func-
tion f(z) is said to besubordinateo g(z) in U if there exists a function(z) analytic
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in U with
w(0) =0 and |w(z)| <1 (z € ),
such that
f(z) =g(w(z)) (2 €U).

We denote this subordination by

f(z) < g(2).

Theorem 6.3 (Littlewood [5]). If f(z) and g (z) are analytic inU with f (z) <
g(z), thenfory > 0andz = re? (0 <r < 1)

[Teres [(uere

Theorem 6.4.Let f(z) € A given by £.1) be in the cIasS\N/m,n(a, () and suppose
that

~ 2(1 — a)I(k+ 1)I(3 = A —p)
}:U—pMH%E(Wmmiukmrw+1—A—pﬁ@—p)

Jj=2

forsome) < p < 2,0 = X < 1 where(j — p),+1 denotes the Pochhammer symbol
defined byj —p),+1 = (j —p)(j —p+1)---j. Also given is the functiofi,(z) by

2(1 — ) i
U (m,n,k,q, ﬁ)z

(6.3) felz) =2+ (k> 2).
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If there exists an analytic functian(z) given by

w1 Y(myn,k,a, B)T(k+1—X—p)
{w(z)} = 2(1— a)(k + 1)

= I'(j—p) j—1
X;(‘j_p)p+lr(]+1—)\—p)a72 5

then forz = re? (0 <r < 1)andu > 0,

2w 2w
/ |DP f(2)|" do < / | D2 f,(2)|" db.
0 0

Proof. By virtue of the fractional derivative formul& (2) and Definitiont.2, we find
from (1.1) that

. | {1 ., i T(2-A—pl{+ 1)ajzjl}

F2-A-p TG 1= A—p)
Zl—)\—p 00 |
TT2-A—p) {1 + ;F@ —A=p)J - p)pH@(j)ajzﬂ}
where ” |
- J—D
®(j) = RS-

Since®(j) is a decreasing function gf we have

o<¢<j>§@<2>=% 0<A<1 :0<p<2

I

7)-
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Similarly, from (6.2), (6.3) and Definition6.2, we obtain
1=A=p 20— a)T2—=A—p)I'(k+1)
Dp+A -~ 1 k=1
£ (2) F(Q—/\—p){ +\I/(m,n,k:,oz,ﬁ)F(k:+1—)\—p)Z }
0 < r < 1, we must show that

Forz = re®,

o

L+> T2=A=p)(j = ppn®()a;z | db

=2
21 Shigeyoshi Owa
< / 1+ 2(1 _ Oz)F(Z — A - p)F(k * 1) z db (# > 0), vol. 10, iss. 1, art. 22, 2009
a 0 \I’(m,n,k’,a,ﬁ)l—‘(k‘—i—l—)\—p)

Thus by applying Littlewood’s subordination theorem, it would suffice to show that

/Qw
0

Analytic Functions Involving

Salagean Operator
Sevtap Sumer Eker and

k—1

- Title Page
(6.4) 1+ Z L2=A=p)j—p)p1®()a;z"! Contents
=2 «“ S
<14 20 —a)l2=A=—p)T'(k+1) = p R
U(m,n, ko, 5)T'(E+1—X—p)
By setting Page 21 of 25
Go Back
L4 3 T@ = A =p)( ~ Plpn® (a2 s
=2
14 20 —a)’2=A=—p(k+1) {w(z)}k_l Close
U(m,n,k,co, ))L'(k+1—X—p)
we find that
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which readily yieldsw(0) = 0.
Therefore, we have

k-1 | ¥(m,nka,B)T(k+1—X—p) -

U(m,n,k,a, ATk +1—\—p)
21— a)T'(k+1) Z

[IA

U(m,n, ko, ))T'(E+1—-X—p

) s
<
S lzl<1
by means of the hypothesis of Theorém. ]

For the special cage= 0, Theorem6.4 readily yields the following result.

Corollary 6.5. Let f(z) € A given by £.1) be in the classvm,n(a, () and suppose
that

20—k +1)I'(3 = X)
Z‘j]_ U(m,n, k,a, B)T(k+1—)\)

for0 < A < 1. Also Iet the functionf,(z) be given by §.3). If there exists an
analytic functionw(z) given by

U(m,n, ko, Uk +1 =N~ TG+
2(1 — a)T'(k+1) —I'(j+1-2) 7

J

{w)}" =
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then forz = re?? and0 < r < 1,
2T 27
[Tiperas [T pnera 0a<, i o,
0 0

Corollary 6.6. Let f(z) € A given by £.1) be in the classqu(a, () and suppose
that
: 20— a)l'(k+1DI'EB =X —p)
_ <
Z(] Plpr1 = ksU(m,n, k,a, B)T'(k+1—X—p)T'(2—p)

j=2
forsomed < p < 2,0 < X < 1. Also let the function

Z h)
ksU(m,n, k, o, 3)

(6.5) g (2) =z + (k= 2).

If there exists an analytic functian(z) given by

k—1 KU (m,n, ko, B)T(E+1—-X—p)
B 21— a)l(k+1)

= . L(j—p .
X Z(j — P)p+1 ( ) a; 2’71,
j=2

{w(2)}

then forz = re? (0 <r < 1)andu > 0,

27 27
/ |DPf(2)]" df < / | DP* gy (2)|" db.
0 0

For the special cage= 0, Corollary6.6readily yields,
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Corollary 6.7. Let f(z) € A given by £.1) be in the cIassNA/lanvn(a, () and suppose
that

2(1 — a)l'(k+1)I'(3 - \)
Z]a’] = ks m7n7k7oé7ﬁ)r(l{j+1—>\)

for0 < )\ < 1. Also let the functiory,(z) be given by §.5). If there exists an
analytic functionw(z) given by

k—1 KU (m,n, ko, B)I( k—l—l— = I(j i
tw(=))™ = 21— a)D(k + ;FJH— 927

then forz = re? (0 <r < 1)andy > 0,

2T
/ |D2 f(z |“d9</ |D2gi(z)|" do.
0
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